summaryrefslogtreecommitdiffstats
path: root/module/zfs/zap_leaf.c
blob: 661fd747b1501df5adbccb10f47ee1f0ad2c37fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */

/*
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
 * Copyright 2017 Nexenta Systems, Inc.
 */

/*
 * The 512-byte leaf is broken into 32 16-byte chunks.
 * chunk number n means l_chunk[n], even though the header precedes it.
 * the names are stored null-terminated.
 */

#include <sys/zio.h>
#include <sys/spa.h>
#include <sys/dmu.h>
#include <sys/zfs_context.h>
#include <sys/fs/zfs.h>
#include <sys/zap.h>
#include <sys/zap_impl.h>
#include <sys/zap_leaf.h>
#include <sys/arc.h>

static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry);

#define	CHAIN_END 0xffff /* end of the chunk chain */

/* half the (current) minimum block size */
#define	MAX_ARRAY_BYTES (8<<10)

#define	LEAF_HASH(l, h) \
	((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
	((h) >> \
	(64 - ZAP_LEAF_HASH_SHIFT(l) - zap_leaf_phys(l)->l_hdr.lh_prefix_len)))

#define	LEAF_HASH_ENTPTR(l, h)	(&zap_leaf_phys(l)->l_hash[LEAF_HASH(l, h)])

extern inline zap_leaf_phys_t *zap_leaf_phys(zap_leaf_t *l);

static void
zap_memset(void *a, int c, size_t n)
{
	char *cp = a;
	char *cpend = cp + n;

	while (cp < cpend)
		*cp++ = c;
}

static void
stv(int len, void *addr, uint64_t value)
{
	switch (len) {
	case 1:
		*(uint8_t *)addr = value;
		return;
	case 2:
		*(uint16_t *)addr = value;
		return;
	case 4:
		*(uint32_t *)addr = value;
		return;
	case 8:
		*(uint64_t *)addr = value;
		return;
	default:
		cmn_err(CE_PANIC, "bad int len %d", len);
	}
}

static uint64_t
ldv(int len, const void *addr)
{
	switch (len) {
	case 1:
		return (*(uint8_t *)addr);
	case 2:
		return (*(uint16_t *)addr);
	case 4:
		return (*(uint32_t *)addr);
	case 8:
		return (*(uint64_t *)addr);
	default:
		cmn_err(CE_PANIC, "bad int len %d", len);
	}
	return (0xFEEDFACEDEADBEEFULL);
}

void
zap_leaf_byteswap(zap_leaf_phys_t *buf, int size)
{
	int i;
	zap_leaf_t l;
	dmu_buf_t l_dbuf;

	l_dbuf.db_data = buf;
	l.l_bs = highbit64(size) - 1;
	l.l_dbuf = &l_dbuf;

	buf->l_hdr.lh_block_type =	BSWAP_64(buf->l_hdr.lh_block_type);
	buf->l_hdr.lh_prefix =		BSWAP_64(buf->l_hdr.lh_prefix);
	buf->l_hdr.lh_magic =		BSWAP_32(buf->l_hdr.lh_magic);
	buf->l_hdr.lh_nfree =		BSWAP_16(buf->l_hdr.lh_nfree);
	buf->l_hdr.lh_nentries =	BSWAP_16(buf->l_hdr.lh_nentries);
	buf->l_hdr.lh_prefix_len =	BSWAP_16(buf->l_hdr.lh_prefix_len);
	buf->l_hdr.lh_freelist =	BSWAP_16(buf->l_hdr.lh_freelist);

	for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++)
		buf->l_hash[i] = BSWAP_16(buf->l_hash[i]);

	for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
		zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i);
		struct zap_leaf_entry *le;

		switch (lc->l_free.lf_type) {
		case ZAP_CHUNK_ENTRY:
			le = &lc->l_entry;

