1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* #pragma ident "@(#)vmem.c 1.10 05/06/08 SMI" */
/*
* For a more complete description of the main ideas, see:
*
* Jeff Bonwick and Jonathan Adams,
*
* Magazines and vmem: Extending the Slab Allocator to Many CPUs and
* Arbitrary Resources.
*
* Proceedings of the 2001 Usenix Conference.
* Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
*
* For the "Big Theory Statement", see usr/src/common/os/vmem.c
*
* 1. Overview of changes
* ------------------------------
* There have been a few changes to vmem in order to support umem. The
* main areas are:
*
* * VM_SLEEP unsupported
*
* * Reaping changes
*
* * initialization changes
*
* * _vmem_extend_alloc
*
*
* 2. VM_SLEEP Removed
* -------------------
* Since VM_SLEEP allocations can hold locks (in vmem_populate()) for
* possibly infinite amounts of time, they are not supported in this
* version of vmem. Sleep-like behavior can be achieved through
* UMEM_NOFAIL umem allocations.
*
*
* 3. Reaping changes
* ------------------
* Unlike kmem_reap(), which just asynchronously schedules work, umem_reap()
* can do allocations and frees synchronously. This is a problem if it
* occurs during a vmem_populate() allocation.
*
* Instead, we delay reaps while populates are active.
*
*
* 4. Initialization changes
* -------------------------
* In the kernel, vmem_init() allows you to create a single, top-level arena,
* which has vmem_internal_arena as a child. For umem, we want to be able
* to extend arenas dynamically. It is much easier to support this if we
* allow a two-level "heap" arena:
*
* +----------+
* | "fake" |
* +----------+
* |
* +----------+
* | "heap" |
* +----------+
* | \ \
* | +-+-- ... <other children>
* |
* +---------------+
* | vmem_internal |
* +---------------+
* | | | |
* <children>
*
* The new vmem_init() allows you to specify a "parent" of the heap, along
* with allocation functions.
*
*
* 5. _vmem_extend_alloc
* ---------------------
* The other part of extending is _vmem_extend_alloc. This function allows
* you to extend (expand current spans, if possible) an arena and allocate
* a chunk of the newly extened span atomically. This is needed to support
* extending the heap while vmem_populate()ing it.
*
* In order to increase the usefulness of extending, non-imported spans are
* sorted in address order.
*/
#include "config.h"
/* #include "mtlib.h" */
#include <sys/vmem_impl_user.h>
#if HAVE_ALLOCA_H
#include <alloca.h>
#endif
#ifdef HAVE_SYS_SYSMACROS_H
#include <sys/sysmacros.h>
#endif
#include <stdio.h>
#if HAVE_STRINGS_H
#include <strings.h>
#endif
#if HAVE_ATOMIC_H
#include <atomic.h>
#endif
#include "vmem_base.h"
#include "umem_base.h"
#define VMEM_INITIAL 6 /* early vmem arenas */
#define VMEM_SEG_INITIAL 100 /* early segments */
/*
* Adding a new span to an arena requires two segment structures: one to
* represent the span, and one to represent the free segment it contains.
*/
#define VMEM_SEGS_PER_SPAN_CREATE 2
/*
* Allocating a piece of an existing segment requires 0-2 segment structures
* depending on how much of the segment we're allocating.
*
* To allocate the entire segment, no new segment structures are needed; we
* simply move the existing segment structure from the freelist to the
* allocation hash table.
*
* To allocate a piece from the left or right end of the segment, we must
* split the segment into two pieces (allocated part and remainder), so we
* need one new segment structure to represent the remainder.
*
* To allocate from the middle of a segment, we need two new segment strucures
* to represent the remainders on either side of the allocated part.
*/
#define VMEM_SEGS_PER_EXACT_ALLOC 0
#define VMEM_SEGS_PER_LEFT_ALLOC 1
#define VMEM_SEGS_PER_RIGHT_ALLOC 1
#define VMEM_SEGS_PER_MIDDLE_ALLOC 2
/*
* vmem_populate() preallocates segment structures for vmem to do its work.
* It must preallocate enough for the worst case, which is when we must import
* a new span and then allocate from the middle of it.
*/
#define VMEM_SEGS_PER_ALLOC_MAX \
(VMEM_SEGS_PER_SPAN_CREATE + VMEM_SEGS_PER_MIDDLE_ALLOC)
/*
* The segment structures themselves are allocated from vmem_seg_arena, so
* we have a recursion problem when vmem_seg_arena needs to populate itself.
* We address this by working out the maximum number of segment structures
* this act will require, and multiplying by the maximum number of threads
* that we'll allow to do it simultaneously.
*
* The worst-case segment consumption to populate vmem_seg_arena is as
* follows (depicted as a stack trace to indicate why events are occurring):
*
* vmem_alloc(vmem_seg_arena) -> 2 segs (span create + exact alloc)
* vmem_alloc(vmem_internal_arena) -> 2 segs (span create + exact alloc)
* heap_alloc(heap_arena)
* vmem_alloc(heap_arena) -> 4 seg (span create + alloc)
* parent_alloc(parent_arena)
* _vmem_extend_alloc(parent_arena) -> 3 seg (span create + left alloc)
*
* Note: The reservation for heap_arena must be 4, since vmem_xalloc()
* is overly pessimistic on allocations where parent_arena has a stricter
* alignment than heap_arena.
*
* The worst-case consumption for any arena is 4 segment structures.
* For now, we only support VM_NOSLEEP allocations, so as long as we
* serialize all vmem_populates, a 4-seg reserve is sufficient.
*/
#define VMEM_POPULATE_SEGS_PER_ARENA 4
#define VMEM_POPULATE_LOCKS 1
#define VMEM_POPULATE_RESERVE \
(VMEM_POPULATE_SEGS_PER_ARENA * VMEM_POPULATE_LOCKS)
/*
* vmem_populate() ensures that each arena has VMEM_MINFREE seg structures
* so that it can satisfy the worst-case allocation *and* participate in
* worst-case allocation from vmem_seg_arena.
*/
#define VMEM_MINFREE (VMEM_POPULATE_RESERVE + VMEM_SEGS_PER_ALLOC_MAX)
/* Don't assume new statics are zeroed - see vmem_startup() */
static vmem_t vmem0[VMEM_INITIAL];
static vmem_t *vmem_populator[VMEM_INITIAL];
static uint32_t vmem_id;
static uint32_t vmem_populators;
static vmem_seg_t vmem_seg0[VMEM_SEG_INITIAL];
static vmem_seg_t *vmem_segfree;
static mutex_t vmem_list_lock = DEFAULTMUTEX;
static mutex_t vmem_segfree_lock = DEFAULTMUTEX;
static vmem_populate_lock_t vmem_nosleep_lock = {
DEFAULTMUTEX,
0
};
#define IN_POPULATE() (vmem_nosleep_lock.vmpl_thr == thr_self())
static vmem_t *vmem_list;
static vmem_t *vmem_internal_arena;
static vmem_t *vmem_seg_arena;
static vmem_t *vmem_hash_arena;
static vmem_t *vmem_vmem_arena;
vmem_t *vmem_heap;
vmem_alloc_t *vmem_heap_alloc;
vmem_free_t *vmem_heap_free;
uint32_t vmem_mtbf; /* mean time between failures [default: off] */
size_t vmem_seg_size = sizeof (vmem_seg_t);
/*
* we use the _ version, since we don't want to be cancelled.
* Actually, this is automatically taken care of by including "mtlib.h".
*/
extern int _cond_wait(cond_t *cv, mutex_t *mutex);
/*
* Insert/delete from arena list (type 'a') or next-of-kin list (type 'k').
