aboutsummaryrefslogtreecommitdiffstats
path: root/module/zfs/zfs_vnops.c
blob: 83e08630b54d49ac28b63d62bdd38424f846339f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */

/*
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
 * Copyright 2017 Nexenta Systems, Inc.
 */

/* Portions Copyright 2007 Jeremy Teo */
/* Portions Copyright 2010 Robert Milkowski */

#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/sysmacros.h>
#include <sys/vfs.h>
#include <sys/uio.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/kmem.h>
#include <sys/cmn_err.h>
#include <sys/errno.h>
#include <sys/zfs_dir.h>
#include <sys/zfs_acl.h>
#include <sys/zfs_ioctl.h>
#include <sys/fs/zfs.h>
#include <sys/dmu.h>
#include <sys/dmu_objset.h>
#include <sys/spa.h>
#include <sys/txg.h>
#include <sys/dbuf.h>
#include <sys/policy.h>
#include <sys/zfs_vnops.h>
#include <sys/zfs_quota.h>


static ulong_t zfs_fsync_sync_cnt = 4;

int
zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
{
	zfsvfs_t *zfsvfs = ZTOZSB(zp);

	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);

	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
		ZFS_ENTER(zfsvfs);
		ZFS_VERIFY_ZP(zp);
		zil_commit(zfsvfs->z_log, zp->z_id);
		ZFS_EXIT(zfsvfs);
	}
	tsd_set(zfs_fsyncer_key, NULL);

	return (0);
}


#if defined(SEEK_HOLE) && defined(SEEK_DATA)
/*
 * Lseek support for finding holes (cmd == SEEK_HOLE) and
 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
 */
static int
zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
{
	uint64_t noff = (uint64_t)*off; /* new offset */
	uint64_t file_sz;
	int error;
	boolean_t hole;

	file_sz = zp->z_size;
	if (noff >= file_sz)  {
		return (SET_ERROR(ENXIO));
	}

	if (cmd == F_SEEK_HOLE)
		hole = B_TRUE;
	else
		hole = B_FALSE;

	error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);

	if (error == ESRCH)
		return (SET_ERROR(ENXIO));

	/* file was dirty, so fall back to using generic logic */
	if (error == EBUSY) {
		if (hole)
			*off = file_sz;

		return (0);
	}

	/*
	 * We could find a hole that begins after the logical end-of-file,
	 * because dmu_offset_next() only works on whole blocks.  If the
	 * EOF falls mid-block, then indicate that the "virtual hole"
	 * at the end of the file begins at the logical EOF, rather than
	 * at the end of the last block.
	 */
	if (noff > file_sz) {
		ASSERT(hole);
		noff = file_sz;
	}

	if (noff < *off)
		return (error);
	*off = noff;
	return (error);
}

int
zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
{
	zfsvfs_t *zfsvfs = ZTOZSB(zp);
	int error;

	ZFS_ENTER(zfsvfs);
	ZFS_VERIFY_ZP(zp);

	error = zfs_holey_common(zp, cmd, off);

	ZFS_EXIT(zfsvfs);
	return (error);
}
#endif /* SEEK_HOLE && SEEK_DATA */

/*ARGSUSED*/
int
zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
{
	zfsvfs_t *zfsvfs = ZTOZSB(zp);
	int error;

	ZFS_ENTER(zfsvfs);
	ZFS_VERIFY_ZP(zp);

	if (flag & V_ACE_MASK)
		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
	else
		error = zfs_zaccess_rwx(zp, mode, flag, cr);

	ZFS_EXIT(zfsvfs);
	return (error);
}

static unsigned long zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */

/*
 * Read bytes from specified file into supplied buffer.
 *
 *	IN:	zp	- inode of file to be read from.
 *		uio	- structure supplying read location, range info,
 *			  and return buffer.
 *		ioflag	- O_SYNC flags; used to provide FRSYNC semantics.
 *			  O_DIRECT flag; used to bypass page cache.
 *		cr	- credentials of caller.
 *
 *	OUT:	uio	- updated offset and range, buffer filled.
 *
 *	RETURN:	0 on success, error code on failure.
 *
 * Side Effects:
 *	inode - atime updated if byte count > 0
 */
/* ARGSUSED */
int
zfs_read(struct znode *zp, uio_t *uio, int ioflag, cred_t *cr)
{
	int error = 0;
	boolean_t frsync = B_FALSE;

	zfsvfs_t *zfsvfs = ZTOZSB(zp);
	ZFS_ENTER(zfsvfs);
	ZFS_VERIFY_ZP(zp);

