aboutsummaryrefslogtreecommitdiffstats
path: root/module/zfs/vdev_trim.c
blob: 3f8c3480602033a6caa5dc6ec7f85cc0cafd80d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */

/*
 * Copyright (c) 2016 by Delphix. All rights reserved.
 * Copyright (c) 2019 by Lawrence Livermore National Security, LLC.
 */

#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/txg.h>
#include <sys/vdev_impl.h>
#include <sys/vdev_trim.h>
#include <sys/metaslab_impl.h>
#include <sys/dsl_synctask.h>
#include <sys/zap.h>
#include <sys/dmu_tx.h>
#include <sys/arc_impl.h>

/*
 * TRIM is a feature which is used to notify a SSD that some previously
 * written space is no longer allocated by the pool.  This is useful because
 * writes to a SSD must be performed to blocks which have first been erased.
 * Ensuring the SSD always has a supply of erased blocks for new writes
 * helps prevent the performance from deteriorating.
 *
 * There are two supported TRIM methods; manual and automatic.
 *
 * Manual TRIM:
 *
 * A manual TRIM is initiated by running the 'zpool trim' command.  A single
 * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for
 * managing that vdev TRIM process.  This involves iterating over all the
 * metaslabs, calculating the unallocated space ranges, and then issuing the
 * required TRIM I/Os.
 *
 * While a metaslab is being actively trimmed it is not eligible to perform
 * new allocations.  After traversing all of the metaslabs the thread is
 * terminated.  Finally, both the requested options and current progress of
 * the TRIM are regularly written to the pool.  This allows the TRIM to be
 * suspended and resumed as needed.
 *
 * Automatic TRIM:
 *
 * An automatic TRIM is enabled by setting the 'autotrim' pool property
 * to 'on'.  When enabled, a `vdev_autotrim' thread is created for each
 * top-level (not leaf) vdev in the pool.  These threads perform the same
 * core TRIM process as a manual TRIM, but with a few key differences.
 *
 * 1) Automatic TRIM happens continuously in the background and operates
 *    solely on recently freed blocks (ms_trim not ms_allocatable).
 *
 * 2) Each thread is associated with a top-level (not leaf) vdev.  This has
 *    the benefit of simplifying the threading model, it makes it easier
 *    to coordinate administrative commands, and it ensures only a single
 *    metaslab is disabled at a time.  Unlike manual TRIM, this means each
 *    'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its
 *    children.
 *
 * 3) There is no automatic TRIM progress information stored on disk, nor
 *    is it reported by 'zpool status'.
 *
 * While the automatic TRIM process is highly effective it is more likely
 * than a manual TRIM to encounter tiny ranges.  Ranges less than or equal to
 * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently
 * TRIM and are skipped.  This means small amounts of freed space may not
 * be automatically trimmed.
 *
 * Furthermore, devices with attached hot spares and devices being actively
 * replaced are skipped.  This is done to avoid adding additional stress to
 * a potentially unhealthy device and to minimize the required rebuild time.
 *
 * For this reason it may be beneficial to occasionally manually TRIM a pool
 * even when automatic TRIM is enabled.
 */

/*
 * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths.
 */
unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024;

/*
 * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped.
 */
unsigned int zfs_trim_extent_bytes_min = 32 * 1024;

/*
 * Skip uninitialized metaslabs during the TRIM process.  This option is
 * useful for pools constructed from large thinly-provisioned devices where
 * TRIM operations are slow.  As a pool ages an increasing fraction of
 * the pools metaslabs will be initialized progressively degrading the
 * usefulness of this option.  This setting is stored when starting a
 * manual TRIM and will persist for the duration of the requested TRIM.
 */
unsigned int zfs_trim_metaslab_skip = 0;

/*
 * Maximum number of queued TRIM I/Os per leaf vdev.  The number of
 * concurrent TRIM I/Os issued to the device is controlled by the
 * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options.
 */
unsigned int zfs_trim_queue_limit = 10;