*/
#define VMEM_INSERT(vprev, vsp, type) \
{ \
vmem_seg_t *vnext = (vprev)->vs_##type##next; \
(vsp)->vs_##type##next = (vnext); \
(vsp)->vs_##type##prev = (vprev); \
(vprev)->vs_##type##next = (vsp); \
(vnext)->vs_##type##prev = (vsp); \
}
#define VMEM_DELETE(vsp, type) \
{ \
vmem_seg_t *vprev = (vsp)->vs_##type##prev; \
vmem_seg_t *vnext = (vsp)->vs_##type##next; \
(vprev)->vs_##type##next = (vnext); \
(vnext)->vs_##type##prev = (vprev); \
}
/*
* Get a vmem_seg_t from the global segfree list.
*/
static vmem_seg_t *
vmem_getseg_global(void)
{
vmem_seg_t *vsp;
(void) mutex_lock(&vmem_segfree_lock);
if ((vsp = vmem_segfree) != NULL)
vmem_segfree = vsp->vs_knext;
(void) mutex_unlock(&vmem_segfree_lock);
return (vsp);
}
/*
* Put a vmem_seg_t on the global segfree list.
*/
static void
vmem_putseg_global(vmem_seg_t *vsp)
{
(void) mutex_lock(&vmem_segfree_lock);
vsp->vs_knext = vmem_segfree;
vmem_segfree = vsp;
(void) mutex_unlock(&vmem_segfree_lock);
}
/*
* Get a vmem_seg_t from vmp's segfree list.
*/
static vmem_seg_t *
vmem_getseg(vmem_t *vmp)
{
vmem_seg_t *vsp;
ASSERT(vmp->vm_nsegfree > 0);
vsp = vmp->vm_segfree;
vmp->vm_segfree = vsp->vs_knext;
vmp->vm_nsegfree--;
return (vsp);
}
/*
* Put a vmem_seg_t on vmp's segfree list.
*/
static void
vmem_putseg(vmem_t *vmp, vmem_seg_t *vsp)
{
vsp->vs_knext = vmp->vm_segfree;
vmp->vm_segfree = vsp;
vmp->vm_nsegfree++;
}
/*
* Add vsp to the appropriate freelist.
*/
static void
vmem_freelist_insert(vmem_t *vmp, vmem_seg_t *vsp)
{
vmem_seg_t *vprev;
ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
vprev = (vmem_seg_t *)&vmp->vm_freelist[highbit(VS_SIZE(vsp)) - 1];
vsp->vs_type = VMEM_FREE;
vmp->vm_freemap |= VS_SIZE(vprev);
VMEM_INSERT(vprev, vsp, k);
(void) cond_broadcast(&vmp->vm_cv);
}
/*
* Take vsp from the freelist.
*/
static void
vmem_freelist_delete(vmem_t *vmp, vmem_seg_t *vsp)
{
ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
ASSERT(vsp->vs_type == VMEM_FREE);
if (vsp->vs_knext->vs_start == 0 && vsp->vs_kprev->vs_start == 0) {
/*
* The segments on both sides of 'vsp' are freelist heads,
* so taking vsp leaves the freelist at vsp->vs_kprev empty.
*/
ASSERT(vmp->vm_freemap & VS_SIZE(vsp->vs_kprev));
vmp->vm_freemap ^= VS_SIZE(vsp->vs_kprev);
}
VMEM_DELETE(vsp, k);
}
/*
* Add vsp to the allocated-segment hash table and update kstats.
*/
static void
vmem_hash_insert(vmem_t *vmp, vmem_seg_t *vsp)
{
vmem_seg_t **bucket;
vsp->vs_type = VMEM_ALLOC;
bucket = VMEM_HASH(vmp, vsp->vs_start);
vsp->vs_knext = *bucket;
*bucket = vsp;
if (vmem_seg_size == sizeof (vmem_seg_t)) {
vsp->vs_depth = (uint8_t)getpcstack(vsp->vs_stack,
VMEM_STACK_DEPTH, 0);
vsp->vs_thread = thr_self();
vsp->vs_timestamp = gethrtime();
} else {
vsp->vs_depth = 0;
}
vmp->vm_kstat.vk_alloc++;
vmp->vm_kstat.vk_mem_inuse += VS_SIZE(vsp);
}
/*
* Remove vsp from the allocated-segment hash table and update kstats.
*/
static vmem_seg_t *
vmem_hash_delete(vmem_t *vmp, uintptr_t addr, size_t size)
{
vmem_seg_t *vsp, **prev_vspp;
prev_vspp = VMEM_HASH(vmp, addr);
while ((vsp = *prev_vspp) != NULL) {
if (vsp->vs_start == addr) {
*prev_vspp = vsp->vs_knext;
break;
}
vmp->vm_kstat.vk_lookup++;
prev_vspp = &vsp->vs_knext;
}
if (vsp == NULL) {
umem_panic("vmem_hash_delete(%p, %lx, %lu): bad free",
vmp, addr, size);
}
if (VS_SIZE(vsp) != size) {
umem_panic("vmem_hash_delete(%p, %lx, %lu): wrong size "
"(expect %lu)", vmp, addr, size, VS_SIZE(vsp));
}
vmp->vm_kstat.vk_free++;
vmp->vm_kstat.vk_mem_inuse -= size;
return (vsp);
}
/*
* Create a segment spanning the range [start, end) and add it to the arena.
*/
static vmem_seg_t *
vmem_seg_create(vmem_t *vmp, vmem_seg_t *vprev, uintptr_t start, uintptr_t end)
{
vmem_seg_t *newseg = vmem_getseg(vmp);
newseg->vs_start = start;
newseg->vs_end = end;
newseg->vs_type = 0;
newseg->vs_import = 0;
VMEM_INSERT(vprev, newseg, a);
return (newseg);
}
/*
* Remove segment vsp from the arena.
*/
static void
vmem_seg_destroy(vmem_t *vmp, vmem_seg_t *vsp)
{
ASSERT(vsp->vs_type != VMEM_ROTOR);
VMEM_DELETE(vsp, a);
vmem_putseg(vmp, vsp);
}
/*
* Add the span [vaddr, vaddr + size) to vmp and update kstats.
*/
static vmem_seg_t *
vmem_span_create(vmem_t *vmp, void *vaddr, size_t size, uint8_t import)
{
vmem_seg_t *knext;
vmem_seg_t *newseg, *span;
uintptr_t start = (uintptr_t)vaddr;
uintptr_t end = start + size;
knext = &vmp->vm_seg0;
if (!import && vmp->vm_source_alloc == NULL) {
vmem_seg_t *kend, *kprev;
/*
* non-imported spans are sorted in address order. This
* makes vmem_extend_unlocked() much more effective.
*
* We search in reverse order, since new spans are
* generally at higher addresses.
*/
kend = &vmp->vm_seg0;
for (kprev = kend->vs_kprev; kprev != kend;
kprev = kprev->vs_kprev) {
if (!kprev->vs_import && (kprev->vs_end - 1) < start)
break;
}
knext = kprev->vs_knext;
}
ASSERT(MUTEX_HELD(&vmp->vm_lock));
if ((start | end) & (vmp->vm_quantum - 1)) {
umem_panic("vmem_span_create(%p, %p, %lu): misaligned",
vmp, vaddr, size);
}
span = vmem_seg_create(vmp, knext->vs_aprev, start, end);
span->vs_type = VMEM_SPAN;
VMEM_INSERT(knext->vs_kprev, span, k);
newseg = vmem_seg_create(vmp, span, start, end);
vmem_freelist_insert(vmp, newseg);
newseg->vs_import = import;
if (import)
vmp->vm_kstat.vk_mem_import += size;
vmp->vm_kstat.vk_mem_total += size;
return (newseg);
}
/*
* Remove span vsp from vmp and update kstats.