	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
		ZFS_EXIT(zfsvfs);
		return (SET_ERROR(EACCES));
	}

	/* We don't copy out anything useful for directories. */
	if (Z_ISDIR(ZTOTYPE(zp))) {
		ZFS_EXIT(zfsvfs);
		return (SET_ERROR(EISDIR));
	}

	/*
	 * Validate file offset
	 */
	if (uio->uio_loffset < (offset_t)0) {
		ZFS_EXIT(zfsvfs);
		return (SET_ERROR(EINVAL));
	}

	/*
	 * Fasttrack empty reads
	 */
	if (uio->uio_resid == 0) {
		ZFS_EXIT(zfsvfs);
		return (0);
	}

#ifdef FRSYNC
	/*
	 * If we're in FRSYNC mode, sync out this znode before reading it.
	 * Only do this for non-snapshots.
	 *
	 * Some platforms do not support FRSYNC and instead map it
	 * to O_SYNC, which results in unnecessary calls to zil_commit. We
	 * only honor FRSYNC requests on platforms which support it.
	 */
	frsync = !!(ioflag & FRSYNC);
#endif
	if (zfsvfs->z_log &&
	    (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
		zil_commit(zfsvfs->z_log, zp->z_id);

	/*
	 * Lock the range against changes.
	 */
	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
	    uio->uio_loffset, uio->uio_resid, RL_READER);

	/*
	 * If we are reading past end-of-file we can skip
	 * to the end; but we might still need to set atime.
	 */
	if (uio->uio_loffset >= zp->z_size) {
		error = 0;
		goto out;
	}

	ASSERT(uio->uio_loffset < zp->z_size);
	ssize_t n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
	ssize_t start_resid = n;

	while (n > 0) {
		ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
		    P2PHASE(uio->uio_loffset, zfs_vnops_read_chunk_size));
#ifdef UIO_NOCOPY
		if (uio->uio_segflg == UIO_NOCOPY)
			error = mappedread_sf(zp, nbytes, uio);
		else
#endif
		if (zn_has_cached_data(zp) && !(ioflag & O_DIRECT)) {
			error = mappedread(zp, nbytes, uio);
		} else {
			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
			    uio, nbytes);
		}

		if (error) {
			/* convert checksum errors into IO errors */
			if (error == ECKSUM)
				error = SET_ERROR(EIO);
			break;
		}

		n -= nbytes;
	}

	int64_t nread = start_resid - n;
	dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
	task_io_account_read(nread);
out:
	zfs_rangelock_exit(lr);

	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
	ZFS_EXIT(zfsvfs);
	return (error);
}

/*
 * Write the bytes to a file.
 *
 *	IN:	zp	- znode of file to be written to.
 *		uio	- structure supplying write location, range info,
 *			  and data buffer.
 *		ioflag	- O_APPEND flag set if in append mode.
 *			  O_DIRECT flag; used to bypass page cache.
 *		cr	- credentials of caller.
 *
 *	OUT:	uio	- updated offset and range.
 *
 *	RETURN:	0 if success
 *		error code if failure
 *
 * Timestamps:
 *	ip - ctime|mtime updated if byte count > 0
 */

/* ARGSUSED */
int
zfs_write(znode_t *zp, uio_t *uio, int ioflag, cred_t *cr)
{
	int error = 0;
	ssize_t start_resid = uio->uio_resid;

	/*
	 * Fasttrack empty write
	 */
	ssize_t n = start_resid;
	if (n == 0)
		return (0);

	zfsvfs_t *zfsvfs = ZTOZSB(zp);
	ZFS_ENTER(zfsvfs);
	ZFS_VERIFY_ZP(zp);

	sa_bulk_attr_t bulk[4];
	int count = 0;
	uint64_t mtime[2], ctime[2];
	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
	    &zp->z_size, 8);
	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
	    &zp->z_pflags, 8);

