aboutsummaryrefslogtreecommitdiffstats
path: root/module/zfs/zio_checksum.c
blob: f8fee78c606843c5c5497e5cd6e148c3b60a46f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
 * Copyright 2013 Saso Kiselkov. All rights reserved.
 */

#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/zio.h>
#include <sys/zio_checksum.h>
#include <sys/zil.h>
#include <sys/abd.h>
#include <zfs_fletcher.h>

/*
 * Checksum vectors.
 *
 * In the SPA, everything is checksummed.  We support checksum vectors
 * for three distinct reasons:
 *
 *   1. Different kinds of data need different levels of protection.
 *	For SPA metadata, we always want a very strong checksum.
 *	For user data, we let users make the trade-off between speed
 *	and checksum strength.
 *
 *   2. Cryptographic hash and MAC algorithms are an area of active research.
 *	It is likely that in future hash functions will be at least as strong
 *	as current best-of-breed, and may be substantially faster as well.
 *	We want the ability to take advantage of these new hashes as soon as
 *	they become available.
 *
 *   3. If someone develops hardware that can compute a strong hash quickly,
 *	we want the ability to take advantage of that hardware.
 *
 * Of course, we don't want a checksum upgrade to invalidate existing
 * data, so we store the checksum *function* in eight bits of the bp.
 * This gives us room for up to 256 different checksum functions.
 *
 * When writing a block, we always checksum it with the latest-and-greatest
 * checksum function of the appropriate strength.  When reading a block,
 * we compare the expected checksum against the actual checksum, which we
 * compute via the checksum function specified by BP_GET_CHECKSUM(bp).
 *
 * SALTED CHECKSUMS
 *
 * To enable the use of less secure hash algorithms with dedup, we
 * introduce the notion of salted checksums (MACs, really).  A salted
 * checksum is fed both a random 256-bit value (the salt) and the data
 * to be checksummed.  This salt is kept secret (stored on the pool, but
 * never shown to the user).  Thus even if an attacker knew of collision
 * weaknesses in the hash algorithm, they won't be able to mount a known
 * plaintext attack on the DDT, since the actual hash value cannot be
 * known ahead of time.  How the salt is used is algorithm-specific
 * (some might simply prefix it to the data block, others might need to
 * utilize a full-blown HMAC).  On disk the salt is stored in a ZAP
 * object in the MOS (DMU_POOL_CHECKSUM_SALT).
 *
 * CONTEXT TEMPLATES
 *
 * Some hashing algorithms need to perform a substantial amount of
 * initialization work (e.g. salted checksums above may need to pre-hash
 * the salt) before being able to process data.  Performing this
 * redundant work for each block would be wasteful, so we instead allow
 * a checksum algorithm to do the work once (the first time it's used)
 * and then keep this pre-initialized context as a template inside the
 * spa_t (spa_cksum_tmpls).  If the zio_checksum_info_t contains
 * non-NULL ci_tmpl_init and ci_tmpl_free callbacks, they are used to
 * construct and destruct the pre-initialized checksum context.  The
 * pre-initialized context is then reused during each checksum
 * invocation and passed to the checksum function.
 */

/*ARGSUSED*/
static void
abd_checksum_off(abd_t *abd, uint64_t size,
    const void *ctx_template, zio_cksum_t *zcp)
{
	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
}

/*ARGSUSED*/
static void
abd_fletcher_2_native(abd_t *abd, uint64_t size,
    const void *ctx_template, zio_cksum_t *zcp)
{
	fletcher_init(zcp);
	(void) abd_iterate_func(abd, 0, size,
	    fletcher_2_incremental_native, zcp);
}

/*ARGSUSED*/
static void
abd_fletcher_2_byteswap(abd_t *abd, uint64_t size,
    const void *ctx_template, zio_cksum_t *zcp)
{
	fletcher_init(zcp);
	(void) abd_iterate_func(abd, 0, size,
	    fletcher_2_incremental_byteswap, zcp);
}

static inline void
abd_fletcher_4_impl(abd_t *abd, uint64_t size, zio_abd_checksum_data_t *acdp)
{
	fletcher_4_abd_ops.acf_init(acdp);
	abd_iterate_func(abd, 0, size, fletcher_4_abd_ops.acf_iter, acdp);
	fletcher_4_abd_ops.acf_fini(acdp);
}