/*
 * The minimum number of transaction groups between automatic trims of a
 * metaslab.  This setting represents a trade-off between issuing more
 * efficient TRIM operations, by allowing them to be aggregated longer,
 * and issuing them promptly so the trimmed space is available.  Note
 * that this value is a minimum; metaslabs can be trimmed less frequently
 * when there are a large number of ranges which need to be trimmed.
 *
 * Increasing this value will allow frees to be aggregated for a longer
 * time.  This can result is larger TRIM operations, and increased memory
 * usage in order to track the ranges to be trimmed.  Decreasing this value
 * has the opposite effect.  The default value of 32 was determined though
 * testing to be a reasonable compromise.
 */
unsigned int zfs_trim_txg_batch = 32;

/*
 * The trim_args are a control structure which describe how a leaf vdev
 * should be trimmed.  The core elements are the vdev, the metaslab being
 * trimmed and a range tree containing the extents to TRIM.  All provided
 * ranges must be within the metaslab.
 */
typedef struct trim_args {
	/*
	 * These fields are set by the caller of vdev_trim_ranges().
	 */
	vdev_t		*trim_vdev;		/* Leaf vdev to TRIM */
	metaslab_t	*trim_msp;		/* Disabled metaslab */
	range_tree_t	*trim_tree;		/* TRIM ranges (in metaslab) */
	trim_type_t	trim_type;		/* Manual or auto TRIM */
	uint64_t	trim_extent_bytes_max;	/* Maximum TRIM I/O size */
	uint64_t	trim_extent_bytes_min;	/* Minimum TRIM I/O size */
	enum trim_flag	trim_flags;		/* TRIM flags (secure) */

	/*
	 * These fields are updated by vdev_trim_ranges().
	 */
	hrtime_t	trim_start_time;	/* Start time */
	uint64_t	trim_bytes_done;	/* Bytes trimmed */
} trim_args_t;

/*
 * Determines whether a vdev_trim_thread() should be stopped.
 */
static boolean_t
vdev_trim_should_stop(vdev_t *vd)
{
	return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) ||
	    vd->vdev_detached || vd->vdev_top->vdev_removing);
}

/*
 * Determines whether a vdev_autotrim_thread() should be stopped.
 */
static boolean_t
vdev_autotrim_should_stop(vdev_t *tvd)
{
	return (tvd->vdev_autotrim_exit_wanted ||
	    !vdev_writeable(tvd) || tvd->vdev_removing ||
	    spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF);
}

/*
 * The sync task for updating the on-disk state of a manual TRIM.  This
 * is scheduled by vdev_trim_change_state().
 */
static void
vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx)
{
	/*
	 * We pass in the guid instead of the vdev_t since the vdev may
	 * have been freed prior to the sync task being processed.  This
	 * happens when a vdev is detached as we call spa_config_vdev_exit(),
	 * stop the trimming thread, schedule the sync task, and free
	 * the vdev. Later when the scheduled sync task is invoked, it would
	 * find that the vdev has been freed.
	 */
	uint64_t guid = *(uint64_t *)arg;
	uint64_t txg = dmu_tx_get_txg(tx);
	kmem_free(arg, sizeof (uint64_t));

	vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
	if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
		return;

	uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK];
	vd->vdev_trim_offset[txg & TXG_MASK] = 0;

	VERIFY3U(vd->vdev_leaf_zap, !=, 0);

	objset_t *mos = vd->vdev_spa->spa_meta_objset;

	if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) {

		if (vd->vdev_trim_last_offset == UINT64_MAX)
			last_offset = 0;

		vd->vdev_trim_last_offset = last_offset;
		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
		    VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
		    sizeof (last_offset), 1, &last_offset, tx));
	}

	if (vd->vdev_trim_action_time > 0) {
		uint64_t val = (uint64_t)vd->vdev_trim_action_time;
		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
		    VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val),
		    1, &val, tx));
	}

	if (vd->vdev_trim_rate > 0) {
		uint64_t rate = (uint64_t)vd->vdev_trim_rate;

		if (rate == UINT64_MAX)
			rate = 0;

