aboutsummaryrefslogtreecommitdiffstats
path: root/module/zfs/zpl_super.c
blob: 87895d6ba2b2414d95458fea54382497a4ddc52c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
 */


#include <sys/zfs_vfsops.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_znode.h>
#include <sys/zfs_ctldir.h>
#include <sys/zpl.h>


static struct inode *
zpl_inode_alloc(struct super_block *sb)
{
	struct inode *ip;

	VERIFY3S(zfs_inode_alloc(sb, &ip), ==, 0);
	ip->i_version = 1;

	return (ip);
}

static void
zpl_inode_destroy(struct inode *ip)
{
	ASSERT(atomic_read(&ip->i_count) == 0);
	zfs_inode_destroy(ip);
}

/*
 * Called from __mark_inode_dirty() to reflect that something in the
 * inode has changed.  We use it to ensure the znode system attributes
 * are always strictly update to date with respect to the inode.
 */
#ifdef HAVE_DIRTY_INODE_WITH_FLAGS
static void
zpl_dirty_inode(struct inode *ip, int flags)
{
	fstrans_cookie_t cookie;

	cookie = spl_fstrans_mark();
	zfs_dirty_inode(ip, flags);
	spl_fstrans_unmark(cookie);
}
#else
static void
zpl_dirty_inode(struct inode *ip)
{
	fstrans_cookie_t cookie;

	cookie = spl_fstrans_mark();
	zfs_dirty_inode(ip, 0);
	spl_fstrans_unmark(cookie);
}
#endif /* HAVE_DIRTY_INODE_WITH_FLAGS */

/*
 * When ->drop_inode() is called its return value indicates if the
 * inode should be evicted from the inode cache.  If the inode is
 * unhashed and has no links the default policy is to evict it
 * immediately.
 *
 * Prior to 2.6.36 this eviction was accomplished by the vfs calling
 * ->delete_inode().  It was ->delete_inode()'s responsibility to
 * truncate the inode pages and call clear_inode().  The call to
 * clear_inode() synchronously invalidates all the buffers and
 * calls ->clear_inode().  It was ->clear_inode()'s responsibility
 * to cleanup and filesystem specific data before freeing the inode.
 *
 * This elaborate mechanism was replaced by ->evict_inode() which
 * does the job of both ->delete_inode() and ->clear_inode().  It
 * will be called exactly once, and when it returns the inode must
 * be in a state where it can simply be freed.i
 *
 * The ->evict_inode() callback must minimally truncate the inode pages,
 * and call clear_inode().  For 2.6.35 and later kernels this will
 * simply update the inode state, with the sync occurring before the
 * truncate in evict().  For earlier kernels clear_inode() maps to
 * end_writeback() which is responsible for completing all outstanding
 * write back.  In either case, once this is done it is safe to cleanup
 * any remaining inode specific data via zfs_inactive().
 * remaining filesystem specific data.
 */
#ifdef HAVE_EVICT_INODE
static void
zpl_evict_inode(struct inode *ip)
{
	fstrans_cookie_t cookie;

	cookie = spl_fstrans_mark();
	truncate_setsize(ip, 0);
	clear_inode(ip);
	zfs_inactive(ip);
	spl_fstrans_unmark(cookie);
}

#else

static void
zpl_drop_inode(struct inode *ip)
{
	generic_delete_inode(ip);
}

static void
zpl_clear_inode(struct inode *ip)
{
	fstrans_cookie_t cookie;

	cookie = spl_fstrans_mark();
	zfs_inactive(ip);
	spl_fstrans_unmark(cookie);
}

static void
zpl_inode_delete(struct inode *ip)
{
	truncate_setsize(ip, 0);
	clear_inode(ip);
}
#endif /* HAVE_EVICT_INODE */

static void
zpl_put_super(struct super_block *sb)
{
	fstrans_cookie_t cookie;
	int error;

	cookie = spl_fstrans_mark();
	error = -zfs_umount(sb);
	spl_fstrans_unmark(cookie);
	ASSERT3S(error, <=, 0);
}

static int
zpl_sync_fs(struct super_block *sb, int wait)
{
	fstrans_cookie_t cookie;
	cred_t *cr = CRED();
	int error;

	crhold(cr);
	cookie = spl_fstrans_mark();
	error = -zfs_sync(sb, wait, cr);
	spl_fstrans_unmark(cookie);
	crfree(cr);
	ASSERT3S(error, <=, 0);

	return (error);
}

static int
zpl_statfs(struct dentry *dentry, struct kstatfs *statp)
{
	fstrans_cookie_t cookie;
	int error;