*/
static void
vmem_span_destroy(vmem_t *vmp, vmem_seg_t *vsp)
{
vmem_seg_t *span = vsp->vs_aprev;
size_t size = VS_SIZE(vsp);
ASSERT(MUTEX_HELD(&vmp->vm_lock));
ASSERT(span->vs_type == VMEM_SPAN);
if (vsp->vs_import)
vmp->vm_kstat.vk_mem_import -= size;
vmp->vm_kstat.vk_mem_total -= size;
VMEM_DELETE(span, k);
vmem_seg_destroy(vmp, vsp);
vmem_seg_destroy(vmp, span);
}
/*
* Allocate the subrange [addr, addr + size) from segment vsp.
* If there are leftovers on either side, place them on the freelist.
* Returns a pointer to the segment representing [addr, addr + size).
*/
static vmem_seg_t *
vmem_seg_alloc(vmem_t *vmp, vmem_seg_t *vsp, uintptr_t addr, size_t size)
{
uintptr_t vs_start = vsp->vs_start;
uintptr_t vs_end = vsp->vs_end;
size_t vs_size = vs_end - vs_start;
size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
uintptr_t addr_end = addr + realsize;
ASSERT(P2PHASE(vs_start, vmp->vm_quantum) == 0);
ASSERT(P2PHASE(addr, vmp->vm_quantum) == 0);
ASSERT(vsp->vs_type == VMEM_FREE);
ASSERT(addr >= vs_start && addr_end - 1 <= vs_end - 1);
ASSERT(addr - 1 <= addr_end - 1);
/*
* If we're allocating from the start of the segment, and the
* remainder will be on the same freelist, we can save quite
* a bit of work.
*/
if (P2SAMEHIGHBIT(vs_size, vs_size - realsize) && addr == vs_start) {
ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
vsp->vs_start = addr_end;
vsp = vmem_seg_create(vmp, vsp->vs_aprev, addr, addr + size);
vmem_hash_insert(vmp, vsp);
return (vsp);
}
vmem_freelist_delete(vmp, vsp);
if (vs_end != addr_end)
vmem_freelist_insert(vmp,
vmem_seg_create(vmp, vsp, addr_end, vs_end));
if (vs_start != addr)
vmem_freelist_insert(vmp,
vmem_seg_create(vmp, vsp->vs_aprev, vs_start, addr));
vsp->vs_start = addr;
vsp->vs_end = addr + size;
vmem_hash_insert(vmp, vsp);
return (vsp);
}
/*
* We cannot reap if we are in the middle of a vmem_populate().
*/
void
vmem_reap(void)
{
if (!IN_POPULATE())
umem_reap();
}
/*
* Populate vmp's segfree list with VMEM_MINFREE vmem_seg_t structures.
*/
static int
vmem_populate(vmem_t *vmp, int vmflag)
{
char *p;
vmem_seg_t *vsp;
ssize_t nseg;
size_t size;
vmem_populate_lock_t *lp;
int i;
while (vmp->vm_nsegfree < VMEM_MINFREE &&
(vsp = vmem_getseg_global()) != NULL)
vmem_putseg(vmp, vsp);
if (vmp->vm_nsegfree >= VMEM_MINFREE)
return (1);
/*
* If we're already populating, tap the reserve.
*/
if (vmem_nosleep_lock.vmpl_thr == thr_self()) {
ASSERT(vmp->vm_cflags & VMC_POPULATOR);
return (1);
}
(void) mutex_unlock(&vmp->vm_lock);
ASSERT(vmflag & VM_NOSLEEP); /* we do not allow sleep allocations */
lp = &vmem_nosleep_lock;
/*
* Cannot be just a mutex_lock(), since that has no effect if
* libthread is not linked.
*/
(void) mutex_lock(&lp->vmpl_mutex);
ASSERT(lp->vmpl_thr == 0);
lp->vmpl_thr = thr_self();
nseg = VMEM_MINFREE + vmem_populators * VMEM_POPULATE_RESERVE;
size = P2ROUNDUP(nseg * vmem_seg_size, vmem_seg_arena->vm_quantum);
nseg = size / vmem_seg_size;
/*
* The following vmem_alloc() may need to populate vmem_seg_arena
* and all the things it imports from. When doing so, it will tap
* each arena's reserve to prevent recursion (see the block comment
* above the definition of VMEM_POPULATE_RESERVE).
*
* During this allocation, vmem_reap() is a no-op. If the allocation
* fails, we call vmem_reap() after dropping the population lock.
*/
p = vmem_alloc(vmem_seg_arena, size, vmflag & VM_UMFLAGS);
if (p == NULL) {
lp->vmpl_thr = 0;
(void) mutex_unlock(&lp->vmpl_mutex);
vmem_reap();
(void) mutex_lock(&vmp->vm_lock);
vmp->vm_kstat.vk_populate_fail++;
return (0);
}
/*
* Restock the arenas that may have been depleted during population.
*/
for (i = 0; i < vmem_populators; i++) {
(void) mutex_lock(&vmem_populator[i]->vm_lock);
while (vmem_populator[i]->vm_nsegfree < VMEM_POPULATE_RESERVE)
vmem_putseg(vmem_populator[i],
(vmem_seg_t *)(p + --nseg * vmem_seg_size));
(void) mutex_unlock(&vmem_populator[i]->vm_lock);
}
lp->vmpl_thr = 0;
(void) mutex_unlock(&lp->vmpl_mutex);
(void) mutex_lock(&vmp->vm_lock);
/*
* Now take our own segments.
*/
ASSERT(nseg >= VMEM_MINFREE);
while (vmp->vm_nsegfree < VMEM_MINFREE)
vmem_putseg(vmp, (vmem_seg_t *)(p + --nseg * vmem_seg_size));
/*
* Give the remainder to charity.
*/
while (nseg > 0)
vmem_putseg_global((vmem_seg_t *)(p + --nseg * vmem_seg_size));
return (1);
}
/*
* Advance a walker from its previous position to 'afterme'.
* Note: may drop and reacquire vmp->vm_lock.
*/
static void
vmem_advance(vmem_t *vmp, vmem_seg_t *walker, vmem_seg_t *afterme)
{
vmem_seg_t *vprev = walker->vs_aprev;
vmem_seg_t *vnext = walker->vs_anext;
vmem_seg_t *vsp = NULL;
VMEM_DELETE(walker, a);
if (afterme != NULL)
VMEM_INSERT(afterme, walker, a);
/*
* The walker segment's presence may have prevented its neighbors
* from coalescing. If so, coalesce them now.
*/
if (vprev->vs_type == VMEM_FREE) {
if (vnext->vs_type == VMEM_FREE) {
ASSERT(vprev->vs_end == vnext->vs_start);
vmem_freelist_delete(vmp, vnext);
vmem_freelist_delete(vmp, vprev);
vprev->vs_end = vnext->vs_end;
vmem_freelist_insert(vmp, vprev);
vmem_seg_destroy(vmp, vnext);
}
vsp = vprev;
} else if (vnext->vs_type == VMEM_FREE) {
vsp = vnext;
}
/*
* vsp could represent a complete imported span,
* in which case we must return it to the source.