			le->le_type =		BSWAP_8(le->le_type);
			le->le_value_intlen =	BSWAP_8(le->le_value_intlen);
			le->le_next =		BSWAP_16(le->le_next);
			le->le_name_chunk =	BSWAP_16(le->le_name_chunk);
			le->le_name_numints =	BSWAP_16(le->le_name_numints);
			le->le_value_chunk =	BSWAP_16(le->le_value_chunk);
			le->le_value_numints =	BSWAP_16(le->le_value_numints);
			le->le_cd =		BSWAP_32(le->le_cd);
			le->le_hash =		BSWAP_64(le->le_hash);
			break;
		case ZAP_CHUNK_FREE:
			lc->l_free.lf_type =	BSWAP_8(lc->l_free.lf_type);
			lc->l_free.lf_next =	BSWAP_16(lc->l_free.lf_next);
			break;
		case ZAP_CHUNK_ARRAY:
			lc->l_array.la_type =	BSWAP_8(lc->l_array.la_type);
			lc->l_array.la_next =	BSWAP_16(lc->l_array.la_next);
			/* la_array doesn't need swapping */
			break;
		default:
			cmn_err(CE_PANIC, "bad leaf type %d",
			    lc->l_free.lf_type);
		}
	}
}

void
zap_leaf_init(zap_leaf_t *l, boolean_t sort)
{
	int i;

	l->l_bs = highbit64(l->l_dbuf->db_size) - 1;
	zap_memset(&zap_leaf_phys(l)->l_hdr, 0,
	    sizeof (struct zap_leaf_header));
	zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
	    2*ZAP_LEAF_HASH_NUMENTRIES(l));
	for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
		ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE;
		ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1;
	}
	ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END;
	zap_leaf_phys(l)->l_hdr.lh_block_type = ZBT_LEAF;
	zap_leaf_phys(l)->l_hdr.lh_magic = ZAP_LEAF_MAGIC;
	zap_leaf_phys(l)->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l);
	if (sort)
		zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
}

/*
 * Routines which manipulate leaf chunks (l_chunk[]).
 */

static uint16_t
zap_leaf_chunk_alloc(zap_leaf_t *l)
{
	int chunk;

	ASSERT(zap_leaf_phys(l)->l_hdr.lh_nfree > 0);

	chunk = zap_leaf_phys(l)->l_hdr.lh_freelist;
	ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
	ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE);

	zap_leaf_phys(l)->l_hdr.lh_freelist =
	    ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next;

	zap_leaf_phys(l)->l_hdr.lh_nfree--;

	return (chunk);
}

static void
zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk)
{
	struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free;
	ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l));
	ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
	ASSERT(zlf->lf_type != ZAP_CHUNK_FREE);

	zlf->lf_type = ZAP_CHUNK_FREE;
	zlf->lf_next = zap_leaf_phys(l)->l_hdr.lh_freelist;
	bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */
	zap_leaf_phys(l)->l_hdr.lh_freelist = chunk;

	zap_leaf_phys(l)->l_hdr.lh_nfree++;
}

/*
 * Routines which manipulate leaf arrays (zap_leaf_array type chunks).
 */

static uint16_t
zap_leaf_array_create(zap_leaf_t *l, const char *buf,
    int integer_size, int num_integers)
{
	uint16_t chunk_head;
	uint16_t *chunkp = &chunk_head;
	int byten = 0;
	uint64_t value = 0;
	int shift = (integer_size-1)*8;
	int len = num_integers;

	ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES);

	while (len > 0) {
		uint16_t chunk = zap_leaf_chunk_alloc(l);
		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
		int i;

		la->la_type = ZAP_CHUNK_ARRAY;
		for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) {
			if (byten == 0)
				value = ldv(integer_size, buf);
			la->la_array[i] = value >> shift;
			value <<= 8;
			if (++byten == integer_size) {
				byten = 0;
				buf += integer_size;
				if (--len == 0)
					break;
			}
		}

		*chunkp = chunk;
		chunkp = &la->la_next;
	}
	*chunkp = CHAIN_END;

	return (chunk_head);
}

static void
zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp)
{
	uint16_t chunk = *chunkp;

	*chunkp = CHAIN_END;

	while (chunk != CHAIN_END) {
		int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next;
		ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==,
		    ZAP_CHUNK_ARRAY);
		zap_leaf_chunk_free(l, chunk);
		chunk = nextchunk;
	}
}

/* array_len and buf_len are in integers, not bytes */
static void
zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk,
    int array_int_len, int array_len, int buf_int_len, uint64_t buf_len,
    void *buf)
{
	int len = MIN(array_len, buf_len);
	int byten = 0;
	uint64_t value = 0;
	char *p = buf;

	ASSERT3U(array_int_len, <=, buf_int_len);