	cookie = spl_fstrans_mark();
	error = -zfs_statvfs(dentry, statp);
	spl_fstrans_unmark(cookie);
	ASSERT3S(error, <=, 0);

	return (error);
}

enum {
	TOKEN_RO,
	TOKEN_RW,
	TOKEN_SETUID,
	TOKEN_NOSETUID,
	TOKEN_EXEC,
	TOKEN_NOEXEC,
	TOKEN_DEVICES,
	TOKEN_NODEVICES,
	TOKEN_DIRXATTR,
	TOKEN_SAXATTR,
	TOKEN_XATTR,
	TOKEN_NOXATTR,
	TOKEN_ATIME,
	TOKEN_NOATIME,
	TOKEN_RELATIME,
	TOKEN_NORELATIME,
	TOKEN_NBMAND,
	TOKEN_NONBMAND,
	TOKEN_MNTPOINT,
	TOKEN_LAST,
};

static const match_table_t zpl_tokens = {
	{ TOKEN_RO,		MNTOPT_RO },
	{ TOKEN_RW,		MNTOPT_RW },
	{ TOKEN_SETUID,		MNTOPT_SETUID },
	{ TOKEN_NOSETUID,	MNTOPT_NOSETUID },
	{ TOKEN_EXEC,		MNTOPT_EXEC },
	{ TOKEN_NOEXEC,		MNTOPT_NOEXEC },
	{ TOKEN_DEVICES,	MNTOPT_DEVICES },
	{ TOKEN_NODEVICES,	MNTOPT_NODEVICES },
	{ TOKEN_DIRXATTR,	MNTOPT_DIRXATTR },
	{ TOKEN_SAXATTR,	MNTOPT_SAXATTR },
	{ TOKEN_XATTR,		MNTOPT_XATTR },
	{ TOKEN_NOXATTR,	MNTOPT_NOXATTR },
	{ TOKEN_ATIME,		MNTOPT_ATIME },
	{ TOKEN_NOATIME,	MNTOPT_NOATIME },
	{ TOKEN_RELATIME,	MNTOPT_RELATIME },
	{ TOKEN_NORELATIME,	MNTOPT_NORELATIME },
	{ TOKEN_NBMAND,		MNTOPT_NBMAND },
	{ TOKEN_NONBMAND,	MNTOPT_NONBMAND },
	{ TOKEN_MNTPOINT,	MNTOPT_MNTPOINT "=%s" },
	{ TOKEN_LAST,		NULL },
};

static int
zpl_parse_option(char *option, int token, substring_t *args, zfs_mntopts_t *zmo)
{
	switch (token) {
	case TOKEN_RO:
		zmo->z_readonly = B_TRUE;
		zmo->z_do_readonly = B_TRUE;
		break;
	case TOKEN_RW:
		zmo->z_readonly = B_FALSE;
		zmo->z_do_readonly = B_TRUE;
		break;
	case TOKEN_SETUID:
		zmo->z_setuid = B_TRUE;
		zmo->z_do_setuid = B_TRUE;
		break;
	case TOKEN_NOSETUID:
		zmo->z_setuid = B_FALSE;
		zmo->z_do_setuid = B_TRUE;
		break;
	case TOKEN_EXEC:
		zmo->z_exec = B_TRUE;
		zmo->z_do_exec = B_TRUE;
		break;
	case TOKEN_NOEXEC:
		zmo->z_exec = B_FALSE;
		zmo->z_do_exec = B_TRUE;
		break;
	case TOKEN_DEVICES:
		zmo->z_devices = B_TRUE;
		zmo->z_do_devices = B_TRUE;
		break;
	case TOKEN_NODEVICES:
		zmo->z_devices = B_FALSE;
		zmo->z_do_devices = B_TRUE;
		break;
	case TOKEN_DIRXATTR:
		zmo->z_xattr = ZFS_XATTR_DIR;
		zmo->z_do_xattr = B_TRUE;
		break;
	case TOKEN_SAXATTR:
		zmo->z_xattr = ZFS_XATTR_SA;
		zmo->z_do_xattr = B_TRUE;
		break;
	case TOKEN_XATTR:
		zmo->z_xattr = ZFS_XATTR_DIR;
		zmo->z_do_xattr = B_TRUE;
		break;
	case TOKEN_NOXATTR:
		zmo->z_xattr = ZFS_XATTR_OFF;
		zmo->z_do_xattr = B_TRUE;
		break;
	case TOKEN_ATIME:
		zmo->z_atime = B_TRUE;
		zmo->z_do_atime = B_TRUE;
		break;
	case TOKEN_NOATIME:
		zmo->z_atime = B_FALSE;
		zmo->z_do_atime = B_TRUE;
		break;
	case TOKEN_RELATIME:
		zmo->z_relatime = B_TRUE;
		zmo->z_do_relatime = B_TRUE;
		break;
	case TOKEN_NORELATIME:
		zmo->z_relatime = B_FALSE;
		zmo->z_do_relatime = B_TRUE;
		break;
	case TOKEN_NBMAND:
		zmo->z_nbmand = B_TRUE;
		zmo->z_do_nbmand = B_TRUE;
		break;
	case TOKEN_NONBMAND:
		zmo->z_nbmand = B_FALSE;
		zmo->z_do_nbmand = B_TRUE;
		break;
	case TOKEN_MNTPOINT:
		zmo->z_mntpoint = match_strdup(&args[0]);
		if (zmo->z_mntpoint == NULL)
			return (-ENOMEM);