*/
if (vsp != NULL && vsp->vs_import && vmp->vm_source_free != NULL &&
vsp->vs_aprev->vs_type == VMEM_SPAN &&
vsp->vs_anext->vs_type == VMEM_SPAN) {
void *vaddr = (void *)vsp->vs_start;
size_t size = VS_SIZE(vsp);
ASSERT(size == VS_SIZE(vsp->vs_aprev));
vmem_freelist_delete(vmp, vsp);
vmem_span_destroy(vmp, vsp);
(void) mutex_unlock(&vmp->vm_lock);
vmp->vm_source_free(vmp->vm_source, vaddr, size);
(void) mutex_lock(&vmp->vm_lock);
}
}
/*
* VM_NEXTFIT allocations deliberately cycle through all virtual addresses
* in an arena, so that we avoid reusing addresses for as long as possible.
* This helps to catch used-after-freed bugs. It's also the perfect policy
* for allocating things like process IDs, where we want to cycle through
* all values in order.
*/
static void *
vmem_nextfit_alloc(vmem_t *vmp, size_t size, int vmflag)
{
vmem_seg_t *vsp, *rotor;
uintptr_t addr;
size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
size_t vs_size;
(void) mutex_lock(&vmp->vm_lock);
if (vmp->vm_nsegfree < VMEM_MINFREE && !vmem_populate(vmp, vmflag)) {
(void) mutex_unlock(&vmp->vm_lock);
return (NULL);
}
/*
* The common case is that the segment right after the rotor is free,
* and large enough that extracting 'size' bytes won't change which
* freelist it's on. In this case we can avoid a *lot* of work.
* Instead of the normal vmem_seg_alloc(), we just advance the start
* address of the victim segment. Instead of moving the rotor, we
* create the new segment structure *behind the rotor*, which has
* the same effect. And finally, we know we don't have to coalesce
* the rotor's neighbors because the new segment lies between them.
*/
rotor = &vmp->vm_rotor;
vsp = rotor->vs_anext;
if (vsp->vs_type == VMEM_FREE && (vs_size = VS_SIZE(vsp)) > realsize &&
P2SAMEHIGHBIT(vs_size, vs_size - realsize)) {
ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
addr = vsp->vs_start;
vsp->vs_start = addr + realsize;
vmem_hash_insert(vmp,
vmem_seg_create(vmp, rotor->vs_aprev, addr, addr + size));
(void) mutex_unlock(&vmp->vm_lock);
return ((void *)addr);
}
/*
* Starting at the rotor, look for a segment large enough to
* satisfy the allocation.
*/
for (;;) {
vmp->vm_kstat.vk_search++;
if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
break;
vsp = vsp->vs_anext;
if (vsp == rotor) {
/*
* We've come full circle. One possibility is that the
* there's actually enough space, but the rotor itself
* is preventing the allocation from succeeding because
* it's sitting between two free segments. Therefore,
* we advance the rotor and see if that liberates a
* suitable segment.
*/
vmem_advance(vmp, rotor, rotor->vs_anext);
vsp = rotor->vs_aprev;
if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
break;
/*
* If there's a lower arena we can import from, or it's
* a VM_NOSLEEP allocation, let vmem_xalloc() handle it.
* Otherwise, wait until another thread frees something.
*/
if (vmp->vm_source_alloc != NULL ||
(vmflag & VM_NOSLEEP)) {
(void) mutex_unlock(&vmp->vm_lock);
return (vmem_xalloc(vmp, size, vmp->vm_quantum,
0, 0, NULL, NULL, vmflag & VM_UMFLAGS));
}
vmp->vm_kstat.vk_wait++;
(void) _cond_wait(&vmp->vm_cv, &vmp->vm_lock);
vsp = rotor->vs_anext;
}
}
/*
* We found a segment. Extract enough space to satisfy the allocation.
*/
addr = vsp->vs_start;
vsp = vmem_seg_alloc(vmp, vsp, addr, size);
ASSERT(vsp->vs_type == VMEM_ALLOC &&
vsp->vs_start == addr && vsp->vs_end == addr + size);
/*
* Advance the rotor to right after the newly-allocated segment.
* That's where the next VM_NEXTFIT allocation will begin searching.
*/
vmem_advance(vmp, rotor, vsp);
(void) mutex_unlock(&vmp->vm_lock);
return ((void *)addr);
}
/*
* Allocate size bytes at offset phase from an align boundary such that the
* resulting segment [addr, addr + size) is a subset of [minaddr, maxaddr)
* that does not straddle a nocross-aligned boundary.
*/
void *
vmem_xalloc(vmem_t *vmp, size_t size, size_t align, size_t phase,
size_t nocross, void *minaddr, void *maxaddr, int vmflag)
{
vmem_seg_t *vsp;
vmem_seg_t *vbest = NULL;
uintptr_t addr, taddr, start, end;
void *vaddr;
int hb, flist, resv;
uint32_t mtbf;
if (phase > 0 && phase >= align)
umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
"invalid phase",
(void *)vmp, size, align, phase, nocross,
minaddr, maxaddr, vmflag);
if (align == 0)
align = vmp->vm_quantum;
if ((align | phase | nocross) & (vmp->vm_quantum - 1)) {
umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
"parameters not vm_quantum aligned",
(void *)vmp, size, align, phase, nocross,
minaddr, maxaddr, vmflag);
}
if (nocross != 0 &&
(align > nocross || P2ROUNDUP(phase + size, align) > nocross)) {
umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
"overconstrained allocation",
(void *)vmp, size, align, phase, nocross,
minaddr, maxaddr, vmflag);
}
if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
(vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
return (NULL);
(void) mutex_lock(&vmp->vm_lock);
for (;;) {
if (vmp->vm_nsegfree < VMEM_MINFREE &&
!vmem_populate(vmp, vmflag))
break;
/*
* highbit() returns the highest bit + 1, which is exactly
* what we want: we want to search the first freelist whose
* members are *definitely* large enough to satisfy our
* allocation. However, there are certain cases in which we
* want to look at the next-smallest freelist (which *might*
* be able to satisfy the allocation):
*
* (1) The size is exactly a power of 2, in which case
* the smaller freelist is always big enough;
*
* (2) All other freelists are empty;
*
* (3) We're in the highest possible freelist, which is
* always empty (e.g. the 4GB freelist on 32-bit systems);
*
* (4) We're doing a best-fit or first-fit allocation.
*/
if ((size & (size - 1)) == 0) {
flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
} else {
hb = highbit(size);
if ((vmp->vm_freemap >> hb) == 0 ||
hb == VMEM_FREELISTS ||
(vmflag & (VM_BESTFIT | VM_FIRSTFIT)))
hb--;
flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
}
for (vbest = NULL, vsp = (flist == 0) ? NULL :
vmp->vm_freelist[flist - 1].vs_knext;
vsp != NULL; vsp = vsp->vs_knext) {
vmp->vm_kstat.vk_search++;
if (vsp->vs_start == 0) {
/*
* We're moving up to a larger freelist,
* so if we've already found a candidate,
* the fit can't possibly get any better.
*/
if (vbest != NULL)
break;
/*
* Find the next non-empty freelist.