/*ARGSUSED*/
void
abd_fletcher_4_native(abd_t *abd, uint64_t size,
    const void *ctx_template, zio_cksum_t *zcp)
{
	fletcher_4_ctx_t ctx;

	zio_abd_checksum_data_t acd = {
		.acd_byteorder	= ZIO_CHECKSUM_NATIVE,
		.acd_zcp 	= zcp,
		.acd_ctx	= &ctx
	};

	abd_fletcher_4_impl(abd, size, &acd);

}

/*ARGSUSED*/
void
abd_fletcher_4_byteswap(abd_t *abd, uint64_t size,
    const void *ctx_template, zio_cksum_t *zcp)
{
	fletcher_4_ctx_t ctx;

	zio_abd_checksum_data_t acd = {
		.acd_byteorder	= ZIO_CHECKSUM_BYTESWAP,
		.acd_zcp 	= zcp,
		.acd_ctx	= &ctx
	};

	abd_fletcher_4_impl(abd, size, &acd);
}

zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
	{{NULL, NULL}, NULL, NULL, 0, "inherit"},
	{{NULL, NULL}, NULL, NULL, 0, "on"},
	{{abd_checksum_off,		abd_checksum_off},
	    NULL, NULL, 0, "off"},
	{{abd_checksum_SHA256,		abd_checksum_SHA256},
	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED,
	    "label"},
	{{abd_checksum_SHA256,		abd_checksum_SHA256},
	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED,
	    "gang_header"},
	{{abd_fletcher_2_native,	abd_fletcher_2_byteswap},
	    NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog"},
	{{abd_fletcher_2_native,	abd_fletcher_2_byteswap},
	    NULL, NULL, 0, "fletcher2"},
	{{abd_fletcher_4_native,	abd_fletcher_4_byteswap},
	    NULL, NULL, ZCHECKSUM_FLAG_METADATA, "fletcher4"},
	{{abd_checksum_SHA256,		abd_checksum_SHA256},
	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
	    ZCHECKSUM_FLAG_NOPWRITE, "sha256"},
	{{abd_fletcher_4_native,	abd_fletcher_4_byteswap},
	    NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog2"},
	{{abd_checksum_off,		abd_checksum_off},
	    NULL, NULL, 0, "noparity"},
	{{abd_checksum_SHA512_native,	abd_checksum_SHA512_byteswap},
	    NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
	    ZCHECKSUM_FLAG_NOPWRITE, "sha512"},
	{{abd_checksum_skein_native,	abd_checksum_skein_byteswap},
	    abd_checksum_skein_tmpl_init, abd_checksum_skein_tmpl_free,
	    ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
	    ZCHECKSUM_FLAG_SALTED | ZCHECKSUM_FLAG_NOPWRITE, "skein"},
#if !defined(__FreeBSD__)
	{{abd_checksum_edonr_native,	abd_checksum_edonr_byteswap},
	    abd_checksum_edonr_tmpl_init, abd_checksum_edonr_tmpl_free,
	    ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_SALTED |
	    ZCHECKSUM_FLAG_NOPWRITE, "edonr"},
#endif
};

/*
 * The flag corresponding to the "verify" in dedup=[checksum,]verify
 * must be cleared first, so callers should use ZIO_CHECKSUM_MASK.
 */
spa_feature_t
zio_checksum_to_feature(enum zio_checksum cksum)
{
	VERIFY((cksum & ~ZIO_CHECKSUM_MASK) == 0);

	switch (cksum) {
	case ZIO_CHECKSUM_SHA512:
		return (SPA_FEATURE_SHA512);
	case ZIO_CHECKSUM_SKEIN:
		return (SPA_FEATURE_SKEIN);
#if !defined(__FreeBSD__)
	case ZIO_CHECKSUM_EDONR:
		return (SPA_FEATURE_EDONR);
#endif
	default:
		return (SPA_FEATURE_NONE);
	}
}

