aboutsummaryrefslogtreecommitdiffstats
path: root/module/zfs/zfs_fuid.c
blob: 3aa60034d42a68d6f6ce535d282cb71bc0db85a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
 */

#include <sys/zfs_context.h>
#include <sys/dmu.h>
#include <sys/avl.h>
#include <sys/zap.h>
#include <sys/nvpair.h>
#ifdef _KERNEL
#include <sys/sid.h>
#include <sys/zfs_vfsops.h>
#include <sys/zfs_znode.h>
#endif
#include <sys/zfs_fuid.h>

/*
 * FUID Domain table(s).
 *
 * The FUID table is stored as a packed nvlist of an array
 * of nvlists which contain an index, domain string and offset
 *
 * During file system initialization the nvlist(s) are read and
 * two AVL trees are created.  One tree is keyed by the index number
 * and the other by the domain string.  Nodes are never removed from
 * trees, but new entries may be added.  If a new entry is added then
 * the zfsvfs->z_fuid_dirty flag is set to true and the caller will then
 * be responsible for calling zfs_fuid_sync() to sync the changes to disk.
 *
 */

#define	FUID_IDX	"fuid_idx"
#define	FUID_DOMAIN	"fuid_domain"
#define	FUID_OFFSET	"fuid_offset"
#define	FUID_NVP_ARRAY	"fuid_nvlist"

typedef struct fuid_domain {
	avl_node_t	f_domnode;
	avl_node_t	f_idxnode;
	ksiddomain_t	*f_ksid;
	uint64_t	f_idx;
} fuid_domain_t;

static char *nulldomain = "";

/*
 * Compare two indexes.
 */
static int
idx_compare(const void *arg1, const void *arg2)
{
	const fuid_domain_t *node1 = (const fuid_domain_t *)arg1;
	const fuid_domain_t *node2 = (const fuid_domain_t *)arg2;

	return (TREE_CMP(node1->f_idx, node2->f_idx));
}

/*
 * Compare two domain strings.
 */
static int
domain_compare(const void *arg1, const void *arg2)
{
	const fuid_domain_t *node1 = (const fuid_domain_t *)arg1;
	const fuid_domain_t *node2 = (const fuid_domain_t *)arg2;
	int val;

	val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name);

	return (TREE_ISIGN(val));
}

void
zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
{
	avl_create(idx_tree, idx_compare,
	    sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode));
	avl_create(domain_tree, domain_compare,
	    sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode));
}

/*
 * load initial fuid domain and idx trees.  This function is used by
 * both the kernel and zdb.
 */
uint64_t
zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree,
    avl_tree_t *domain_tree)
{
	dmu_buf_t *db;
	uint64_t fuid_size;

	ASSERT(fuid_obj != 0);
	VERIFY(0 == dmu_bonus_hold(os, fuid_obj,
	    FTAG, &db));
	fuid_size = *(uint64_t *)db->db_data;
	dmu_buf_rele(db, FTAG);

	if (fuid_size)  {
		nvlist_t **fuidnvp;
		nvlist_t *nvp = NULL;
		uint_t count;
		char *packed;
		int i;

		packed = kmem_alloc(fuid_size, KM_SLEEP);
		VERIFY(dmu_read(os, fuid_obj, 0,
		    fuid_size, packed, DMU_READ_PREFETCH) == 0);
		VERIFY(nvlist_unpack(packed, fuid_size,
		    &nvp, 0) == 0);
		VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY,
		    &fuidnvp, &count) == 0);

		for (i = 0; i != count; i++) {
			fuid_domain_t *domnode;
			char *domain;
			uint64_t idx;

			VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN,
			    &domain) == 0);
			VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX,
			    &idx) == 0);

			domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);

			domnode->f_idx = idx;
			domnode->f_ksid = ksid_lookupdomain(domain);
			avl_add(idx_tree, domnode);
			avl_add(domain_tree, domnode);
		}
		nvlist_free(nvp);
		kmem_free(packed, fuid_size);
	}
	return (fuid_size);
}

void
zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
{
	fuid_domain_t *domnode;
	void *cookie;

	cookie = NULL;
	while ((domnode = avl_destroy_nodes(domain_tree, &cookie)))
		ksiddomain_rele(domnode->f_ksid);

	avl_destroy(domain_tree);
	cookie = NULL;
	while ((domnode = avl_destroy_nodes(idx_tree, &cookie)))
		kmem_free(domnode, sizeof (fuid_domain_t));
	avl_destroy(idx_tree);
}