	/* Fast path for one 8-byte integer */
	if (array_int_len == 8 && buf_int_len == 8 && len == 1) {
		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
		uint8_t *ip = la->la_array;
		uint64_t *buf64 = buf;

		*buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 |
		    (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 |
		    (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 |
		    (uint64_t)ip[6] << 8 | (uint64_t)ip[7];
		return;
	}

	/* Fast path for an array of 1-byte integers (eg. the entry name) */
	if (array_int_len == 1 && buf_int_len == 1 &&
	    buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) {
		while (chunk != CHAIN_END) {
			struct zap_leaf_array *la =
			    &ZAP_LEAF_CHUNK(l, chunk).l_array;
			bcopy(la->la_array, p, ZAP_LEAF_ARRAY_BYTES);
			p += ZAP_LEAF_ARRAY_BYTES;
			chunk = la->la_next;
		}
		return;
	}

	while (len > 0) {
		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
		int i;

		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
		for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
			value = (value << 8) | la->la_array[i];
			byten++;
			if (byten == array_int_len) {
				stv(buf_int_len, p, value);
				byten = 0;
				len--;
				if (len == 0)
					return;
				p += buf_int_len;
			}
		}
		chunk = la->la_next;
	}
}

static boolean_t
zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn,
    int chunk, int array_numints)
{
	int bseen = 0;

	if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) {
		uint64_t *thiskey;
		boolean_t match;

		ASSERT(zn->zn_key_intlen == sizeof (*thiskey));
		thiskey = kmem_alloc(array_numints * sizeof (*thiskey),
		    KM_SLEEP);

		zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints,
		    sizeof (*thiskey), array_numints, thiskey);
		match = bcmp(thiskey, zn->zn_key_orig,
		    array_numints * sizeof (*thiskey)) == 0;
		kmem_free(thiskey, array_numints * sizeof (*thiskey));
		return (match);
	}

	ASSERT(zn->zn_key_intlen == 1);
	if (zn->zn_matchtype & MT_NORMALIZE) {
		char *thisname = kmem_alloc(array_numints, KM_SLEEP);
		boolean_t match;

		zap_leaf_array_read(l, chunk, sizeof (char), array_numints,
		    sizeof (char), array_numints, thisname);
		match = zap_match(zn, thisname);
		kmem_free(thisname, array_numints);
		return (match);
	}

	/*
	 * Fast path for exact matching.
	 * First check that the lengths match, so that we don't read
	 * past the end of the zn_key_orig array.
	 */
	if (array_numints != zn->zn_key_orig_numints)
		return (B_FALSE);
	while (bseen < array_numints) {
		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
		int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES);
		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
		if (bcmp(la->la_array, (char *)zn->zn_key_orig + bseen, toread))
			break;
		chunk = la->la_next;
		bseen += toread;
	}
	return (bseen == array_numints);
}

/*
 * Routines which manipulate leaf entries.
 */

int
zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh)
{
	uint16_t *chunkp;
	struct zap_leaf_entry *le;

	ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);

	for (chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash);
	    *chunkp != CHAIN_END; chunkp = &le->le_next) {
		uint16_t chunk = *chunkp;
		le = ZAP_LEAF_ENTRY(l, chunk);

		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
		ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);

		if (le->le_hash != zn->zn_hash)
			continue;

		/*
		 * NB: the entry chain is always sorted by cd on
		 * normalized zap objects, so this will find the
		 * lowest-cd match for MT_NORMALIZE.
		 */
		ASSERT((zn->zn_matchtype == 0) ||
		    (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED));
		if (zap_leaf_array_match(l, zn, le->le_name_chunk,
		    le->le_name_numints)) {
			zeh->zeh_num_integers = le->le_value_numints;
			zeh->zeh_integer_size = le->le_value_intlen;
			zeh->zeh_cd = le->le_cd;
			zeh->zeh_hash = le->le_hash;
			zeh->zeh_chunkp = chunkp;
			zeh->zeh_leaf = l;
			return (0);
		}
	}

	return (SET_ERROR(ENOENT));
}

/* Return (h1,cd1 >= h2,cd2) */
#define	HCD_GTEQ(h1, cd1, h2, cd2) \
	((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE))

int
zap_leaf_lookup_closest(zap_leaf_t *l,
    uint64_t h, uint32_t cd, zap_entry_handle_t *zeh)
{
	uint16_t chunk;
	uint64_t besth = -1ULL;
	uint32_t bestcd = -1U;
	uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1;
	uint16_t lh;
	struct zap_leaf_entry *le;

	ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);

	for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) {
		for (chunk = zap_leaf_phys(l)->l_hash[lh];
		    chunk != CHAIN_END; chunk = le->le_next) {
			le = ZAP_LEAF_ENTRY(l, chunk);

			ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
			ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);

			if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) &&
			    HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) {
				ASSERT3U(bestlh, >=, lh);
				bestlh = lh;
				besth = le->le_hash;
				bestcd = le->le_cd;

				zeh->zeh_num_integers = le->le_value_numints;
				zeh->zeh_integer_size = le->le_value_intlen;
				zeh->zeh_cd = le->le_cd;
				zeh->zeh_hash = le->le_hash;
				zeh->zeh_fakechunk = chunk;
				zeh->zeh_chunkp = &zeh->zeh_fakechunk;
				zeh->zeh_leaf = l;
			}
		}
	}

	return (bestcd == -1U ? ENOENT : 0);
}

int
zap_entry_read(const zap_entry_handle_t *zeh,
    uint8_t integer_size, uint64_t num_integers, void *buf)
{
	struct zap_leaf_entry *le =
	    ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
	ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);

	if (le->le_value_intlen > integer_size)
		return (SET_ERROR(EINVAL));

	zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk,
	    le->le_value_intlen, le->le_value_numints,
	    integer_size, num_integers, buf);

	if (zeh->zeh_num_integers > num_integers)
		return (SET_ERROR(EOVERFLOW));
	return (0);

}

int
zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen,
    char *buf)
{
	struct zap_leaf_entry *le =
	    ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
	ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);

	if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
		zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8,
		    le->le_name_numints, 8, buflen / 8, buf);
	} else {
		zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1,
		    le->le_name_numints, 1, buflen, buf);
	}
	if (le->le_name_numints > buflen)
		return (SET_ERROR(EOVERFLOW));
	return (0);
}

int
zap_entry_update(zap_entry_handle_t *zeh,
    uint8_t integer_size, uint64_t num_integers, const void *buf)
{
	int delta_chunks;
	zap_leaf_t *l = zeh->zeh_leaf;
	struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp);

	delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) -
	    ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen);

	if ((int)zap_leaf_phys(l)->l_hdr.lh_nfree < delta_chunks)
		return (SET_ERROR(EAGAIN));

	zap_leaf_array_free(l, &le->le_value_chunk);
	le->le_value_chunk =
	    zap_leaf_array_create(l, buf, integer_size, num_integers);
	le->le_value_numints = num_integers;
	le->le_value_intlen = integer_size;
	return (0);
}

void
zap_entry_remove(zap_entry_handle_t *zeh)
{
	uint16_t entry_chunk;
	struct zap_leaf_entry *le;
	zap_leaf_t *l = zeh->zeh_leaf;

	ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk);

	entry_chunk = *zeh->zeh_chunkp;
	le = ZAP_LEAF_ENTRY(l, entry_chunk);
	ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);

	zap_leaf_array_free(l, &le->le_name_chunk);
	zap_leaf_array_free(l, &le->le_value_chunk);

	*zeh->zeh_chunkp = le->le_next;
	zap_leaf_chunk_free(l, entry_chunk);

	zap_leaf_phys(l)->l_hdr.lh_nentries--;
}

int
zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd,
    uint8_t integer_size, uint64_t num_integers, const void *buf,
    zap_entry_handle_t *zeh)
{
	uint16_t chunk;
	uint16_t *chunkp;
	struct zap_leaf_entry *le;
	uint64_t valuelen;
	int numchunks;
	uint64_t h = zn->zn_hash;

	valuelen = integer_size * num_integers;

	numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints *
	    zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen);
	if (numchunks > ZAP_LEAF_NUMCHUNKS(l))
		return (SET_ERROR(E2BIG));

	if (cd == ZAP_NEED_CD) {
		/* find the lowest unused cd */
		if (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) {
			cd = 0;