enum zio_checksum
zio_checksum_select(enum zio_checksum child, enum zio_checksum parent)
{
	ASSERT(child < ZIO_CHECKSUM_FUNCTIONS);
	ASSERT(parent < ZIO_CHECKSUM_FUNCTIONS);
	ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);

	if (child == ZIO_CHECKSUM_INHERIT)
		return (parent);

	if (child == ZIO_CHECKSUM_ON)
		return (ZIO_CHECKSUM_ON_VALUE);

	return (child);
}

enum zio_checksum
zio_checksum_dedup_select(spa_t *spa, enum zio_checksum child,
    enum zio_checksum parent)
{
	ASSERT((child & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
	ASSERT((parent & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
	ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);

	if (child == ZIO_CHECKSUM_INHERIT)
		return (parent);

	if (child == ZIO_CHECKSUM_ON)
		return (spa_dedup_checksum(spa));

	if (child == (ZIO_CHECKSUM_ON | ZIO_CHECKSUM_VERIFY))
		return (spa_dedup_checksum(spa) | ZIO_CHECKSUM_VERIFY);

	ASSERT((zio_checksum_table[child & ZIO_CHECKSUM_MASK].ci_flags &
	    ZCHECKSUM_FLAG_DEDUP) ||
	    (child & ZIO_CHECKSUM_VERIFY) || child == ZIO_CHECKSUM_OFF);

	return (child);
}

/*
 * Set the external verifier for a gang block based on <vdev, offset, txg>,
 * a tuple which is guaranteed to be unique for the life of the pool.
 */
static void
zio_checksum_gang_verifier(zio_cksum_t *zcp, const blkptr_t *bp)
{
	const dva_t *dva = BP_IDENTITY(bp);
	uint64_t txg = BP_PHYSICAL_BIRTH(bp);

	ASSERT(BP_IS_GANG(bp));

	ZIO_SET_CHECKSUM(zcp, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), txg, 0);
}

/*
 * Set the external verifier for a label block based on its offset.
 * The vdev is implicit, and the txg is unknowable at pool open time --
 * hence the logic in vdev_uberblock_load() to find the most recent copy.
 */
static void
zio_checksum_label_verifier(zio_cksum_t *zcp, uint64_t offset)
{
	ZIO_SET_CHECKSUM(zcp, offset, 0, 0, 0);
}

/*
 * Calls the template init function of a checksum which supports context
 * templates and installs the template into the spa_t.
 */
static void
zio_checksum_template_init(enum zio_checksum checksum, spa_t *spa)
{
	zio_checksum_info_t *ci = &zio_checksum_table[checksum];

	if (ci->ci_tmpl_init == NULL)
		return;
	if (spa->spa_cksum_tmpls[checksum] != NULL)
		return;

	VERIFY(ci->ci_tmpl_free != NULL);
	mutex_enter(&spa->spa_cksum_tmpls_lock);
	if (spa->spa_cksum_tmpls[checksum] == NULL) {
		spa->spa_cksum_tmpls[checksum] =
		    ci->ci_tmpl_init(&spa->spa_cksum_salt);
		VERIFY(spa->spa_cksum_tmpls[checksum] != NULL);
	}
	mutex_exit(&spa->spa_cksum_tmpls_lock);
}

/* convenience function to update a checksum to accommodate an encryption MAC */
static void
zio_checksum_handle_crypt(zio_cksum_t *cksum, zio_cksum_t *saved, boolean_t xor)
{
	/*
	 * Weak checksums do not have their entropy spread evenly
	 * across the bits of the checksum. Therefore, when truncating
	 * a weak checksum we XOR the first 2 words with the last 2 so
	 * that we don't "lose" any entropy unnecessarily.
	 */
	if (xor) {
		cksum->zc_word[0] ^= cksum->zc_word[2];
		cksum->zc_word[1] ^= cksum->zc_word[3];
	}

	cksum->zc_word[2] = saved->zc_word[2];
	cksum->zc_word[3] = saved->zc_word[3];
}

/*
 * Generate the checksum.
 */
void
zio_checksum_compute(zio_t *zio, enum zio_checksum checksum,
    abd_t *abd, uint64_t size)
{
	static const uint64_t zec_magic = ZEC_MAGIC;
	blkptr_t *bp = zio->io_bp;
	uint64_t offset = zio->io_offset;
	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
	zio_cksum_t cksum, saved;
	spa_t *spa = zio->io_spa;
	boolean_t insecure = (ci->ci_flags & ZCHECKSUM_FLAG_DEDUP) == 0;