char *
zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx)
{
	fuid_domain_t searchnode, *findnode;
	avl_index_t loc;

	searchnode.f_idx = idx;

	findnode = avl_find(idx_tree, &searchnode, &loc);

	return (findnode ? findnode->f_ksid->kd_name : nulldomain);
}

#ifdef _KERNEL
/*
 * Load the fuid table(s) into memory.
 */
static void
zfs_fuid_init(zfsvfs_t *zfsvfs)
{
	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);

	if (zfsvfs->z_fuid_loaded) {
		rw_exit(&zfsvfs->z_fuid_lock);
		return;
	}

	zfs_fuid_avl_tree_create(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);

	(void) zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
	    ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj);
	if (zfsvfs->z_fuid_obj != 0) {
		zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os,
		    zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx,
		    &zfsvfs->z_fuid_domain);
	}

	zfsvfs->z_fuid_loaded = B_TRUE;
	rw_exit(&zfsvfs->z_fuid_lock);
}

/*
 * sync out AVL trees to persistent storage.
 */
void
zfs_fuid_sync(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
{
	nvlist_t *nvp;
	nvlist_t **fuids;
	size_t nvsize = 0;
	char *packed;
	dmu_buf_t *db;
	fuid_domain_t *domnode;
	int numnodes;
	int i;

	if (!zfsvfs->z_fuid_dirty) {
		return;
	}

	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);

	/*
	 * First see if table needs to be created?
	 */
	if (zfsvfs->z_fuid_obj == 0) {
		zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os,
		    DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE,
		    sizeof (uint64_t), tx);
		VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
		    ZFS_FUID_TABLES, sizeof (uint64_t), 1,
		    &zfsvfs->z_fuid_obj, tx) == 0);
	}

	VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);

	numnodes = avl_numnodes(&zfsvfs->z_fuid_idx);
	fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP);
	for (i = 0, domnode = avl_first(&zfsvfs->z_fuid_domain); domnode; i++,
	    domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode)) {
		VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0);
		VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX,
		    domnode->f_idx) == 0);
		VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0);
		VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN,
		    domnode->f_ksid->kd_name) == 0);
	}
	fnvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY,
	    (const nvlist_t * const *)fuids, numnodes);
	for (i = 0; i != numnodes; i++)
		nvlist_free(fuids[i]);
	kmem_free(fuids, numnodes * sizeof (void *));
	VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0);
	packed = kmem_alloc(nvsize, KM_SLEEP);
	VERIFY(nvlist_pack(nvp, &packed, &nvsize,
	    NV_ENCODE_XDR, KM_SLEEP) == 0);
	nvlist_free(nvp);
	zfsvfs->z_fuid_size = nvsize;
	dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0,
	    zfsvfs->z_fuid_size, packed, tx);
	kmem_free(packed, zfsvfs->z_fuid_size);
	VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj,
	    FTAG, &db));
	dmu_buf_will_dirty(db, tx);
	*(uint64_t *)db->db_data = zfsvfs->z_fuid_size;
	dmu_buf_rele(db, FTAG);

	zfsvfs->z_fuid_dirty = B_FALSE;
	rw_exit(&zfsvfs->z_fuid_lock);
}

/*
 * Query domain table for a given domain.
 *
 * If domain isn't found and addok is set, it is added to AVL trees and
 * the zfsvfs->z_fuid_dirty flag will be set to TRUE.  It will then be
 * necessary for the caller or another thread to detect the dirty table
 * and sync out the changes.
 */
int
zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain,
    char **retdomain, boolean_t addok)
{
	fuid_domain_t searchnode, *findnode;
	avl_index_t loc;
	krw_t rw = RW_READER;

	/*
	 * If the dummy "nobody" domain then return an index of 0
	 * to cause the created FUID to be a standard POSIX id
	 * for the user nobody.
	 */
	if (domain[0] == '\0') {
		if (retdomain)
			*retdomain = nulldomain;
		return (0);
	}

	searchnode.f_ksid = ksid_lookupdomain(domain);
	if (retdomain)
		*retdomain = searchnode.f_ksid->kd_name;
	if (!zfsvfs->z_fuid_loaded)
		zfs_fuid_init(zfsvfs);

retry:
	rw_enter(&zfsvfs->z_fuid_lock, rw);
	findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc);

	if (findnode) {
		rw_exit(&zfsvfs->z_fuid_lock);
		ksiddomain_rele(searchnode.f_ksid);
		return (findnode->f_idx);
	} else if (addok) {
		fuid_domain_t *domnode;
		uint64_t retidx;