*/
flist = lowbit(P2ALIGN(vmp->vm_freemap,
VS_SIZE(vsp)));
if (flist-- == 0)
break;
vsp = (vmem_seg_t *)&vmp->vm_freelist[flist];
ASSERT(vsp->vs_knext->vs_type == VMEM_FREE);
continue;
}
if (vsp->vs_end - 1 < (uintptr_t)minaddr)
continue;
if (vsp->vs_start > (uintptr_t)maxaddr - 1)
continue;
start = MAX(vsp->vs_start, (uintptr_t)minaddr);
end = MIN(vsp->vs_end - 1, (uintptr_t)maxaddr - 1) + 1;
taddr = P2PHASEUP(start, align, phase);
if (P2CROSS(taddr, taddr + size - 1, nocross))
taddr +=
P2ROUNDUP(P2NPHASE(taddr, nocross), align);
if ((taddr - start) + size > end - start ||
(vbest != NULL && VS_SIZE(vsp) >= VS_SIZE(vbest)))
continue;
vbest = vsp;
addr = taddr;
if (!(vmflag & VM_BESTFIT) || VS_SIZE(vbest) == size)
break;
}
if (vbest != NULL)
break;
if (size == 0)
umem_panic("vmem_xalloc(): size == 0");
if (vmp->vm_source_alloc != NULL && nocross == 0 &&
minaddr == NULL && maxaddr == NULL) {
size_t asize = P2ROUNDUP(size + phase,
MAX(align, vmp->vm_source->vm_quantum));
if (asize < size) { /* overflow */
(void) mutex_unlock(&vmp->vm_lock);
if (vmflag & VM_NOSLEEP)
return (NULL);
umem_panic("vmem_xalloc(): "
"overflow on VM_SLEEP allocation");
}
/*
* Determine how many segment structures we'll consume.
* The calculation must be presise because if we're
* here on behalf of vmem_populate(), we are taking
* segments from a very limited reserve.
*/
resv = (size == asize) ?
VMEM_SEGS_PER_SPAN_CREATE +
VMEM_SEGS_PER_EXACT_ALLOC :
VMEM_SEGS_PER_ALLOC_MAX;
ASSERT(vmp->vm_nsegfree >= resv);
vmp->vm_nsegfree -= resv; /* reserve our segs */
(void) mutex_unlock(&vmp->vm_lock);
vaddr = vmp->vm_source_alloc(vmp->vm_source, asize,
vmflag & VM_UMFLAGS);
(void) mutex_lock(&vmp->vm_lock);
vmp->vm_nsegfree += resv; /* claim reservation */
if (vaddr != NULL) {
vbest = vmem_span_create(vmp, vaddr, asize, 1);
addr = P2PHASEUP(vbest->vs_start, align, phase);
break;
}
}
(void) mutex_unlock(&vmp->vm_lock);
vmem_reap();
(void) mutex_lock(&vmp->vm_lock);
if (vmflag & VM_NOSLEEP)
break;
vmp->vm_kstat.vk_wait++;
(void) _cond_wait(&vmp->vm_cv, &vmp->vm_lock);
}
if (vbest != NULL) {
ASSERT(vbest->vs_type == VMEM_FREE);
ASSERT(vbest->vs_knext != vbest);
(void) vmem_seg_alloc(vmp, vbest, addr, size);
(void) mutex_unlock(&vmp->vm_lock);
ASSERT(P2PHASE(addr, align) == phase);
ASSERT(!P2CROSS(addr, addr + size - 1, nocross));
ASSERT(addr >= (uintptr_t)minaddr);
ASSERT(addr + size - 1 <= (uintptr_t)maxaddr - 1);
return ((void *)addr);
}
vmp->vm_kstat.vk_fail++;
(void) mutex_unlock(&vmp->vm_lock);
if (vmflag & VM_PANIC)
umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
"cannot satisfy mandatory allocation",
(void *)vmp, size, align, phase, nocross,
minaddr, maxaddr, vmflag);
return (NULL);
}
/*
* Free the segment [vaddr, vaddr + size), where vaddr was a constrained
* allocation. vmem_xalloc() and vmem_xfree() must always be paired because
* both routines bypass the quantum caches.
*/
void
vmem_xfree(vmem_t *vmp, void *vaddr, size_t size)
{
vmem_seg_t *vsp, *vnext, *vprev;
(void) mutex_lock(&vmp->vm_lock);
vsp = vmem_hash_delete(vmp, (uintptr_t)vaddr, size);
vsp->vs_end = P2ROUNDUP(vsp->vs_end, vmp->vm_quantum);
/*
* Attempt to coalesce with the next segment.
*/
vnext = vsp->vs_anext;
if (vnext->vs_type == VMEM_FREE) {
ASSERT(vsp->vs_end == vnext->vs_start);
vmem_freelist_delete(vmp, vnext);
vsp->vs_end = vnext->vs_end;
vmem_seg_destroy(vmp, vnext);
}
/*
* Attempt to coalesce with the previous segment.
*/
vprev = vsp->vs_aprev;
if (vprev->vs_type == VMEM_FREE) {
ASSERT(vprev->vs_end == vsp->vs_start);
vmem_freelist_delete(vmp, vprev);
vprev->vs_end = vsp->vs_end;
vmem_seg_destroy(vmp, vsp);
vsp = vprev;
}
/*
* If the entire span is free, return it to the source.
*/
if (vsp->vs_import && vmp->vm_source_free != NULL &&
vsp->vs_aprev->vs_type == VMEM_SPAN &&
vsp->vs_anext->vs_type == VMEM_SPAN) {
vaddr = (void *)vsp->vs_start;
size = VS_SIZE(vsp);
ASSERT(size == VS_SIZE(vsp->vs_aprev));
vmem_span_destroy(vmp, vsp);
(void) mutex_unlock(&vmp->vm_lock);
vmp->vm_source_free(vmp->vm_source, vaddr, size);
} else {
vmem_freelist_insert(vmp, vsp);
(void) mutex_unlock(&vmp->vm_lock);
}
}
/*
* Allocate size bytes from arena vmp. Returns the allocated address
* on success, NULL on failure. vmflag specifies VM_SLEEP or VM_NOSLEEP,
* and may also specify best-fit, first-fit, or next-fit allocation policy
* instead of the default instant-fit policy. VM_SLEEP allocations are
* guaranteed to succeed.
*/
void *
vmem_alloc(vmem_t *vmp, size_t size, int vmflag)
{
vmem_seg_t *vsp;
uintptr_t addr;
int hb;
int flist = 0;
uint32_t mtbf;
if (size - 1 < vmp->vm_qcache_max) {
ASSERT(vmflag & VM_NOSLEEP);
return (_umem_cache_alloc(vmp->vm_qcache[(size - 1) >>
vmp->vm_qshift], UMEM_DEFAULT));
}
if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
(vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
return (NULL);
if (vmflag & VM_NEXTFIT)
return (vmem_nextfit_alloc(vmp, size, vmflag));
if (vmflag & (VM_BESTFIT | VM_FIRSTFIT))
return (vmem_xalloc(vmp, size, vmp->vm_quantum, 0, 0,
NULL, NULL, vmflag));
/*
* Unconstrained instant-fit allocation from the segment list.
*/
(void) mutex_lock(&vmp->vm_lock);
if (vmp->vm_nsegfree >= VMEM_MINFREE || vmem_populate(vmp, vmflag)) {
if ((size & (size - 1)) == 0)
flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
else if ((hb = highbit(size)) < VMEM_FREELISTS)
flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
}
if (flist-- == 0) {
(void) mutex_unlock(&vmp->vm_lock);
return (vmem_xalloc(vmp, size, vmp->vm_quantum,
0, 0, NULL, NULL, vmflag));
}
ASSERT(size <= (1UL << flist));
vsp = vmp->vm_freelist[flist].vs_knext;
addr = vsp->vs_start;
(void) vmem_seg_alloc(vmp, vsp, addr, size);
(void) mutex_unlock(&vmp->vm_lock);
return ((void *)addr);
}
/*
* Free the segment [vaddr, vaddr + size).