	ASSERT((uint_t)checksum < ZIO_CHECKSUM_FUNCTIONS);
	ASSERT(ci->ci_func[0] != NULL);

	zio_checksum_template_init(checksum, spa);

	if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
		zio_eck_t eck;
		size_t eck_offset;

		bzero(&saved, sizeof (zio_cksum_t));

		if (checksum == ZIO_CHECKSUM_ZILOG2) {
			zil_chain_t zilc;
			abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t));

			size = P2ROUNDUP_TYPED(zilc.zc_nused, ZIL_MIN_BLKSZ,
			    uint64_t);
			eck = zilc.zc_eck;
			eck_offset = offsetof(zil_chain_t, zc_eck);
		} else {
			eck_offset = size - sizeof (zio_eck_t);
			abd_copy_to_buf_off(&eck, abd, eck_offset,
			    sizeof (zio_eck_t));
		}

		if (checksum == ZIO_CHECKSUM_GANG_HEADER) {
			zio_checksum_gang_verifier(&eck.zec_cksum, bp);
		} else if (checksum == ZIO_CHECKSUM_LABEL) {
			zio_checksum_label_verifier(&eck.zec_cksum, offset);
		} else {
			saved = eck.zec_cksum;
			eck.zec_cksum = bp->blk_cksum;
		}

		abd_copy_from_buf_off(abd, &zec_magic,
		    eck_offset + offsetof(zio_eck_t, zec_magic),
		    sizeof (zec_magic));
		abd_copy_from_buf_off(abd, &eck.zec_cksum,
		    eck_offset + offsetof(zio_eck_t, zec_cksum),
		    sizeof (zio_cksum_t));

		ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum],
		    &cksum);
		if (bp != NULL && BP_USES_CRYPT(bp) &&
		    BP_GET_TYPE(bp) != DMU_OT_OBJSET)
			zio_checksum_handle_crypt(&cksum, &saved, insecure);

		abd_copy_from_buf_off(abd, &cksum,
		    eck_offset + offsetof(zio_eck_t, zec_cksum),
		    sizeof (zio_cksum_t));
	} else {
		saved = bp->blk_cksum;
		ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum],
		    &cksum);
		if (BP_USES_CRYPT(bp) && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
			zio_checksum_handle_crypt(&cksum, &saved, insecure);
		bp->blk_cksum = cksum;
	}
}

int
zio_checksum_error_impl(spa_t *spa, const blkptr_t *bp,
    enum zio_checksum checksum, abd_t *abd, uint64_t size, uint64_t offset,
    zio_bad_cksum_t *info)
{
	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
	zio_cksum_t actual_cksum, expected_cksum;
	zio_eck_t eck;
	int byteswap;

	if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func[0] == NULL)
		return (SET_ERROR(EINVAL));

	zio_checksum_template_init(checksum, spa);

	if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
		zio_cksum_t verifier;
		size_t eck_offset;

		if (checksum == ZIO_CHECKSUM_ZILOG2) {
			zil_chain_t zilc;
			uint64_t nused;

			abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t));

			eck = zilc.zc_eck;
			eck_offset = offsetof(zil_chain_t, zc_eck) +
			    offsetof(zio_eck_t, zec_cksum);

			if (eck.zec_magic == ZEC_MAGIC) {
				nused = zilc.zc_nused;
			} else if (eck.zec_magic == BSWAP_64(ZEC_MAGIC)) {
				nused = BSWAP_64(zilc.zc_nused);
			} else {
				return (SET_ERROR(ECKSUM));
			}

			if (nused > size) {
				return (SET_ERROR(ECKSUM));
			}

			size = P2ROUNDUP_TYPED(nused, ZIL_MIN_BLKSZ, uint64_t);
		} else {
			eck_offset = size - sizeof (zio_eck_t);
			abd_copy_to_buf_off(&eck, abd, eck_offset,
			    sizeof (zio_eck_t));
			eck_offset += offsetof(zio_eck_t, zec_cksum);
		}