		if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) {
			rw_exit(&zfsvfs->z_fuid_lock);
			rw = RW_WRITER;
			goto retry;
		}

		domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
		domnode->f_ksid = searchnode.f_ksid;

		retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1;

		avl_add(&zfsvfs->z_fuid_domain, domnode);
		avl_add(&zfsvfs->z_fuid_idx, domnode);
		zfsvfs->z_fuid_dirty = B_TRUE;
		rw_exit(&zfsvfs->z_fuid_lock);
		return (retidx);
	} else {
		rw_exit(&zfsvfs->z_fuid_lock);
		return (-1);
	}
}

/*
 * Query domain table by index, returning domain string
 *
 * Returns a pointer from an avl node of the domain string.
 *
 */
const char *
zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx)
{
	char *domain;

	if (idx == 0 || !zfsvfs->z_use_fuids)
		return (NULL);

	if (!zfsvfs->z_fuid_loaded)
		zfs_fuid_init(zfsvfs);

	rw_enter(&zfsvfs->z_fuid_lock, RW_READER);

	if (zfsvfs->z_fuid_obj || zfsvfs->z_fuid_dirty)
		domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx);
	else
		domain = nulldomain;
	rw_exit(&zfsvfs->z_fuid_lock);

	ASSERT(domain);
	return (domain);
}

void
zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp)
{
	*uidp = zfs_fuid_map_id(ZTOZSB(zp), KUID_TO_SUID(ZTOUID(zp)),
	    cr, ZFS_OWNER);
	*gidp = zfs_fuid_map_id(ZTOZSB(zp), KGID_TO_SGID(ZTOGID(zp)),
	    cr, ZFS_GROUP);
}

#ifdef __FreeBSD__
uid_t
zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
    cred_t *cr, zfs_fuid_type_t type)
{
	uint32_t index = FUID_INDEX(fuid);

	if (index == 0)
		return (fuid);

	return (UID_NOBODY);
}
#elif defined(__linux__)
uid_t
zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
    cred_t *cr, zfs_fuid_type_t type)
{
	/*
	 * The Linux port only supports POSIX IDs, use the passed id.
	 */
	return (fuid);
}

#else
uid_t
zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
    cred_t *cr, zfs_fuid_type_t type)
{
	uint32_t index = FUID_INDEX(fuid);
	const char *domain;
	uid_t id;

	if (index == 0)
		return (fuid);

	domain = zfs_fuid_find_by_idx(zfsvfs, index);
	ASSERT(domain != NULL);

	if (type == ZFS_OWNER || type == ZFS_ACE_USER) {
		(void) kidmap_getuidbysid(crgetzone(cr), domain,
		    FUID_RID(fuid), &id);
	} else {
		(void) kidmap_getgidbysid(crgetzone(cr), domain,
		    FUID_RID(fuid), &id);
	}
	return (id);
}
#endif

/*
 * Add a FUID node to the list of fuid's being created for this
 * ACL
 *
 * If ACL has multiple domains, then keep only one copy of each unique
 * domain.
 */
void
zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid,
    uint64_t idx, uint64_t id, zfs_fuid_type_t type)
{
	zfs_fuid_t *fuid;
	zfs_fuid_domain_t *fuid_domain;
	zfs_fuid_info_t *fuidp;
	uint64_t fuididx;
	boolean_t found = B_FALSE;

	if (*fuidpp == NULL)
		*fuidpp = zfs_fuid_info_alloc();

	fuidp = *fuidpp;
	/*
	 * First find fuid domain index in linked list
	 *
	 * If one isn't found then create an entry.
	 */

	for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains);
	    fuid_domain; fuid_domain = list_next(&fuidp->z_domains,
	    fuid_domain), fuididx++) {
		if (idx == fuid_domain->z_domidx) {
			found = B_TRUE;
			break;
		}
	}

	if (!found) {
		fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP);
		fuid_domain->z_domain = domain;
		fuid_domain->z_domidx = idx;
		list_insert_tail(&fuidp->z_domains, fuid_domain);
		fuidp->z_domain_str_sz += strlen(domain) + 1;
		fuidp->z_domain_cnt++;
	}

	if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) {

		/*
		 * Now allocate fuid entry and add it on the end of the list
		 */

		fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
		fuid->z_id = id;
		fuid->z_domidx = idx;
		fuid->z_logfuid = FUID_ENCODE(fuididx, rid);

		list_insert_tail(&fuidp->z_fuids, fuid);
		fuidp->z_fuid_cnt++;
	} else {
		if (type == ZFS_OWNER)
			fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid);
		else
			fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid);
	}
}