*/
void
vmem_free(vmem_t *vmp, void *vaddr, size_t size)
{
if (size - 1 < vmp->vm_qcache_max)
_umem_cache_free(vmp->vm_qcache[(size - 1) >> vmp->vm_qshift],
vaddr);
else
vmem_xfree(vmp, vaddr, size);
}
/*
* Determine whether arena vmp contains the segment [vaddr, vaddr + size).
*/
int
vmem_contains(vmem_t *vmp, void *vaddr, size_t size)
{
uintptr_t start = (uintptr_t)vaddr;
uintptr_t end = start + size;
vmem_seg_t *vsp;
vmem_seg_t *seg0 = &vmp->vm_seg0;
(void) mutex_lock(&vmp->vm_lock);
vmp->vm_kstat.vk_contains++;
for (vsp = seg0->vs_knext; vsp != seg0; vsp = vsp->vs_knext) {
vmp->vm_kstat.vk_contains_search++;
ASSERT(vsp->vs_type == VMEM_SPAN);
if (start >= vsp->vs_start && end - 1 <= vsp->vs_end - 1)
break;
}
(void) mutex_unlock(&vmp->vm_lock);
return (vsp != seg0);
}
/*
* Add the span [vaddr, vaddr + size) to arena vmp.
*/
void *
vmem_add(vmem_t *vmp, void *vaddr, size_t size, int vmflag)
{
if (vaddr == NULL || size == 0) {
umem_panic("vmem_add(%p, %p, %lu): bad arguments",
vmp, vaddr, size);
}
ASSERT(!vmem_contains(vmp, vaddr, size));
(void) mutex_lock(&vmp->vm_lock);
if (vmem_populate(vmp, vmflag))
(void) vmem_span_create(vmp, vaddr, size, 0);
else
vaddr = NULL;
(void) cond_broadcast(&vmp->vm_cv);
(void) mutex_unlock(&vmp->vm_lock);
return (vaddr);
}
/*
* Adds the address range [addr, endaddr) to arena vmp, by either:
* 1. joining two existing spans, [x, addr), and [endaddr, y) (which
* are in that order) into a single [x, y) span,
* 2. expanding an existing [x, addr) span to [x, endaddr),
* 3. expanding an existing [endaddr, x) span to [addr, x), or
* 4. creating a new [addr, endaddr) span.
*
* Called with vmp->vm_lock held, and a successful vmem_populate() completed.
* Cannot fail. Returns the new segment.
*
* NOTE: this algorithm is linear-time in the number of spans, but is
* constant-time when you are extending the last (highest-addressed)
* span.
*/
static vmem_seg_t *
vmem_extend_unlocked(vmem_t *vmp, uintptr_t addr, uintptr_t endaddr)
{
vmem_seg_t *span;
vmem_seg_t *vsp;
vmem_seg_t *end = &vmp->vm_seg0;
ASSERT(MUTEX_HELD(&vmp->vm_lock));
/*
* the second "if" clause below relies on the direction of this search
*/
for (span = end->vs_kprev; span != end; span = span->vs_kprev) {
if (span->vs_end == addr || span->vs_start == endaddr)
break;
}
if (span == end)
return (vmem_span_create(vmp, (void *)addr, endaddr - addr, 0));
if (span->vs_kprev->vs_end == addr && span->vs_start == endaddr) {
vmem_seg_t *prevspan = span->vs_kprev;
vmem_seg_t *nextseg = span->vs_anext;
vmem_seg_t *prevseg = span->vs_aprev;
/*
* prevspan becomes the span marker for the full range
*/
prevspan->vs_end = span->vs_end;
/*
* Notionally, span becomes a free segment representing
* [addr, endaddr).
*
* However, if either of its neighbors are free, we coalesce
* by destroying span and changing the free segment.
*/
if (prevseg->vs_type == VMEM_FREE &&
nextseg->vs_type == VMEM_FREE) {
/*
* coalesce both ways
*/
ASSERT(prevseg->vs_end == addr &&
nextseg->vs_start == endaddr);
vmem_freelist_delete(vmp, prevseg);
prevseg->vs_end = nextseg->vs_end;
vmem_freelist_delete(vmp, nextseg);
VMEM_DELETE(span, k);
vmem_seg_destroy(vmp, nextseg);
vmem_seg_destroy(vmp, span);
vsp = prevseg;
} else if (prevseg->vs_type == VMEM_FREE) {
/*
* coalesce left
*/
ASSERT(prevseg->vs_end == addr);
VMEM_DELETE(span, k);
vmem_seg_destroy(vmp, span);
vmem_freelist_delete(vmp, prevseg);
prevseg->vs_end = endaddr;
vsp = prevseg;
} else if (nextseg->vs_type == VMEM_FREE) {
/*
* coalesce right
*/
ASSERT(nextseg->vs_start == endaddr);
VMEM_DELETE(span, k);
vmem_seg_destroy(vmp, span);
vmem_freelist_delete(vmp, nextseg);
nextseg->vs_start = addr;
vsp = nextseg;
} else {
/*
* cannnot coalesce
*/
VMEM_DELETE(span, k);
span->vs_start = addr;
span->vs_end = endaddr;
vsp = span;
}
} else if (span->vs_end == addr) {
vmem_seg_t *oldseg = span->vs_knext->vs_aprev;
span->vs_end = endaddr;
ASSERT(oldseg->vs_type != VMEM_SPAN);
if (oldseg->vs_type == VMEM_FREE) {
ASSERT(oldseg->vs_end == addr);
vmem_freelist_delete(vmp, oldseg);
oldseg->vs_end = endaddr;
vsp = oldseg;
} else
vsp = vmem_seg_create(vmp, oldseg, addr, endaddr);
} else {
vmem_seg_t *oldseg = span->vs_anext;
ASSERT(span->vs_start == endaddr);
span->vs_start = addr;
ASSERT(oldseg->vs_type != VMEM_SPAN);
if (oldseg->vs_type == VMEM_FREE) {
ASSERT(oldseg->vs_start == endaddr);
vmem_freelist_delete(vmp, oldseg);
oldseg->vs_start = addr;
vsp = oldseg;
} else
vsp = vmem_seg_create(vmp, span, addr, endaddr);
}
vmem_freelist_insert(vmp, vsp);
vmp->vm_kstat.vk_mem_total += (endaddr - addr);
return (vsp);
}
/*
* Does some error checking, calls vmem_extend_unlocked to add
* [vaddr, vaddr+size) to vmp, then allocates alloc bytes from the
* newly merged segment.
*/
void *
_vmem_extend_alloc(vmem_t *vmp, void *vaddr, size_t size, size_t alloc,
int vmflag)
{
uintptr_t addr = (uintptr_t)vaddr;
uintptr_t endaddr = addr + size;
vmem_seg_t *vsp;
ASSERT(vaddr != NULL && size != 0 && endaddr > addr);
ASSERT(alloc <= size && alloc != 0);
ASSERT(((addr | size | alloc) & (vmp->vm_quantum - 1)) == 0);
ASSERT(!vmem_contains(vmp, vaddr, size));
(void) mutex_lock(&vmp->vm_lock);
if (!vmem_populate(vmp, vmflag)) {
(void) mutex_unlock(&vmp->vm_lock);
return (NULL);
}
/*
* if there is a source, we can't mess with the spans
*/
if (vmp->vm_source_alloc != NULL)
vsp = vmem_span_create(vmp, vaddr, size, 0);
else
vsp = vmem_extend_unlocked(vmp, addr, endaddr);
ASSERT(VS_SIZE(vsp) >= alloc);
addr = vsp->vs_start;
(void) vmem_seg_alloc(vmp, vsp, addr, alloc);
vaddr = (void *)addr;
(void) cond_broadcast(&vmp->vm_cv);
(void) mutex_unlock(&vmp->vm_lock);
return (vaddr);
}
/*
* Walk the vmp arena, applying func to each segment matching typemask.