	/*
	 * Callers might not be able to detect properly that we are read-only,
	 * so check it explicitly here.
	 */
	if (zfs_is_readonly(zfsvfs)) {
		ZFS_EXIT(zfsvfs);
		return (SET_ERROR(EROFS));
	}

	/*
	 * If immutable or not appending then return EPERM.
	 * Intentionally allow ZFS_READONLY through here.
	 * See zfs_zaccess_common()
	 */
	if ((zp->z_pflags & ZFS_IMMUTABLE) ||
	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
	    (uio->uio_loffset < zp->z_size))) {
		ZFS_EXIT(zfsvfs);
		return (SET_ERROR(EPERM));
	}

	/*
	 * Validate file offset
	 */
	offset_t woff = ioflag & O_APPEND ? zp->z_size : uio->uio_loffset;
	if (woff < 0) {
		ZFS_EXIT(zfsvfs);
		return (SET_ERROR(EINVAL));
	}

	const uint64_t max_blksz = zfsvfs->z_max_blksz;

	/*
	 * Pre-fault the pages to ensure slow (eg NFS) pages
	 * don't hold up txg.
	 * Skip this if uio contains loaned arc_buf.
	 */
	if (uio_prefaultpages(MIN(n, max_blksz), uio)) {
		ZFS_EXIT(zfsvfs);
		return (SET_ERROR(EFAULT));
	}

	/*
	 * If in append mode, set the io offset pointer to eof.
	 */
	zfs_locked_range_t *lr;
	if (ioflag & O_APPEND) {
		/*
		 * Obtain an appending range lock to guarantee file append
		 * semantics.  We reset the write offset once we have the lock.
		 */
		lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
		woff = lr->lr_offset;
		if (lr->lr_length == UINT64_MAX) {
			/*
			 * We overlocked the file because this write will cause
			 * the file block size to increase.
			 * Note that zp_size cannot change with this lock held.
			 */
			woff = zp->z_size;
		}
		uio->uio_loffset = woff;
	} else {
		/*
		 * Note that if the file block size will change as a result of
		 * this write, then this range lock will lock the entire file
		 * so that we can re-write the block safely.
		 */
		lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
	}

	if (zn_rlimit_fsize(zp, uio, uio->uio_td)) {
		zfs_rangelock_exit(lr);
		ZFS_EXIT(zfsvfs);
		return (SET_ERROR(EFBIG));
	}

	const rlim64_t limit = MAXOFFSET_T;

	if (woff >= limit) {
		zfs_rangelock_exit(lr);
		ZFS_EXIT(zfsvfs);
		return (SET_ERROR(EFBIG));
	}

	if (n > limit - woff)
		n = limit - woff;

	uint64_t end_size = MAX(zp->z_size, woff + n);
	zilog_t *zilog = zfsvfs->z_log;

	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
	const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
	const uint64_t projid = zp->z_projid;

	/*
	 * Write the file in reasonable size chunks.  Each chunk is written
	 * in a separate transaction; this keeps the intent log records small
	 * and allows us to do more fine-grained space accounting.
	 */
	while (n > 0) {
		woff = uio->uio_loffset;

		if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
		    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
		    (projid != ZFS_DEFAULT_PROJID &&
		    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
		    projid))) {
			error = SET_ERROR(EDQUOT);
			break;
		}

		arc_buf_t *abuf = NULL;
		if (n >= max_blksz && woff >= zp->z_size &&
		    P2PHASE(woff, max_blksz) == 0 &&
		    zp->z_blksz == max_blksz) {
			/*
			 * This write covers a full block.  "Borrow" a buffer
			 * from the dmu so that we can fill it before we enter
			 * a transaction.  This avoids the possibility of
			 * holding up the transaction if the data copy hangs
			 * up on a pagefault (e.g., from an NFS server mapping).
			 */
			size_t cbytes;