		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
		    VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx));
	}

	uint64_t partial = vd->vdev_trim_partial;
	if (partial == UINT64_MAX)
		partial = 0;

	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
	    sizeof (partial), 1, &partial, tx));

	uint64_t secure = vd->vdev_trim_secure;
	if (secure == UINT64_MAX)
		secure = 0;

	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
	    sizeof (secure), 1, &secure, tx));


	uint64_t trim_state = vd->vdev_trim_state;
	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
	    sizeof (trim_state), 1, &trim_state, tx));
}

/*
 * Update the on-disk state of a manual TRIM.  This is called to request
 * that a TRIM be started/suspended/canceled, or to change one of the
 * TRIM options (partial, secure, rate).
 */
static void
vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state,
    uint64_t rate, boolean_t partial, boolean_t secure)
{
	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
	spa_t *spa = vd->vdev_spa;

	if (new_state == vd->vdev_trim_state)
		return;

	/*
	 * Copy the vd's guid, this will be freed by the sync task.
	 */
	uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
	*guid = vd->vdev_guid;

	/*
	 * If we're suspending, then preserve the original start time.
	 */
	if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) {
		vd->vdev_trim_action_time = gethrestime_sec();
	}

	/*
	 * If we're activating, then preserve the requested rate and trim
	 * method.  Setting the last offset and rate to UINT64_MAX is used
	 * as a sentinel to indicate they should be reset to default values.
	 */
	if (new_state == VDEV_TRIM_ACTIVE) {
		if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE ||
		    vd->vdev_trim_state == VDEV_TRIM_CANCELED) {
			vd->vdev_trim_last_offset = UINT64_MAX;
			vd->vdev_trim_rate = UINT64_MAX;
			vd->vdev_trim_partial = UINT64_MAX;
			vd->vdev_trim_secure = UINT64_MAX;
		}

		if (rate != 0)
			vd->vdev_trim_rate = rate;

		if (partial != 0)
			vd->vdev_trim_partial = partial;

		if (secure != 0)
			vd->vdev_trim_secure = secure;
	}

	boolean_t resumed = !!(vd->vdev_trim_state == VDEV_TRIM_SUSPENDED);
	vd->vdev_trim_state = new_state;

	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
	dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync,
	    guid, 2, ZFS_SPACE_CHECK_NONE, tx);

	switch (new_state) {
	case VDEV_TRIM_ACTIVE:
		spa_event_notify(spa, vd, NULL,
		    resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START);
		spa_history_log_internal(spa, "trim", tx,
		    "vdev=%s activated", vd->vdev_path);
		break;
	case VDEV_TRIM_SUSPENDED:
		spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND);
		spa_history_log_internal(spa, "trim", tx,
		    "vdev=%s suspended", vd->vdev_path);
		break;
	case VDEV_TRIM_CANCELED:
		spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL);
		spa_history_log_internal(spa, "trim", tx,
		    "vdev=%s canceled", vd->vdev_path);
		break;
	case VDEV_TRIM_COMPLETE:
		spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH);
		spa_history_log_internal(spa, "trim", tx,
		    "vdev=%s complete", vd->vdev_path);
		break;
	default:
		panic("invalid state %llu", (unsigned long long)new_state);
	}

	dmu_tx_commit(tx);

	if (new_state != VDEV_TRIM_ACTIVE)
		spa_notify_waiters(spa);
}

/*
 * The zio_done_func_t done callback for each manual TRIM issued.  It is
 * responsible for updating the TRIM stats, reissuing failed TRIM I/Os,
 * and limiting the number of in flight TRIM I/Os.
 */
static void
vdev_trim_cb(zio_t *zio)
{
	vdev_t *vd = zio->io_vd;

