1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2011, Lawrence Livermore National Security, LLC.
*/
#include <sys/zfs_vfsops.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_znode.h>
#include <sys/zpl.h>
static struct inode *
zpl_inode_alloc(struct super_block *sb)
{
struct inode *ip;
VERIFY3S(zfs_inode_alloc(sb, &ip), ==, 0);
ip->i_version = 1;
return (ip);
}
static void
zpl_inode_destroy(struct inode *ip)
{
ASSERT(atomic_read(&ip->i_count) == 0);
zfs_inode_destroy(ip);
}
/*
* When ->drop_inode() is called its return value indicates if the
* inode should be evicted from the inode cache. If the inode is
* unhashed and has no links the default policy is to evict it
* immediately.
*
* Prior to 2.6.36 this eviction was accomplished by the vfs calling
* ->delete_inode(). It was ->delete_inode()'s responsibility to
* truncate the inode pages and call clear_inode(). The call to
* clear_inode() synchronously invalidates all the buffers and
* calls ->clear_inode(). It was ->clear_inode()'s responsibility
* to cleanup and filesystem specific data before freeing the inode.
*
* This elaborate mechanism was replaced by ->evict_inode() which
* does the job of both ->delete_inode() and ->clear_inode(). It
* will be called exactly once, and when it returns the inode must
* be in a state where it can simply be freed. The ->evict_inode()
* callback must minimally truncate the inode pages, and call
* end_writeback() to complete all outstanding writeback for the
* inode. After this is complete evict inode can cleanup any
* remaining filesystem specific data.
*/
#ifdef HAVE_EVICT_INODE
static void
zpl_evict_inode(struct inode *ip)
{
truncate_inode_pages(&ip->i_data, 0);
end_writeback(ip);
zfs_inactive(ip);
}
#else
static void
zpl_clear_inode(struct inode *ip)
{
zfs_inactive(ip);
}
static void
zpl_inode_delete(struct inode *ip)
{
truncate_inode_pages(&ip->i_data, 0);
clear_inode(ip);
}
#endif /* HAVE_EVICT_INODE */
static void
zpl_put_super(struct super_block *sb)
{
int error;
error = -zfs_umount(sb);
ASSERT3S(error, <=, 0);
}
static int
zpl_sync_fs(struct super_block *sb, int wait)
{
cred_t *cr;
int error;
cr = (cred_t *)get_current_cred();
error = -zfs_sync(sb, wait, cr);
put_cred(cr);
ASSERT3S(error, <=, 0);
return (error);
}
static int
zpl_statfs(struct dentry *dentry, struct kstatfs *statp)
{
int error;
error = -zfs_statvfs(dentry, statp);
ASSERT3S(error, <=, 0);
return (error);
}
static int
zpl_remount_fs(struct super_block *sb, int *flags, char *data)
{
int error;
error = -zfs_remount(sb, flags, data);
ASSERT3S(error, <=, 0);
return (error);
}
static int
zpl_show_options(struct seq_file *seq, struct vfsmount *vfsp)
{
struct super_block *sb = vfsp->mnt_sb;
zfs_sb_t *zsb = sb->s_fs_info;
/*
* The Linux VFS automatically handles the following flags:
* MNT_NOSUID, MNT_NODEV, MNT_NOEXEC, MNT_NOATIME, MNT_READONLY
*/
if (zsb->z_flags & ZSB_XATTR_USER)
seq_printf(seq, ",%s", "xattr");
return (0);
}
static int
zpl_fill_super(struct super_block *sb, void *data, int silent)
{
int error;
error = -zfs_domount(sb, data, silent);
ASSERT3S(error, <=, 0);
return (error);
}
static int
zpl_get_sb(struct file_system_type *fs_type, int flags,
const char *osname, void *data, struct vfsmount *mnt)
{
zpl_mount_data_t zmd = { osname, data, mnt };
return get_sb_nodev(fs_type, flags, &zmd, zpl_fill_super, mnt);
}
static void
zpl_kill_sb(struct super_block *sb)
{
#ifdef HAVE_SNAPSHOT
zfs_sb_t *zsb = sb->s_fs_info;
if (zsb && dmu_objset_is_snapshot(zsb->z_os))
zfs_snap_destroy(zsb);
#endif /* HAVE_SNAPSHOT */
kill_anon_super(sb);
}
const struct super_operations zpl_super_operations = {
.alloc_inode = zpl_inode_alloc,
.destroy_inode = zpl_inode_destroy,
.dirty_inode = NULL,
.write_inode = NULL,
.drop_inode = NULL,
#ifdef HAVE_EVICT_INODE
.evict_inode = zpl_evict_inode,
#else
.clear_inode = zpl_clear_inode,
.delete_inode = zpl_inode_delete,
#endif /* HAVE_EVICT_INODE */
.put_super = zpl_put_super,
.write_super = NULL,
.sync_fs = zpl_sync_fs,
.freeze_fs = NULL,
.unfreeze_fs = NULL,
.statfs = zpl_statfs,
.remount_fs = zpl_remount_fs,
.show_options = zpl_show_options,
.show_stats = NULL,
};
#if 0
const struct export_operations zpl_export_operations = {
.fh_to_dentry = NULL,
.fh_to_parent = NULL,
.get_parent = NULL,
};
#endif
struct file_system_type zpl_fs_type = {
.owner = THIS_MODULE,
.name = ZFS_DRIVER,
.get_sb = zpl_get_sb,
.kill_sb = zpl_kill_sb,
};
|