			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
			    max_blksz);
			ASSERT(abuf != NULL);
			ASSERT(arc_buf_size(abuf) == max_blksz);
			if ((error = uiocopy(abuf->b_data, max_blksz,
			    UIO_WRITE, uio, &cbytes))) {
				dmu_return_arcbuf(abuf);
				break;
			}
			ASSERT3S(cbytes, ==, max_blksz);
		}

		/*
		 * Start a transaction.
		 */
		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
		dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
		DB_DNODE_ENTER(db);
		dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff,
		    MIN(n, max_blksz));
		DB_DNODE_EXIT(db);
		zfs_sa_upgrade_txholds(tx, zp);
		error = dmu_tx_assign(tx, TXG_WAIT);
		if (error) {
			dmu_tx_abort(tx);
			if (abuf != NULL)
				dmu_return_arcbuf(abuf);
			break;
		}

		/*
		 * If rangelock_enter() over-locked we grow the blocksize
		 * and then reduce the lock range.  This will only happen
		 * on the first iteration since rangelock_reduce() will
		 * shrink down lr_length to the appropriate size.
		 */
		if (lr->lr_length == UINT64_MAX) {
			uint64_t new_blksz;

			if (zp->z_blksz > max_blksz) {
				/*
				 * File's blocksize is already larger than the
				 * "recordsize" property.  Only let it grow to
				 * the next power of 2.
				 */
				ASSERT(!ISP2(zp->z_blksz));
				new_blksz = MIN(end_size,
				    1 << highbit64(zp->z_blksz));
			} else {
				new_blksz = MIN(end_size, max_blksz);
			}
			zfs_grow_blocksize(zp, new_blksz, tx);
			zfs_rangelock_reduce(lr, woff, n);
		}

		/*
		 * XXX - should we really limit each write to z_max_blksz?
		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
		 */
		const ssize_t nbytes =
		    MIN(n, max_blksz - P2PHASE(woff, max_blksz));

		ssize_t tx_bytes;
		if (abuf == NULL) {
			tx_bytes = uio->uio_resid;
			uio_fault_disable(uio, B_TRUE);
			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
			    uio, nbytes, tx);
			uio_fault_disable(uio, B_FALSE);
#ifdef __linux__
			if (error == EFAULT) {
				dmu_tx_commit(tx);
				/*
				 * Account for partial writes before
				 * continuing the loop.
				 * Update needs to occur before the next
				 * uio_prefaultpages, or prefaultpages may
				 * error, and we may break the loop early.
				 */
				if (tx_bytes != uio->uio_resid)
					n -= tx_bytes - uio->uio_resid;
				if (uio_prefaultpages(MIN(n, max_blksz), uio)) {
					break;
				}
				continue;
			}
#endif
			if (error != 0) {
				dmu_tx_commit(tx);
				break;
			}
			tx_bytes -= uio->uio_resid;
		} else {
			/* Implied by abuf != NULL: */
			ASSERT3S(n, >=, max_blksz);
			ASSERT0(P2PHASE(woff, max_blksz));
			/*
			 * We can simplify nbytes to MIN(n, max_blksz) since
			 * P2PHASE(woff, max_blksz) is 0, and knowing
			 * n >= max_blksz lets us simplify further:
			 */
			ASSERT3S(nbytes, ==, max_blksz);
			/*
			 * Thus, we're writing a full block at a block-aligned
			 * offset and extending the file past EOF.
			 *
			 * dmu_assign_arcbuf_by_dbuf() will directly assign the
			 * arc buffer to a dbuf.
			 */
			error = dmu_assign_arcbuf_by_dbuf(
			    sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
			if (error != 0) {
				dmu_return_arcbuf(abuf);
				dmu_tx_commit(tx);
				break;
			}
			ASSERT3S(nbytes, <=, uio->uio_resid);
			uioskip(uio, nbytes);
			tx_bytes = nbytes;
		}
		if (tx_bytes && zn_has_cached_data(zp) &&
		    !(ioflag & O_DIRECT)) {
			update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
		}