	mutex_enter(&vd->vdev_trim_io_lock);
	if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
		/*
		 * The I/O failed because the vdev was unavailable; roll the
		 * last offset back. (This works because spa_sync waits on
		 * spa_txg_zio before it runs sync tasks.)
		 */
		uint64_t *offset =
		    &vd->vdev_trim_offset[zio->io_txg & TXG_MASK];
		*offset = MIN(*offset, zio->io_offset);
	} else {
		if (zio->io_error != 0) {
			vd->vdev_stat.vs_trim_errors++;
			spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
			    0, 0, 0, 0, 1, zio->io_orig_size);
		} else {
			spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
			    1, zio->io_orig_size, 0, 0, 0, 0);
		}

		vd->vdev_trim_bytes_done += zio->io_orig_size;
	}

	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0);
	vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--;
	cv_broadcast(&vd->vdev_trim_io_cv);
	mutex_exit(&vd->vdev_trim_io_lock);

	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
}

/*
 * The zio_done_func_t done callback for each automatic TRIM issued.  It
 * is responsible for updating the TRIM stats and limiting the number of
 * in flight TRIM I/Os.  Automatic TRIM I/Os are best effort and are
 * never reissued on failure.
 */
static void
vdev_autotrim_cb(zio_t *zio)
{
	vdev_t *vd = zio->io_vd;

	mutex_enter(&vd->vdev_trim_io_lock);

	if (zio->io_error != 0) {
		vd->vdev_stat.vs_trim_errors++;
		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
		    0, 0, 0, 0, 1, zio->io_orig_size);
	} else {
		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
		    1, zio->io_orig_size, 0, 0, 0, 0);
	}

	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0);
	vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--;
	cv_broadcast(&vd->vdev_trim_io_cv);
	mutex_exit(&vd->vdev_trim_io_lock);

	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
}

/*
 * The zio_done_func_t done callback for each TRIM issued via
 * vdev_trim_simple(). It is responsible for updating the TRIM stats and
 * limiting the number of in flight TRIM I/Os.  Simple TRIM I/Os are best
 * effort and are never reissued on failure.
 */
static void
vdev_trim_simple_cb(zio_t *zio)
{
	vdev_t *vd = zio->io_vd;

	mutex_enter(&vd->vdev_trim_io_lock);

	if (zio->io_error != 0) {
		vd->vdev_stat.vs_trim_errors++;
		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
		    0, 0, 0, 0, 1, zio->io_orig_size);
	} else {
		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
		    1, zio->io_orig_size, 0, 0, 0, 0);
	}

	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0);
	vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--;
	cv_broadcast(&vd->vdev_trim_io_cv);
	mutex_exit(&vd->vdev_trim_io_lock);

	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
}
/*
 * Returns the average trim rate in bytes/sec for the ta->trim_vdev.
 */
static uint64_t
vdev_trim_calculate_rate(trim_args_t *ta)
{
	return (ta->trim_bytes_done * 1000 /
	    (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1));
}

/*
 * Issues a physical TRIM and takes care of rate limiting (bytes/sec)
 * and number of concurrent TRIM I/Os.
 */
static int
vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size)
{
	vdev_t *vd = ta->trim_vdev;
	spa_t *spa = vd->vdev_spa;
	void *cb;

	mutex_enter(&vd->vdev_trim_io_lock);

	/*
	 * Limit manual TRIM I/Os to the requested rate.  This does not
	 * apply to automatic TRIM since no per vdev rate can be specified.
	 */
	if (ta->trim_type == TRIM_TYPE_MANUAL) {
		while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) &&
		    vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) {
			cv_timedwait_sig(&vd->vdev_trim_io_cv,
			    &vd->vdev_trim_io_lock, ddi_get_lbolt() +
			    MSEC_TO_TICK(10));
		}
	}
	ta->trim_bytes_done += size;

