1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|
#include <sys/mutex.h>
#ifdef DEBUG_SUBSYSTEM
#undef DEBUG_SUBSYSTEM
#endif
#define DEBUG_SUBSYSTEM S_MUTEX
/* Mutex implementation based on those found in Solaris. This means
* they the MUTEX_DEFAULT type is an adaptive mutex. When calling
* mutex_enter() your process will spin waiting for the lock if it's
* likely the lock will be free'd shortly. If it looks like the
* lock will be held for a longer time we schedule and sleep waiting
* for it. This determination is made by checking if the holder of
* the lock is currently running on cpu or sleeping waiting to be
* scheduled. If the holder is currently running it's likely the
* lock will be shortly dropped.
*
* XXX: This is basically a rough implementation to see if this
* helps our performance. If it does a more careful implementation
* should be done, perhaps in assembly.
*/
/* 0: Never spin when trying to aquire lock
* -1: Spin until aquired or holder yeilds without dropping lock
* 1-MAX_INT: Spin for N attempts before sleeping for lock
*/
int mutex_spin_max = 100;
#ifdef DEBUG_MUTEX
int mutex_stats[MUTEX_STATS_SIZE] = { 0 };
struct rw_semaphore mutex_stats_sem;
struct list_head mutex_stats_list;
#endif
void
__spl_mutex_init(kmutex_t *mp, char *name, int type, void *ibc)
{
int flags = KM_SLEEP;
ASSERT(mp);
ASSERT(name);
ASSERT(ibc == NULL);
ASSERT(mp->km_magic != KM_MAGIC); /* Never double init */
mp->km_magic = KM_MAGIC;
mp->km_owner = NULL;
mp->km_name = NULL;
mp->km_name_size = strlen(name) + 1;
switch (type) {
case MUTEX_DEFAULT:
mp->km_type = MUTEX_ADAPTIVE;
break;
case MUTEX_SPIN:
case MUTEX_ADAPTIVE:
mp->km_type = type;
break;
default:
SBUG();
}
/* We may be called when there is a non-zero preempt_count or
* interrupts are disabled is which case we must not sleep.
*/
if (current_thread_info()->preempt_count || irqs_disabled())
flags = KM_NOSLEEP;
/* Semaphore kmem_alloc'ed to keep struct size down (<64b) */
mp->km_sem = kmem_alloc(sizeof(struct semaphore), flags);
if (mp->km_sem == NULL)
return;
mp->km_name = kmem_alloc(mp->km_name_size, flags);
if (mp->km_name == NULL) {
kmem_free(mp->km_sem, sizeof(struct semaphore));
return;
}
sema_init(mp->km_sem, 1);
strcpy(mp->km_name, name);
#ifdef DEBUG_MUTEX
mp->km_stats = kmem_zalloc(sizeof(int) * MUTEX_STATS_SIZE, flags);
if (mp->km_stats == NULL) {
kmem_free(mp->km_name, mp->km_name_size);
kmem_free(mp->km_sem, sizeof(struct semaphore));
return;
}
/* We may be called when there is a non-zero preempt_count or
* interrupts are disabled is which case we must not sleep.
*/
if (flags == KM_SLEEP)
down_write(&mutex_stats_sem);
else
while (!down_write_trylock(&mutex_stats_sem));
list_add_tail(&mp->km_list, &mutex_stats_list);
up_write(&mutex_stats_sem);
#endif
}
EXPORT_SYMBOL(__spl_mutex_init);
void
__spl_mutex_destroy(kmutex_t *mp)
{
ASSERT(mp);
ASSERT(mp->km_magic == KM_MAGIC);
#ifdef DEBUG_MUTEX
/* We may be called when there is a non-zero preempt_count or
* interrupts are disabled is which case we must not sleep.