		if (checksum == ZIO_CHECKSUM_GANG_HEADER)
			zio_checksum_gang_verifier(&verifier, bp);
		else if (checksum == ZIO_CHECKSUM_LABEL)
			zio_checksum_label_verifier(&verifier, offset);
		else
			verifier = bp->blk_cksum;

		byteswap = (eck.zec_magic == BSWAP_64(ZEC_MAGIC));

		if (byteswap)
			byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));

		expected_cksum = eck.zec_cksum;

		abd_copy_from_buf_off(abd, &verifier, eck_offset,
		    sizeof (zio_cksum_t));

		ci->ci_func[byteswap](abd, size,
		    spa->spa_cksum_tmpls[checksum], &actual_cksum);

		abd_copy_from_buf_off(abd, &expected_cksum, eck_offset,
		    sizeof (zio_cksum_t));

		if (byteswap) {
			byteswap_uint64_array(&expected_cksum,
			    sizeof (zio_cksum_t));
		}
	} else {
		byteswap = BP_SHOULD_BYTESWAP(bp);
		expected_cksum = bp->blk_cksum;
		ci->ci_func[byteswap](abd, size,
		    spa->spa_cksum_tmpls[checksum], &actual_cksum);
	}

	/*
	 * MAC checksums are a special case since half of this checksum will
	 * actually be the encryption MAC. This will be verified by the
	 * decryption process, so we just check the truncated checksum now.
	 * Objset blocks use embedded MACs so we don't truncate the checksum
	 * for them.
	 */
	if (bp != NULL && BP_USES_CRYPT(bp) &&
	    BP_GET_TYPE(bp) != DMU_OT_OBJSET) {
		if (!(ci->ci_flags & ZCHECKSUM_FLAG_DEDUP)) {
			actual_cksum.zc_word[0] ^= actual_cksum.zc_word[2];
			actual_cksum.zc_word[1] ^= actual_cksum.zc_word[3];
		}

		actual_cksum.zc_word[2] = 0;
		actual_cksum.zc_word[3] = 0;
		expected_cksum.zc_word[2] = 0;
		expected_cksum.zc_word[3] = 0;
	}

	if (info != NULL) {
		info->zbc_expected = expected_cksum;
		info->zbc_actual = actual_cksum;
		info->zbc_checksum_name = ci->ci_name;
		info->zbc_byteswapped = byteswap;
		info->zbc_injected = 0;
		info->zbc_has_cksum = 1;
	}

	if (!ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
		return (SET_ERROR(ECKSUM));

	return (0);
}

int
zio_checksum_error(zio_t *zio, zio_bad_cksum_t *info)
{
	blkptr_t *bp = zio->io_bp;
	uint_t checksum = (bp == NULL ? zio->io_prop.zp_checksum :
	    (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp)));
	int error;
	uint64_t size = (bp == NULL ? zio->io_size :
	    (BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp)));
	uint64_t offset = zio->io_offset;
	abd_t *data = zio->io_abd;
	spa_t *spa = zio->io_spa;

	error = zio_checksum_error_impl(spa, bp, checksum, data, size,
	    offset, info);

	if (zio_injection_enabled && error == 0 && zio->io_error == 0) {
		error = zio_handle_fault_injection(zio, ECKSUM);
		if (error != 0)
			info->zbc_injected = 1;
	}

	return (error);
}

/*
 * Called by a spa_t that's about to be deallocated. This steps through
 * all of the checksum context templates and deallocates any that were
 * initialized using the algorithm-specific template init function.
 */
void
zio_checksum_templates_free(spa_t *spa)
{
	for (enum zio_checksum checksum = 0;
	    checksum < ZIO_CHECKSUM_FUNCTIONS; checksum++) {
		if (spa->spa_cksum_tmpls[checksum] != NULL) {
			zio_checksum_info_t *ci = &zio_checksum_table[checksum];

			VERIFY(ci->ci_tmpl_free != NULL);
			ci->ci_tmpl_free(spa->spa_cksum_tmpls[checksum]);
			spa->spa_cksum_tmpls[checksum] = NULL;
		}
	}
}