			for (chunk = *LEAF_HASH_ENTPTR(l, h);
			    chunk != CHAIN_END; chunk = le->le_next) {
				le = ZAP_LEAF_ENTRY(l, chunk);
				if (le->le_cd > cd)
					break;
				if (le->le_hash == h) {
					ASSERT3U(cd, ==, le->le_cd);
					cd++;
				}
			}
		} else {
			/* old unsorted format; do it the O(n^2) way */
			for (cd = 0; ; cd++) {
				for (chunk = *LEAF_HASH_ENTPTR(l, h);
				    chunk != CHAIN_END; chunk = le->le_next) {
					le = ZAP_LEAF_ENTRY(l, chunk);
					if (le->le_hash == h &&
					    le->le_cd == cd) {
						break;
					}
				}
				/* If this cd is not in use, we are good. */
				if (chunk == CHAIN_END)
					break;
			}
		}
		/*
		 * We would run out of space in a block before we could
		 * store enough entries to run out of CD values.
		 */
		ASSERT3U(cd, <, zap_maxcd(zn->zn_zap));
	}

	if (zap_leaf_phys(l)->l_hdr.lh_nfree < numchunks)
		return (SET_ERROR(EAGAIN));

	/* make the entry */
	chunk = zap_leaf_chunk_alloc(l);
	le = ZAP_LEAF_ENTRY(l, chunk);
	le->le_type = ZAP_CHUNK_ENTRY;
	le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig,
	    zn->zn_key_intlen, zn->zn_key_orig_numints);
	le->le_name_numints = zn->zn_key_orig_numints;
	le->le_value_chunk =
	    zap_leaf_array_create(l, buf, integer_size, num_integers);
	le->le_value_numints = num_integers;
	le->le_value_intlen = integer_size;
	le->le_hash = h;
	le->le_cd = cd;

	/* link it into the hash chain */
	/* XXX if we did the search above, we could just use that */
	chunkp = zap_leaf_rehash_entry(l, chunk);

	zap_leaf_phys(l)->l_hdr.lh_nentries++;

	zeh->zeh_leaf = l;
	zeh->zeh_num_integers = num_integers;
	zeh->zeh_integer_size = le->le_value_intlen;
	zeh->zeh_cd = le->le_cd;
	zeh->zeh_hash = le->le_hash;
	zeh->zeh_chunkp = chunkp;

	return (0);
}

/*
 * Determine if there is another entry with the same normalized form.
 * For performance purposes, either zn or name must be provided (the
 * other can be NULL).  Note, there usually won't be any hash
 * conflicts, in which case we don't need the concatenated/normalized
 * form of the name.  But all callers have one of these on hand anyway,
 * so might as well take advantage.  A cleaner but slower interface
 * would accept neither argument, and compute the normalized name as
 * needed (using zap_name_alloc(zap_entry_read_name(zeh))).
 */
boolean_t
zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn,
    const char *name, zap_t *zap)
{
	uint64_t chunk;
	struct zap_leaf_entry *le;
	boolean_t allocdzn = B_FALSE;

	if (zap->zap_normflags == 0)
		return (B_FALSE);

	for (chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash);
	    chunk != CHAIN_END; chunk = le->le_next) {
		le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk);
		if (le->le_hash != zeh->zeh_hash)
			continue;
		if (le->le_cd == zeh->zeh_cd)
			continue;

		if (zn == NULL) {
			zn = zap_name_alloc(zap, name, MT_NORMALIZE);
			allocdzn = B_TRUE;
		}
		if (zap_leaf_array_match(zeh->zeh_leaf, zn,
		    le->le_name_chunk, le->le_name_numints)) {
			if (allocdzn)
				zap_name_free(zn);
			return (B_TRUE);
		}
	}
	if (allocdzn)
		zap_name_free(zn);
	return (B_FALSE);
}

/*
 * Routines for transferring entries between leafs.
 */

static uint16_t *
zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry)
{
	struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry);
	struct zap_leaf_entry *le2;
	uint16_t *chunkp;

	/*
	 * keep the entry chain sorted by cd
	 * NB: this will not cause problems for unsorted leafs, though
	 * it is unnecessary there.
	 */
	for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash);
	    *chunkp != CHAIN_END; chunkp = &le2->le_next) {
		le2 = ZAP_LEAF_ENTRY(l, *chunkp);
		if (le2->le_cd > le->le_cd)
			break;
	}

	le->le_next = *chunkp;
	*chunkp = entry;
	return (chunkp);
}

static uint16_t
zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl)
{
	uint16_t new_chunk;
	uint16_t *nchunkp = &new_chunk;

	while (chunk != CHAIN_END) {
		uint16_t nchunk = zap_leaf_chunk_alloc(nl);
		struct zap_leaf_array *nla =
		    &ZAP_LEAF_CHUNK(nl, nchunk).l_array;
		struct zap_leaf_array *la =
		    &ZAP_LEAF_CHUNK(l, chunk).l_array;
		int nextchunk = la->la_next;

		ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
		ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l));

		*nla = *la; /* structure assignment */

		zap_leaf_chunk_free(l, chunk);
		chunk = nextchunk;
		*nchunkp = nchunk;
		nchunkp = &nla->la_next;
	}
	*nchunkp = CHAIN_END;
	return (new_chunk);
}

static void
zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl)
{
	struct zap_leaf_entry *le, *nle;
	uint16_t chunk;

	le = ZAP_LEAF_ENTRY(l, entry);
	ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);

	chunk = zap_leaf_chunk_alloc(nl);
	nle = ZAP_LEAF_ENTRY(nl, chunk);
	*nle = *le; /* structure assignment */

	(void) zap_leaf_rehash_entry(nl, chunk);

	nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl);
	nle->le_value_chunk =
	    zap_leaf_transfer_array(l, le->le_value_chunk, nl);

	zap_leaf_chunk_free(l, entry);

	zap_leaf_phys(l)->l_hdr.lh_nentries--;
	zap_leaf_phys(nl)->l_hdr.lh_nentries++;
}

/*
 * Transfer the entries whose hash prefix ends in 1 to the new leaf.
 */
void
zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort)
{
	int i;
	int bit = 64 - 1 - zap_leaf_phys(l)->l_hdr.lh_prefix_len;

	/* set new prefix and prefix_len */
	zap_leaf_phys(l)->l_hdr.lh_prefix <<= 1;
	zap_leaf_phys(l)->l_hdr.lh_prefix_len++;
	zap_leaf_phys(nl)->l_hdr.lh_prefix =
	    zap_leaf_phys(l)->l_hdr.lh_prefix | 1;
	zap_leaf_phys(nl)->l_hdr.lh_prefix_len =
	    zap_leaf_phys(l)->l_hdr.lh_prefix_len;

	/* break existing hash chains */
	zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
	    2*ZAP_LEAF_HASH_NUMENTRIES(l));

	if (sort)
		zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;

	/*
	 * Transfer entries whose hash bit 'bit' is set to nl; rehash
	 * the remaining entries
	 *
	 * NB: We could find entries via the hashtable instead. That
	 * would be O(hashents+numents) rather than O(numblks+numents),
	 * but this accesses memory more sequentially, and when we're
	 * called, the block is usually pretty full.
	 */
	for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
		struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i);
		if (le->le_type != ZAP_CHUNK_ENTRY)
			continue;

		if (le->le_hash & (1ULL << bit))
			zap_leaf_transfer_entry(l, i, nl);
		else
			(void) zap_leaf_rehash_entry(l, i);
	}
}

void
zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs)
{
	int i, n;

	n = zap_f_phys(zap)->zap_ptrtbl.zt_shift -
	    zap_leaf_phys(l)->l_hdr.lh_prefix_len;
	n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
	zs->zs_leafs_with_2n_pointers[n]++;


	n = zap_leaf_phys(l)->l_hdr.lh_nentries/5;
	n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
	zs->zs_blocks_with_n5_entries[n]++;

	n = ((1<<FZAP_BLOCK_SHIFT(zap)) -
	    zap_leaf_phys(l)->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 /
	    (1<<FZAP_BLOCK_SHIFT(zap));
	n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
	zs->zs_blocks_n_tenths_full[n]++;

	for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) {
		int nentries = 0;
		int chunk = zap_leaf_phys(l)->l_hash[i];

		while (chunk != CHAIN_END) {
			struct zap_leaf_entry *le =
			    ZAP_LEAF_ENTRY(l, chunk);

			n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) +
			    ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints *
			    le->le_value_intlen);
			n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
			zs->zs_entries_using_n_chunks[n]++;

			chunk = le->le_next;
			nentries++;
		}

		n = nentries;
		n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
		zs->zs_buckets_with_n_entries[n]++;
	}
}