		break;
	default:
		break;
	}

	return (0);
}

/*
 * Parse the mntopts string storing the results in provided zmo argument.
 * If an error occurs the zmo argument will not be modified.  The caller
 * needs to set isremount when recycling an existing zfs_mntopts_t.
 */
static int
zpl_parse_options(char *osname, char *mntopts, zfs_mntopts_t *zmo,
    boolean_t isremount)
{
	zfs_mntopts_t *tmp_zmo;
	int error;

	tmp_zmo = zfs_mntopts_alloc();
	tmp_zmo->z_osname = strdup(osname);

	if (mntopts) {
		substring_t args[MAX_OPT_ARGS];
		char *tmp_mntopts, *p;
		int token;

		tmp_mntopts = strdup(mntopts);

		while ((p = strsep(&tmp_mntopts, ",")) != NULL) {
			if (!*p)
				continue;

			args[0].to = args[0].from = NULL;
			token = match_token(p, zpl_tokens, args);
			error = zpl_parse_option(p, token, args, tmp_zmo);
			if (error) {
				zfs_mntopts_free(tmp_zmo);
				strfree(tmp_mntopts);
				return (error);
			}
		}

		strfree(tmp_mntopts);
	}

	if (isremount == B_TRUE) {
		if (zmo->z_osname)
			strfree(zmo->z_osname);

		if (zmo->z_mntpoint)
			strfree(zmo->z_mntpoint);
	} else {
		ASSERT3P(zmo->z_osname, ==, NULL);
		ASSERT3P(zmo->z_mntpoint, ==, NULL);
	}

	memcpy(zmo, tmp_zmo, sizeof (zfs_mntopts_t));
	kmem_free(tmp_zmo, sizeof (zfs_mntopts_t));

	return (0);
}

static int
zpl_remount_fs(struct super_block *sb, int *flags, char *data)
{
	zfs_sb_t *zsb = sb->s_fs_info;
	fstrans_cookie_t cookie;
	int error;

	error = zpl_parse_options(zsb->z_mntopts->z_osname, data,
	    zsb->z_mntopts, B_TRUE);
	if (error)
		return (error);

	cookie = spl_fstrans_mark();
	error = -zfs_remount(sb, flags, zsb->z_mntopts);
	spl_fstrans_unmark(cookie);
	ASSERT3S(error, <=, 0);

	return (error);
}

static int
__zpl_show_options(struct seq_file *seq, zfs_sb_t *zsb)
{
	seq_printf(seq, ",%s", zsb->z_flags & ZSB_XATTR ? "xattr" : "noxattr");

#ifdef CONFIG_FS_POSIX_ACL
	switch (zsb->z_acl_type) {
	case ZFS_ACLTYPE_POSIXACL:
		seq_puts(seq, ",posixacl");
		break;
	default:
		seq_puts(seq, ",noacl");
		break;
	}
#endif /* CONFIG_FS_POSIX_ACL */

	return (0);
}

#ifdef HAVE_SHOW_OPTIONS_WITH_DENTRY
static int
zpl_show_options(struct seq_file *seq, struct dentry *root)
{
	return (__zpl_show_options(seq, root->d_sb->s_fs_info));
}
#else
static int
zpl_show_options(struct seq_file *seq, struct vfsmount *vfsp)
{
	return (__zpl_show_options(seq, vfsp->mnt_sb->s_fs_info));
}
#endif /* HAVE_SHOW_OPTIONS_WITH_DENTRY */

static int
zpl_fill_super(struct super_block *sb, void *data, int silent)
{
	zfs_mntopts_t *zmo = (zfs_mntopts_t *)data;
	fstrans_cookie_t cookie;
	int error;