*/
while (!down_write_trylock(&mutex_stats_sem));
list_del_init(&mp->km_list);
up_write(&mutex_stats_sem);
kmem_free(mp->km_stats, sizeof(int) * MUTEX_STATS_SIZE);
#endif
kmem_free(mp->km_name, mp->km_name_size);
kmem_free(mp->km_sem, sizeof(struct semaphore));
memset(mp, KM_POISON, sizeof(*mp));
}
EXPORT_SYMBOL(__spl_mutex_destroy);
/* Return 1 if we acquired the mutex, else zero. */
int
__mutex_tryenter(kmutex_t *mp)
{
int rc;
ENTRY;
ASSERT(mp);
ASSERT(mp->km_magic == KM_MAGIC);
MUTEX_STAT_INC(mutex_stats, MUTEX_TRYENTER_TOTAL);
MUTEX_STAT_INC(mp->km_stats, MUTEX_TRYENTER_TOTAL);
rc = down_trylock(mp->km_sem);
if (rc == 0) {
ASSERT(mp->km_owner == NULL);
mp->km_owner = current;
MUTEX_STAT_INC(mutex_stats, MUTEX_TRYENTER_NOT_HELD);
MUTEX_STAT_INC(mp->km_stats, MUTEX_TRYENTER_NOT_HELD);
}
RETURN(!rc);
}
EXPORT_SYMBOL(__mutex_tryenter);
static void
mutex_enter_adaptive(kmutex_t *mp)
{
struct task_struct *owner;
int count = 0;
/* Lock is not held so we expect to aquire the lock */
if ((owner = mp->km_owner) == NULL) {
down(mp->km_sem);
MUTEX_STAT_INC(mutex_stats, MUTEX_ENTER_NOT_HELD);
MUTEX_STAT_INC(mp->km_stats, MUTEX_ENTER_NOT_HELD);
} else {
/* The lock is held by a currently running task which
* we expect will drop the lock before leaving the
* head of the runqueue. So the ideal thing to do
* is spin until we aquire the lock and avoid a
* context switch. However it is also possible the
* task holding the lock yields the processor with
* out dropping lock. In which case, we know it's
* going to be a while so we stop spinning and go
* to sleep waiting for the lock to be available.
* This should strike the optimum balance between
* spinning and sleeping waiting for a lock.
*/
while (task_curr(owner) && (count <= mutex_spin_max)) {
if (down_trylock(mp->km_sem) == 0) {
MUTEX_STAT_INC(mutex_stats, MUTEX_ENTER_SPIN);
MUTEX_STAT_INC(mp->km_stats, MUTEX_ENTER_SPIN);
GOTO(out, count);
}
count++;
}
/* The lock is held by a sleeping task so it's going to
* cost us minimally one context switch. We might as
* well sleep and yield the processor to other tasks.
*/
down(mp->km_sem);
MUTEX_STAT_INC(mutex_stats, MUTEX_ENTER_SLEEP);
MUTEX_STAT_INC(mp->km_stats, MUTEX_ENTER_SLEEP);
}
out:
MUTEX_STAT_INC(mutex_stats, MUTEX_ENTER_TOTAL);
MUTEX_STAT_INC(mp->km_stats, MUTEX_ENTER_TOTAL);
}
void
__mutex_enter(kmutex_t *mp)
{
ENTRY;
ASSERT(mp);
ASSERT(mp->km_magic == KM_MAGIC);
switch (mp->km_type) {
case MUTEX_SPIN:
while (down_trylock(mp->km_sem));
MUTEX_STAT_INC(mutex_stats, MUTEX_ENTER_SPIN);
MUTEX_STAT_INC(mp->km_stats, MUTEX_ENTER_SPIN);
break;
case MUTEX_ADAPTIVE:
mutex_enter_adaptive(mp);
break;
}
ASSERT(mp->km_owner == NULL);
mp->km_owner = current;
EXIT;
}
EXPORT_SYMBOL(__mutex_enter);
void
__mutex_exit(kmutex_t *mp)
{
ENTRY;
ASSERT(mp);
ASSERT(mp->km_magic == KM_MAGIC);
ASSERT(mp->km_owner == current);
mp->km_owner = NULL;
up(mp->km_sem);
EXIT;
}
EXPORT_SYMBOL(__mutex_exit);
/* Return 1 if mutex is held by current process, else zero. */
int
__mutex_owned(kmutex_t *mp)
{
ENTRY;
ASSERT(mp);
ASSERT(mp->km_magic == KM_MAGIC);
RETURN(mp->km_owner == current);
}
EXPORT_SYMBOL(__mutex_owned);
/* Return owner if mutex is owned, else NULL. */
kthread_t *
__spl_mutex_owner(kmutex_t *mp)
{
ENTRY;
ASSERT(mp);
ASSERT(mp->km_magic == KM_MAGIC);
RETURN(mp->km_owner);
}
EXPORT_SYMBOL(__spl_mutex_owner);
int
spl_mutex_init(void)
{
ENTRY;
#ifdef DEBUG_MUTEX
init_rwsem(&mutex_stats_sem);
INIT_LIST_HEAD(&mutex_stats_list);
#endif
RETURN(0);
}
void
spl_mutex_fini(void)
{
ENTRY;
#ifdef DEBUG_MUTEX
ASSERT(list_empty(&mutex_stats_list));
#endif
EXIT;
}
|