#ifdef HAVE_KSID
/*
 * Create a file system FUID, based on information in the users cred
 *
 * If cred contains KSID_OWNER then it should be used to determine
 * the uid otherwise cred's uid will be used. By default cred's gid
 * is used unless it's an ephemeral ID in which case KSID_GROUP will
 * be used if it exists.
 */
uint64_t
zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type,
    cred_t *cr, zfs_fuid_info_t **fuidp)
{
	uint64_t	idx;
	ksid_t		*ksid;
	uint32_t	rid;
	char		*kdomain;
	const char	*domain;
	uid_t		id;

	VERIFY(type == ZFS_OWNER || type == ZFS_GROUP);

	ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP);

	if (!zfsvfs->z_use_fuids || (ksid == NULL)) {
		id = (type == ZFS_OWNER) ? crgetuid(cr) : crgetgid(cr);

		if (IS_EPHEMERAL(id))
			return ((type == ZFS_OWNER) ? UID_NOBODY : GID_NOBODY);

		return ((uint64_t)id);
	}

	/*
	 * ksid is present and FUID is supported
	 */
	id = (type == ZFS_OWNER) ? ksid_getid(ksid) : crgetgid(cr);

	if (!IS_EPHEMERAL(id))
		return ((uint64_t)id);

	if (type == ZFS_GROUP)
		id = ksid_getid(ksid);

	rid = ksid_getrid(ksid);
	domain = ksid_getdomain(ksid);

	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);

	zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type);

	return (FUID_ENCODE(idx, rid));
}
#endif /* HAVE_KSID */

/*
 * Create a file system FUID for an ACL ace
 * or a chown/chgrp of the file.
 * This is similar to zfs_fuid_create_cred, except that
 * we can't find the domain + rid information in the
 * cred.  Instead we have to query Winchester for the
 * domain and rid.
 *
 * During replay operations the domain+rid information is
 * found in the zfs_fuid_info_t that the replay code has
 * attached to the zfsvfs of the file system.
 */
uint64_t
zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr,
    zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp)
{
#ifdef HAVE_KSID
	const char *domain;
	char *kdomain;
	uint32_t fuid_idx = FUID_INDEX(id);
	uint32_t rid = 0;
	idmap_stat status;
	uint64_t idx = UID_NOBODY;
	zfs_fuid_t *zfuid = NULL;
	zfs_fuid_info_t *fuidp = NULL;

	/*
	 * If POSIX ID, or entry is already a FUID then
	 * just return the id
	 *
	 * We may also be handed an already FUID'ized id via
	 * chmod.
	 */

	if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0)
		return (id);

	if (zfsvfs->z_replay) {
		fuidp = zfsvfs->z_fuid_replay;

		/*
		 * If we are passed an ephemeral id, but no
		 * fuid_info was logged then return NOBODY.
		 * This is most likely a result of idmap service
		 * not being available.
		 */
		if (fuidp == NULL)
			return (UID_NOBODY);

		VERIFY3U(type, >=, ZFS_OWNER);
		VERIFY3U(type, <=, ZFS_ACE_GROUP);

		switch (type) {
		case ZFS_ACE_USER:
		case ZFS_ACE_GROUP:
			zfuid = list_head(&fuidp->z_fuids);
			rid = FUID_RID(zfuid->z_logfuid);
			idx = FUID_INDEX(zfuid->z_logfuid);
			break;
		case ZFS_OWNER:
			rid = FUID_RID(fuidp->z_fuid_owner);
			idx = FUID_INDEX(fuidp->z_fuid_owner);
			break;
		case ZFS_GROUP:
			rid = FUID_RID(fuidp->z_fuid_group);
			idx = FUID_INDEX(fuidp->z_fuid_group);
			break;
		};
		domain = fuidp->z_domain_table[idx - 1];
	} else {
		if (type == ZFS_OWNER || type == ZFS_ACE_USER)
			status = kidmap_getsidbyuid(crgetzone(cr), id,
			    &domain, &rid);
		else
			status = kidmap_getsidbygid(crgetzone(cr), id,
			    &domain, &rid);

		if (status != 0) {
			/*
			 * When returning nobody we will need to
			 * make a dummy fuid table entry for logging
			 * purposes.
			 */
			rid = UID_NOBODY;
			domain = nulldomain;
		}
	}