		/*
		 * If we made no progress, we're done.  If we made even
		 * partial progress, update the znode and ZIL accordingly.
		 */
		if (tx_bytes == 0) {
			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
			    (void *)&zp->z_size, sizeof (uint64_t), tx);
			dmu_tx_commit(tx);
			ASSERT(error != 0);
			break;
		}

		/*
		 * Clear Set-UID/Set-GID bits on successful write if not
		 * privileged and at least one of the execute bits is set.
		 *
		 * It would be nice to do this after all writes have
		 * been done, but that would still expose the ISUID/ISGID
		 * to another app after the partial write is committed.
		 *
		 * Note: we don't call zfs_fuid_map_id() here because
		 * user 0 is not an ephemeral uid.
		 */
		mutex_enter(&zp->z_acl_lock);
		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
		    (S_IXUSR >> 6))) != 0 &&
		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
		    secpolicy_vnode_setid_retain(zp, cr,
		    ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
			uint64_t newmode;
			zp->z_mode &= ~(S_ISUID | S_ISGID);
			newmode = zp->z_mode;
			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
			    (void *)&newmode, sizeof (uint64_t), tx);
		}
		mutex_exit(&zp->z_acl_lock);

		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);

		/*
		 * Update the file size (zp_size) if it has changed;
		 * account for possible concurrent updates.
		 */
		while ((end_size = zp->z_size) < uio->uio_loffset) {
			(void) atomic_cas_64(&zp->z_size, end_size,
			    uio->uio_loffset);
			ASSERT(error == 0);
		}
		/*
		 * If we are replaying and eof is non zero then force
		 * the file size to the specified eof. Note, there's no
		 * concurrency during replay.
		 */
		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
			zp->z_size = zfsvfs->z_replay_eof;

		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);

		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
		    NULL, NULL);
		dmu_tx_commit(tx);

		if (error != 0)
			break;
		ASSERT3S(tx_bytes, ==, nbytes);
		n -= nbytes;

		if (n > 0) {
			if (uio_prefaultpages(MIN(n, max_blksz), uio)) {
				error = SET_ERROR(EFAULT);
				break;
			}
		}
	}

	zfs_inode_update(zp);
	zfs_rangelock_exit(lr);

	/*
	 * If we're in replay mode, or we made no progress, or the
	 * uio data is inaccessible return an error.  Otherwise, it's
	 * at least a partial write, so it's successful.
	 */
	if (zfsvfs->z_replay || uio->uio_resid == start_resid ||
	    error == EFAULT) {
		ZFS_EXIT(zfsvfs);
		return (error);
	}

	if (ioflag & (O_SYNC | O_DSYNC) ||
	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
		zil_commit(zilog, zp->z_id);

	const int64_t nwritten = start_resid - uio->uio_resid;
	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
	task_io_account_write(nwritten);

	ZFS_EXIT(zfsvfs);
	return (0);
}

/*ARGSUSED*/
int
zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
{
	zfsvfs_t *zfsvfs = ZTOZSB(zp);
	int error;
	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;

	ZFS_ENTER(zfsvfs);
	ZFS_VERIFY_ZP(zp);
	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
	ZFS_EXIT(zfsvfs);

	return (error);
}

/*ARGSUSED*/
int
zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
{
	zfsvfs_t *zfsvfs = ZTOZSB(zp);
	int error;
	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
	zilog_t	*zilog = zfsvfs->z_log;

	ZFS_ENTER(zfsvfs);
	ZFS_VERIFY_ZP(zp);

	error = zfs_setacl(zp, vsecp, skipaclchk, cr);

	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
		zil_commit(zilog, 0);

	ZFS_EXIT(zfsvfs);
	return (error);
}

EXPORT_SYMBOL(zfs_access);
EXPORT_SYMBOL(zfs_fsync);
EXPORT_SYMBOL(zfs_holey);
EXPORT_SYMBOL(zfs_read);
EXPORT_SYMBOL(zfs_write);
EXPORT_SYMBOL(zfs_getsecattr);
EXPORT_SYMBOL(zfs_setsecattr);

ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, ULONG, ZMOD_RW,
	"Bytes to read per chunk");