* If VMEM_REENTRANT is specified, the arena lock is dropped across each
* call to func(); otherwise, it is held for the duration of vmem_walk()
* to ensure a consistent snapshot. Note that VMEM_REENTRANT callbacks
* are *not* necessarily consistent, so they may only be used when a hint
* is adequate.
*/
void
vmem_walk(vmem_t *vmp, int typemask,
void (*func)(void *, void *, size_t), void *arg)
{
vmem_seg_t *vsp;
vmem_seg_t *seg0 = &vmp->vm_seg0;
vmem_seg_t walker;
if (typemask & VMEM_WALKER)
return;
bzero(&walker, sizeof (walker));
walker.vs_type = VMEM_WALKER;
(void) mutex_lock(&vmp->vm_lock);
VMEM_INSERT(seg0, &walker, a);
for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext) {
if (vsp->vs_type & typemask) {
void *start = (void *)vsp->vs_start;
size_t size = VS_SIZE(vsp);
if (typemask & VMEM_REENTRANT) {
vmem_advance(vmp, &walker, vsp);
(void) mutex_unlock(&vmp->vm_lock);
func(arg, start, size);
(void) mutex_lock(&vmp->vm_lock);
vsp = &walker;
} else {
func(arg, start, size);
}
}
}
vmem_advance(vmp, &walker, NULL);
(void) mutex_unlock(&vmp->vm_lock);
}
/*
* Return the total amount of memory whose type matches typemask. Thus:
*
* typemask VMEM_ALLOC yields total memory allocated (in use).
* typemask VMEM_FREE yields total memory free (available).
* typemask (VMEM_ALLOC | VMEM_FREE) yields total arena size.
*/
size_t
vmem_size(vmem_t *vmp, int typemask)
{
uint64_t size = 0;
if (typemask & VMEM_ALLOC)
size += vmp->vm_kstat.vk_mem_inuse;
if (typemask & VMEM_FREE)
size += vmp->vm_kstat.vk_mem_total -
vmp->vm_kstat.vk_mem_inuse;
return ((size_t)size);
}
/*
* Create an arena called name whose initial span is [base, base + size).
* The arena's natural unit of currency is quantum, so vmem_alloc()
* guarantees quantum-aligned results. The arena may import new spans
* by invoking afunc() on source, and may return those spans by invoking
* ffunc() on source. To make small allocations fast and scalable,
* the arena offers high-performance caching for each integer multiple
* of quantum up to qcache_max.
*/
vmem_t *
vmem_create(const char *name, void *base, size_t size, size_t quantum,
vmem_alloc_t *afunc, vmem_free_t *ffunc, vmem_t *source,
size_t qcache_max, int vmflag)
{
int i;
size_t nqcache;
vmem_t *vmp, *cur, **vmpp;
vmem_seg_t *vsp;
vmem_freelist_t *vfp;
uint32_t id = atomic_add_32_nv(&vmem_id, 1);
if (vmem_vmem_arena != NULL) {
vmp = vmem_alloc(vmem_vmem_arena, sizeof (vmem_t),
vmflag & VM_UMFLAGS);
} else {
ASSERT(id <= VMEM_INITIAL);
vmp = &vmem0[id - 1];
}
if (vmp == NULL)
return (NULL);
bzero(vmp, sizeof (vmem_t));
(void) snprintf(vmp->vm_name, VMEM_NAMELEN, "%s", name);
(void) mutex_init(&vmp->vm_lock, USYNC_THREAD, NULL);
(void) cond_init(&vmp->vm_cv, USYNC_THREAD, NULL);
vmp->vm_cflags = vmflag;
vmflag &= VM_UMFLAGS;
vmp->vm_quantum = quantum;
vmp->vm_qshift = highbit(quantum) - 1;
nqcache = MIN(qcache_max >> vmp->vm_qshift, VMEM_NQCACHE_MAX);
for (i = 0; i <= VMEM_FREELISTS; i++) {
vfp = &vmp->vm_freelist[i];
vfp->vs_end = 1UL << i;
vfp->vs_knext = (vmem_seg_t *)(vfp + 1);
vfp->vs_kprev = (vmem_seg_t *)(vfp - 1);
}
vmp->vm_freelist[0].vs_kprev = NULL;
vmp->vm_freelist[VMEM_FREELISTS].vs_knext = NULL;
vmp->vm_freelist[VMEM_FREELISTS].vs_end = 0;
vmp->vm_hash_table = vmp->vm_hash0;
vmp->vm_hash_mask = VMEM_HASH_INITIAL - 1;
vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
vsp = &vmp->vm_seg0;
vsp->vs_anext = vsp;
vsp->vs_aprev = vsp;
vsp->vs_knext = vsp;
vsp->vs_kprev = vsp;
vsp->vs_type = VMEM_SPAN;
vsp = &vmp->vm_rotor;
vsp->vs_type = VMEM_ROTOR;
VMEM_INSERT(&vmp->vm_seg0, vsp, a);
vmp->vm_id = id;
if (source != NULL)
vmp->vm_kstat.vk_source_id = source->vm_id;
vmp->vm_source = source;
vmp->vm_source_alloc = afunc;
vmp->vm_source_free = ffunc;
if (nqcache != 0) {
vmp->vm_qcache_max = nqcache << vmp->vm_qshift;
for (i = 0; i < nqcache; i++) {
char buf[VMEM_NAMELEN + 21];
(void) snprintf(buf, sizeof (buf), "%s_%lu",
vmp->vm_name, (long)((i + 1) * quantum));
vmp->vm_qcache[i] = umem_cache_create(buf,
(i + 1) * quantum, quantum, NULL, NULL, NULL,
NULL, vmp, UMC_QCACHE | UMC_NOTOUCH);
if (vmp->vm_qcache[i] == NULL) {
vmp->vm_qcache_max = i * quantum;
break;
}
}
}
(void) mutex_lock(&vmem_list_lock);
vmpp = &vmem_list;
while ((cur = *vmpp) != NULL)
vmpp = &cur->vm_next;
*vmpp = vmp;
(void) mutex_unlock(&vmem_list_lock);
if (vmp->vm_cflags & VMC_POPULATOR) {
uint_t pop_id = atomic_add_32_nv(&vmem_populators, 1);
ASSERT(pop_id <= VMEM_INITIAL);
vmem_populator[pop_id - 1] = vmp;
(void) mutex_lock(&vmp->vm_lock);
(void) vmem_populate(vmp, vmflag | VM_PANIC);
(void) mutex_unlock(&vmp->vm_lock);
}
if ((base || size) && vmem_add(vmp, base, size, vmflag) == NULL) {
vmem_destroy(vmp);
return (NULL);
}
return (vmp);
}
/*
* Destroy arena vmp.
*/
void
vmem_destroy(vmem_t *vmp)
{
vmem_t *cur, **vmpp;
vmem_seg_t *seg0 = &vmp->vm_seg0;
vmem_seg_t *vsp;
size_t leaked;
int i;
(void) mutex_lock(&vmem_list_lock);
vmpp = &vmem_list;
while ((cur = *vmpp) != vmp)
vmpp = &cur->vm_next;
*vmpp = vmp->vm_next;
(void) mutex_unlock(&vmem_list_lock);
for (i = 0; i < VMEM_NQCACHE_MAX; i++)
if (vmp->vm_qcache[i])
umem_cache_destroy(vmp->vm_qcache[i]);
leaked = vmem_size(vmp, VMEM_ALLOC);
if (leaked != 0)
umem_printf("vmem_destroy('%s'): leaked %lu bytes",
vmp->vm_name, leaked);
if (vmp->vm_hash_table != vmp->vm_hash0)
vmem_free(vmem_hash_arena, vmp->vm_hash_table,
(vmp->vm_hash_mask + 1) * sizeof (void *));
/*
* Give back the segment structures for anything that's left in the
* arena, e.g. the primary spans and their free segments.
