1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
|
#include <sys/kmem.h>
/*
* Memory allocation interfaces
*/
#ifdef DEBUG_KMEM
/* Shim layer memory accounting */
atomic64_t kmem_alloc_used;
unsigned long kmem_alloc_max = 0;
atomic64_t vmem_alloc_used;
unsigned long vmem_alloc_max = 0;
int kmem_warning_flag = 1;
EXPORT_SYMBOL(kmem_alloc_used);
EXPORT_SYMBOL(kmem_alloc_max);
EXPORT_SYMBOL(vmem_alloc_used);
EXPORT_SYMBOL(vmem_alloc_max);
EXPORT_SYMBOL(kmem_warning_flag);
int kmem_set_warning(int flag) { return (kmem_warning_flag = !!flag); }
#else
int kmem_set_warning(int flag) { return 0; }
#endif
EXPORT_SYMBOL(kmem_set_warning);
/*
* Slab allocation interfaces
*
* While the linux slab implementation was inspired by solaris they
* have made some changes to the API which complicates this shim
* layer. For one thing the same symbol names are used with different
* arguments for the prototypes. To deal with this we must use the
* preprocessor to re-order arguments. Happily for us standard C says,
* "Macro's appearing in their own expansion are not reexpanded" so
* this does not result in an infinite recursion. Additionally the
* function pointers registered by solarias differ from those used
* by linux so a lookup and mapping from linux style callback to a
* solaris style callback is needed. There is some overhead in this
* operation which isn't horibile but it needs to be kept in mind.
*/
typedef struct kmem_cache_cb {
struct list_head kcc_list;
kmem_cache_t * kcc_cache;
kmem_constructor_t kcc_constructor;
kmem_destructor_t kcc_destructor;
kmem_reclaim_t kcc_reclaim;
void * kcc_private;
void * kcc_vmp;
} kmem_cache_cb_t;
static spinlock_t kmem_cache_cb_lock = SPIN_LOCK_UNLOCKED;
static LIST_HEAD(kmem_cache_cb_list);
static struct shrinker *kmem_cache_shrinker;
/* Function must be called while holding the kmem_cache_cb_lock
* Because kmem_cache_t is an opaque datatype we're forced to
* match pointers to identify specific cache entires.
*/
static kmem_cache_cb_t *
kmem_cache_find_cache_cb(kmem_cache_t *cache)
{
kmem_cache_cb_t *kcc;
list_for_each_entry(kcc, &kmem_cache_cb_list, kcc_list)
if (cache == kcc->kcc_cache)
return kcc;
return NULL;
}
static kmem_cache_cb_t *
kmem_cache_add_cache_cb(kmem_cache_t *cache,
kmem_constructor_t constructor,
kmem_destructor_t destructor,
kmem_reclaim_t reclaim,
void *priv, void *vmp)
{
kmem_cache_cb_t *kcc;
kcc = (kmem_cache_cb_t *)kmalloc(sizeof(*kcc), GFP_KERNEL);
if (kcc) {
kcc->kcc_cache = cache;
kcc->kcc_constructor = constructor;
kcc->kcc_destructor = destructor;
kcc->kcc_reclaim = reclaim;
kcc->kcc_private = priv;
kcc->kcc_vmp = vmp;
spin_lock(&kmem_cache_cb_lock);
list_add(&kcc->kcc_list, &kmem_cache_cb_list);
spin_unlock(&kmem_cache_cb_lock);
}
return kcc;
}
static void
kmem_cache_remove_cache_cb(kmem_cache_cb_t *kcc)
{
spin_lock(&kmem_cache_cb_lock);
list_del(&kcc->kcc_list);
spin_unlock(&kmem_cache_cb_lock);
if (kcc)
kfree(kcc);
}
static void
kmem_cache_generic_constructor(void *ptr, kmem_cache_t *cache, unsigned long flags)
{
kmem_cache_cb_t *kcc;
kmem_constructor_t constructor;
void *private;
spin_lock(&kmem_cache_cb_lock);
/* Callback list must be in sync with linux slab caches */
kcc = kmem_cache_find_cache_cb(cache);
BUG_ON(!kcc);
constructor = kcc->kcc_constructor;
private = kcc->kcc_private;
spin_unlock(&kmem_cache_cb_lock);
if (constructor)
constructor(ptr, private, (int)flags);
/* Linux constructor has no return code, silently eat it */
}
static void
kmem_cache_generic_destructor(void *ptr, kmem_cache_t *cache, unsigned long flags)
{
kmem_cache_cb_t *kcc;
kmem_destructor_t destructor;
void *private;
spin_lock(&kmem_cache_cb_lock);
/* Callback list must be in sync with linux slab caches */
kcc = kmem_cache_find_cache_cb(cache);
BUG_ON(!kcc);
destructor = kcc->kcc_destructor;
private = kcc->kcc_private;
spin_unlock(&kmem_cache_cb_lock);
/* Solaris destructor takes no flags, silently eat them */
if (destructor)
destructor(ptr, private);
}
/* XXX - Arguments are ignored */
static int
kmem_cache_generic_shrinker(int nr_to_scan, unsigned int gfp_mask)
{
kmem_cache_cb_t *kcc;
int total = 0;
/* Under linux a shrinker is not tightly coupled with a slab
* cache. In fact linux always systematically trys calling all
* registered shrinker callbacks until its target reclamation level
* is reached. Because of this we only register one shrinker
* function in the shim layer for all slab caches. And we always
* attempt to shrink all caches when this generic shrinker is called.