	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);

	if (!zfsvfs->z_replay)
		zfs_fuid_node_add(fuidpp, kdomain,
		    rid, idx, id, type);
	else if (zfuid != NULL) {
		list_remove(&fuidp->z_fuids, zfuid);
		kmem_free(zfuid, sizeof (zfs_fuid_t));
	}
	return (FUID_ENCODE(idx, rid));
#else
	/*
	 * The Linux port only supports POSIX IDs, use the passed id.
	 */
	return (id);
#endif
}

void
zfs_fuid_destroy(zfsvfs_t *zfsvfs)
{
	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
	if (!zfsvfs->z_fuid_loaded) {
		rw_exit(&zfsvfs->z_fuid_lock);
		return;
	}
	zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
	rw_exit(&zfsvfs->z_fuid_lock);
}

/*
 * Allocate zfs_fuid_info for tracking FUIDs created during
 * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
 */
zfs_fuid_info_t *
zfs_fuid_info_alloc(void)
{
	zfs_fuid_info_t *fuidp;

	fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP);
	list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t),
	    offsetof(zfs_fuid_domain_t, z_next));
	list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t),
	    offsetof(zfs_fuid_t, z_next));
	return (fuidp);
}

/*
 * Release all memory associated with zfs_fuid_info_t
 */
void
zfs_fuid_info_free(zfs_fuid_info_t *fuidp)
{
	zfs_fuid_t *zfuid;
	zfs_fuid_domain_t *zdomain;

	while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) {
		list_remove(&fuidp->z_fuids, zfuid);
		kmem_free(zfuid, sizeof (zfs_fuid_t));
	}

	if (fuidp->z_domain_table != NULL)
		kmem_free(fuidp->z_domain_table,
		    (sizeof (char *)) * fuidp->z_domain_cnt);

	while ((zdomain = list_head(&fuidp->z_domains)) != NULL) {
		list_remove(&fuidp->z_domains, zdomain);
		kmem_free(zdomain, sizeof (zfs_fuid_domain_t));
	}

	kmem_free(fuidp, sizeof (zfs_fuid_info_t));
}

/*
 * Check to see if id is a groupmember.  If cred
 * has ksid info then sidlist is checked first
 * and if still not found then POSIX groups are checked
 *
 * Will use a straight FUID compare when possible.
 */
boolean_t
zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr)
{
	uid_t		gid;

#ifdef illumos
	ksid_t		*ksid = crgetsid(cr, KSID_GROUP);
	ksidlist_t	*ksidlist = crgetsidlist(cr);

	if (ksid && ksidlist) {
		int		i;
		ksid_t		*ksid_groups;
		uint32_t	idx = FUID_INDEX(id);
		uint32_t	rid = FUID_RID(id);

		ksid_groups = ksidlist->ksl_sids;

		for (i = 0; i != ksidlist->ksl_nsid; i++) {
			if (idx == 0) {
				if (id != IDMAP_WK_CREATOR_GROUP_GID &&
				    id == ksid_groups[i].ks_id) {
					return (B_TRUE);
				}
			} else {
				const char *domain;

				domain = zfs_fuid_find_by_idx(zfsvfs, idx);
				ASSERT(domain != NULL);

				if (strcmp(domain,
				    IDMAP_WK_CREATOR_SID_AUTHORITY) == 0)
					return (B_FALSE);

				if ((strcmp(domain,
				    ksid_groups[i].ks_domain->kd_name) == 0) &&
				    rid == ksid_groups[i].ks_rid)
					return (B_TRUE);
			}
		}
	}
#endif /* illumos */

	/*
	 * Not found in ksidlist, check posix groups
	 */
	gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP);
	return (groupmember(gid, cr));
}

void
zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
{
	if (zfsvfs->z_fuid_obj == 0) {
		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
		    FUID_SIZE_ESTIMATE(zfsvfs));
		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
	} else {
		dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
		dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
		    FUID_SIZE_ESTIMATE(zfsvfs));
	}
}

/*
 * buf must be big enough (eg, 32 bytes)
 */
int
zfs_id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
    char *buf, size_t len, boolean_t addok)
{
	uint64_t fuid;
	int domainid = 0;

	if (domain && domain[0]) {
		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
		if (domainid == -1)
			return (SET_ERROR(ENOENT));
	}
	fuid = FUID_ENCODE(domainid, rid);
	(void) snprintf(buf, len, "%llx", (longlong_t)fuid);
	return (0);
}
#endif