*/
VMEM_DELETE(&vmp->vm_rotor, a);
for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext)
vmem_putseg_global(vsp);
while (vmp->vm_nsegfree > 0)
vmem_putseg_global(vmem_getseg(vmp));
(void) mutex_destroy(&vmp->vm_lock);
(void) cond_destroy(&vmp->vm_cv);
vmem_free(vmem_vmem_arena, vmp, sizeof (vmem_t));
}
/*
* Resize vmp's hash table to keep the average lookup depth near 1.0.
*/
static void
vmem_hash_rescale(vmem_t *vmp)
{
vmem_seg_t **old_table, **new_table, *vsp;
size_t old_size, new_size, h, nseg;
nseg = (size_t)(vmp->vm_kstat.vk_alloc - vmp->vm_kstat.vk_free);
new_size = MAX(VMEM_HASH_INITIAL, 1 << (highbit(3 * nseg + 4) - 2));
old_size = vmp->vm_hash_mask + 1;
if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
return;
new_table = vmem_alloc(vmem_hash_arena, new_size * sizeof (void *),
VM_NOSLEEP);
if (new_table == NULL)
return;
bzero(new_table, new_size * sizeof (void *));
(void) mutex_lock(&vmp->vm_lock);
old_size = vmp->vm_hash_mask + 1;
old_table = vmp->vm_hash_table;
vmp->vm_hash_mask = new_size - 1;
vmp->vm_hash_table = new_table;
vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
for (h = 0; h < old_size; h++) {
vsp = old_table[h];
while (vsp != NULL) {
uintptr_t addr = vsp->vs_start;
vmem_seg_t *next_vsp = vsp->vs_knext;
vmem_seg_t **hash_bucket = VMEM_HASH(vmp, addr);
vsp->vs_knext = *hash_bucket;
*hash_bucket = vsp;
vsp = next_vsp;
}
}
(void) mutex_unlock(&vmp->vm_lock);
if (old_table != vmp->vm_hash0)
vmem_free(vmem_hash_arena, old_table,
old_size * sizeof (void *));
}
/*
* Perform periodic maintenance on all vmem arenas.
*/
/*ARGSUSED*/
void
vmem_update(void *dummy)
{
vmem_t *vmp;
(void) mutex_lock(&vmem_list_lock);
for (vmp = vmem_list; vmp != NULL; vmp = vmp->vm_next) {
/*
* If threads are waiting for resources, wake them up
* periodically so they can issue another vmem_reap()
* to reclaim resources cached by the slab allocator.
*/
(void) cond_broadcast(&vmp->vm_cv);
/*
* Rescale the hash table to keep the hash chains short.
*/
vmem_hash_rescale(vmp);
}
(void) mutex_unlock(&vmem_list_lock);
}
/*
* If vmem_init is called again, we need to be able to reset the world.
* That includes resetting the statics back to their original values.
*/
void
vmem_startup(void)
{
#ifdef UMEM_STANDALONE
vmem_id = 0;
vmem_populators = 0;
vmem_segfree = NULL;
vmem_list = NULL;
vmem_internal_arena = NULL;
vmem_seg_arena = NULL;
vmem_hash_arena = NULL;
vmem_vmem_arena = NULL;
vmem_heap = NULL;
vmem_heap_alloc = NULL;
vmem_heap_free = NULL;
bzero(vmem0, sizeof (vmem0));
bzero(vmem_populator, sizeof (vmem_populator));
bzero(vmem_seg0, sizeof (vmem_seg0));
#endif
}
/*
* Prepare vmem for use.
*/
vmem_t *
vmem_init(const char *parent_name, size_t parent_quantum,
vmem_alloc_t *parent_alloc, vmem_free_t *parent_free,
const char *heap_name, void *heap_start, size_t heap_size,
size_t heap_quantum, vmem_alloc_t *heap_alloc, vmem_free_t *heap_free)
{
uint32_t id;
int nseg = VMEM_SEG_INITIAL;
vmem_t *parent, *heap;
ASSERT(vmem_internal_arena == NULL);
while (--nseg >= 0)
vmem_putseg_global(&vmem_seg0[nseg]);
if (parent_name != NULL) {
parent = vmem_create(parent_name,
heap_start, heap_size, parent_quantum,
NULL, NULL, NULL, 0,
VM_SLEEP | VMC_POPULATOR);
heap_start = NULL;
heap_size = 0;
} else {
ASSERT(parent_alloc == NULL && parent_free == NULL);
parent = NULL;
}
heap = vmem_create(heap_name,
heap_start, heap_size, heap_quantum,
parent_alloc, parent_free, parent, 0,
VM_SLEEP | VMC_POPULATOR);
vmem_heap = heap;
vmem_heap_alloc = heap_alloc;
vmem_heap_free = heap_free;
vmem_internal_arena = vmem_create("vmem_internal",
NULL, 0, heap_quantum,
heap_alloc, heap_free, heap, 0,
VM_SLEEP | VMC_POPULATOR);
vmem_seg_arena = vmem_create("vmem_seg",
NULL, 0, heap_quantum,
vmem_alloc, vmem_free, vmem_internal_arena, 0,
VM_SLEEP | VMC_POPULATOR);
vmem_hash_arena = vmem_create("vmem_hash",
NULL, 0, 8,
vmem_alloc, vmem_free, vmem_internal_arena, 0,
VM_SLEEP);
vmem_vmem_arena = vmem_create("vmem_vmem",
vmem0, sizeof (vmem0), 1,
vmem_alloc, vmem_free, vmem_internal_arena, 0,
VM_SLEEP);
for (id = 0; id < vmem_id; id++)
(void) vmem_xalloc(vmem_vmem_arena, sizeof (vmem_t),
1, 0, 0, &vmem0[id], &vmem0[id + 1],
VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
return (heap);
}
void
vmem_no_debug(void)
{
/*
* This size must be a multiple of the minimum required alignment,
* since vmem_populate allocates them compactly.
*/
vmem_seg_size = P2ROUNDUP(offsetof(vmem_seg_t, vs_thread),
sizeof (hrtime_t));
}
/*
* Lockup and release, for fork1(2) handling.
*/
void
vmem_lockup(void)
{
vmem_t *cur;
(void) mutex_lock(&vmem_list_lock);
(void) mutex_lock(&vmem_nosleep_lock.vmpl_mutex);
/*
* Lock up and broadcast all arenas.
*/
for (cur = vmem_list; cur != NULL; cur = cur->vm_next) {
(void) mutex_lock(&cur->vm_lock);
(void) cond_broadcast(&cur->vm_cv);
}
(void) mutex_lock(&vmem_segfree_lock);
}
void
vmem_release(void)
{
vmem_t *cur;
(void) mutex_unlock(&vmem_nosleep_lock.vmpl_mutex);
for (cur = vmem_list; cur != NULL; cur = cur->vm_next)
(void) mutex_unlock(&cur->vm_lock);
(void) mutex_unlock(&vmem_segfree_lock);
(void) mutex_unlock(&vmem_list_lock);
}
|