	cookie = spl_fstrans_mark();
	error = -zfs_domount(sb, zmo, silent);
	spl_fstrans_unmark(cookie);
	ASSERT3S(error, <=, 0);

	return (error);
}

#ifdef HAVE_MOUNT_NODEV
static struct dentry *
zpl_mount(struct file_system_type *fs_type, int flags,
    const char *osname, void *data)
{
	zfs_mntopts_t *zmo = zfs_mntopts_alloc();
	int error;

	error = zpl_parse_options((char *)osname, (char *)data, zmo, B_FALSE);
	if (error) {
		zfs_mntopts_free(zmo);
		return (ERR_PTR(error));
	}

	return (mount_nodev(fs_type, flags, zmo, zpl_fill_super));
}
#else
static int
zpl_get_sb(struct file_system_type *fs_type, int flags,
    const char *osname, void *data, struct vfsmount *mnt)
{
	zfs_mntopts_t *zmo = zfs_mntopts_alloc();
	int error;

	error = zpl_parse_options((char *)osname, (char *)data, zmo, B_FALSE);
	if (error) {
		zfs_mntopts_free(zmo);
		return (error);
	}

	return (get_sb_nodev(fs_type, flags, zmo, zpl_fill_super, mnt));
}
#endif /* HAVE_MOUNT_NODEV */

static void
zpl_kill_sb(struct super_block *sb)
{
	zfs_preumount(sb);
	kill_anon_super(sb);

#ifdef HAVE_S_INSTANCES_LIST_HEAD
	sb->s_instances.next = &(zpl_fs_type.fs_supers);
#endif /* HAVE_S_INSTANCES_LIST_HEAD */
}

void
zpl_prune_sb(int64_t nr_to_scan, void *arg)
{
	struct super_block *sb = (struct super_block *)arg;
	int objects = 0;

	(void) -zfs_sb_prune(sb, nr_to_scan, &objects);
}

#ifdef HAVE_NR_CACHED_OBJECTS
static int
zpl_nr_cached_objects(struct super_block *sb)
{
	zfs_sb_t *zsb = sb->s_fs_info;
	int nr;

	mutex_enter(&zsb->z_znodes_lock);
	nr = zsb->z_nr_znodes;
	mutex_exit(&zsb->z_znodes_lock);

	return (nr);
}
#endif /* HAVE_NR_CACHED_OBJECTS */

#ifdef HAVE_FREE_CACHED_OBJECTS
/*
 * Attempt to evict some meta data from the cache.  The ARC operates in
 * terms of bytes while the Linux VFS uses objects.  Now because this is
 * just a best effort eviction and the exact values aren't critical so we
 * extrapolate from an object count to a byte size using the znode_t size.
 */
static void
zpl_free_cached_objects(struct super_block *sb, int nr_to_scan)
{
	/* noop */
}
#endif /* HAVE_FREE_CACHED_OBJECTS */

const struct super_operations zpl_super_operations = {
	.alloc_inode		= zpl_inode_alloc,
	.destroy_inode		= zpl_inode_destroy,
	.dirty_inode		= zpl_dirty_inode,
	.write_inode		= NULL,
#ifdef HAVE_EVICT_INODE
	.evict_inode		= zpl_evict_inode,
#else
	.drop_inode		= zpl_drop_inode,
	.clear_inode		= zpl_clear_inode,
	.delete_inode		= zpl_inode_delete,
#endif /* HAVE_EVICT_INODE */
	.put_super		= zpl_put_super,
	.sync_fs		= zpl_sync_fs,
	.statfs			= zpl_statfs,
	.remount_fs		= zpl_remount_fs,
	.show_options		= zpl_show_options,
	.show_stats		= NULL,
#ifdef HAVE_NR_CACHED_OBJECTS
	.nr_cached_objects	= zpl_nr_cached_objects,
#endif /* HAVE_NR_CACHED_OBJECTS */
#ifdef HAVE_FREE_CACHED_OBJECTS
	.free_cached_objects	= zpl_free_cached_objects,
#endif /* HAVE_FREE_CACHED_OBJECTS */
};

struct file_system_type zpl_fs_type = {
	.owner			= THIS_MODULE,
	.name			= ZFS_DRIVER,
#ifdef HAVE_MOUNT_NODEV
	.mount			= zpl_mount,
#else
	.get_sb			= zpl_get_sb,
#endif /* HAVE_MOUNT_NODEV */
	.kill_sb		= zpl_kill_sb,
};