*/
spin_lock(&kmem_cache_cb_lock);
list_for_each_entry(kcc, &kmem_cache_cb_list, kcc_list) {
/* Under linux the desired number and gfp type of objects
* is passed to the reclaiming function as a sugested reclaim
* target. I do not pass these args on because reclaim
* policy is entirely up to the owner under solaris. We only
* pass on the pre-registered private data.
*/
if (kcc->kcc_reclaim)
kcc->kcc_reclaim(kcc->kcc_private);
total += 1;
}
/* Under linux we should return the remaining number of entires in
* the cache. Unfortunately, I don't see an easy way to safely
* emulate this behavior so I'm returning one entry per cache which
* was registered with the generic shrinker. This should fake out
* the linux VM when it attempts to shrink caches.
*/
spin_unlock(&kmem_cache_cb_lock);
return total;
}
/* Ensure the __kmem_cache_create/__kmem_cache_destroy macros are
* removed here to prevent a recursive substitution, we want to call
* the native linux version.
*/
#undef kmem_cache_create
#undef kmem_cache_destroy
kmem_cache_t *
__kmem_cache_create(char *name, size_t size, size_t align,
kmem_constructor_t constructor,
kmem_destructor_t destructor,
kmem_reclaim_t reclaim,
void *priv, void *vmp, int flags)
{
kmem_cache_t *cache;
kmem_cache_cb_t *kcc;
int shrinker_flag = 0;
char *cache_name;
/* FIXME: - Option currently unsupported by shim layer */
BUG_ON(vmp);
cache_name = kzalloc(strlen(name) + 1, GFP_KERNEL);
if (cache_name == NULL)
return NULL;
strcpy(cache_name, name);
cache = kmem_cache_create(cache_name, size, align, flags,
kmem_cache_generic_constructor,
kmem_cache_generic_destructor);
if (cache == NULL)
return NULL;
/* Register shared shrinker function on initial cache create */
spin_lock(&kmem_cache_cb_lock);
if (list_empty(&kmem_cache_cb_list)) {
kmem_cache_shrinker = set_shrinker(KMC_DEFAULT_SEEKS,
kmem_cache_generic_shrinker);
if (kmem_cache_shrinker == NULL) {
kmem_cache_destroy(cache);
spin_unlock(&kmem_cache_cb_lock);
return NULL;
}
}
spin_unlock(&kmem_cache_cb_lock);
kcc = kmem_cache_add_cache_cb(cache, constructor, destructor,
reclaim, priv, vmp);
if (kcc == NULL) {
if (shrinker_flag) /* New shrinker registered must be removed */
remove_shrinker(kmem_cache_shrinker);
kmem_cache_destroy(cache);
return NULL;
}
return cache;
}
EXPORT_SYMBOL(__kmem_cache_create);
/* Return code provided despite Solaris's void return. There should be no
* harm here since the Solaris versions will ignore it anyway. */
int
__kmem_cache_destroy(kmem_cache_t *cache)
{
kmem_cache_cb_t *kcc;
char *name;
int rc;
spin_lock(&kmem_cache_cb_lock);
kcc = kmem_cache_find_cache_cb(cache);
spin_unlock(&kmem_cache_cb_lock);
if (kcc == NULL)
return -EINVAL;
name = (char *)kmem_cache_name(cache);
rc = kmem_cache_destroy(cache);
kmem_cache_remove_cache_cb(kcc);
kfree(name);
/* Unregister generic shrinker on removal of all caches */
spin_lock(&kmem_cache_cb_lock);
if (list_empty(&kmem_cache_cb_list))
remove_shrinker(kmem_cache_shrinker);
spin_unlock(&kmem_cache_cb_lock);
return rc;
}
EXPORT_SYMBOL(__kmem_cache_destroy);
void
__kmem_reap(void) {
/* Since there's no easy hook in to linux to force all the registered
* shrinkers to run we just run the ones registered for this shim */
kmem_cache_generic_shrinker(KMC_REAP_CHUNK, GFP_KERNEL);
}
EXPORT_SYMBOL(__kmem_reap);
int
kmem_init(void)
{
#ifdef DEBUG_KMEM
atomic64_set(&kmem_alloc_used, 0);
atomic64_set(&vmem_alloc_used, 0);
#endif
return 0;
}
void
kmem_fini(void)
{
#ifdef DEBUG_KMEM
if (atomic64_read(&kmem_alloc_used) != 0)
printk("spl: Warning kmem leaked %ld/%ld bytes\n",
atomic_read(&kmem_alloc_used), kmem_alloc_max);
if (atomic64_read(&vmem_alloc_used) != 0)
printk("spl: Warning vmem leaked %ld/%ld bytes\n",
atomic_read(&vmem_alloc_used), vmem_alloc_max);
#endif
}
|