	/* Limit in flight trimming I/Os */
	while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] +
	    vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) {
		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
	}
	vd->vdev_trim_inflight[ta->trim_type]++;
	mutex_exit(&vd->vdev_trim_io_lock);

	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
	uint64_t txg = dmu_tx_get_txg(tx);

	spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
	mutex_enter(&vd->vdev_trim_lock);

	if (ta->trim_type == TRIM_TYPE_MANUAL &&
	    vd->vdev_trim_offset[txg & TXG_MASK] == 0) {
		uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
		*guid = vd->vdev_guid;

		/* This is the first write of this txg. */
		dsl_sync_task_nowait(spa_get_dsl(spa),
		    vdev_trim_zap_update_sync, guid, 2,
		    ZFS_SPACE_CHECK_RESERVED, tx);
	}

	/*
	 * We know the vdev_t will still be around since all consumers of
	 * vdev_free must stop the trimming first.
	 */
	if ((ta->trim_type == TRIM_TYPE_MANUAL &&
	    vdev_trim_should_stop(vd)) ||
	    (ta->trim_type == TRIM_TYPE_AUTO &&
	    vdev_autotrim_should_stop(vd->vdev_top))) {
		mutex_enter(&vd->vdev_trim_io_lock);
		vd->vdev_trim_inflight[ta->trim_type]--;
		mutex_exit(&vd->vdev_trim_io_lock);
		spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
		mutex_exit(&vd->vdev_trim_lock);
		dmu_tx_commit(tx);
		return (SET_ERROR(EINTR));
	}
	mutex_exit(&vd->vdev_trim_lock);

	if (ta->trim_type == TRIM_TYPE_MANUAL)
		vd->vdev_trim_offset[txg & TXG_MASK] = start + size;

	if (ta->trim_type == TRIM_TYPE_MANUAL) {
		cb = vdev_trim_cb;
	} else if (ta->trim_type == TRIM_TYPE_AUTO) {
		cb = vdev_autotrim_cb;
	} else {
		cb = vdev_trim_simple_cb;
	}

	zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd,
	    start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL,
	    ta->trim_flags));
	/* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */

	dmu_tx_commit(tx);

	return (0);
}

/*
 * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree.
 * Additional parameters describing how the TRIM should be performed must
 * be set in the trim_args structure.  See the trim_args definition for
 * additional information.
 */
static int
vdev_trim_ranges(trim_args_t *ta)
{
	vdev_t *vd = ta->trim_vdev;
	zfs_btree_t *t = &ta->trim_tree->rt_root;
	zfs_btree_index_t idx;
	uint64_t extent_bytes_max = ta->trim_extent_bytes_max;
	uint64_t extent_bytes_min = ta->trim_extent_bytes_min;
	spa_t *spa = vd->vdev_spa;

	ta->trim_start_time = gethrtime();
	ta->trim_bytes_done = 0;

	for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
	    rs = zfs_btree_next(t, &idx, &idx)) {
		uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs,
		    ta->trim_tree);

		if (extent_bytes_min && size < extent_bytes_min) {
			spa_iostats_trim_add(spa, ta->trim_type,
			    0, 0, 1, size, 0, 0);
			continue;
		}

		/* Split range into legally-sized physical chunks */
		uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1;

		for (uint64_t w = 0; w < writes_required; w++) {
			int error;

			error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE +
			    rs_get_start(rs, ta->trim_tree) +
			    (w *extent_bytes_max), MIN(size -
			    (w * extent_bytes_max), extent_bytes_max));
			if (error != 0) {
				return (error);
			}
		}
	}

	return (0);
}

/*
 * Calculates the completion percentage of a manual TRIM.
 */
static void
vdev_trim_calculate_progress(vdev_t *vd)
{
	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
	ASSERT(vd->vdev_leaf_zap != 0);

	vd->vdev_trim_bytes_est = 0;
	vd->vdev_trim_bytes_done = 0;

	for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
		mutex_enter(&msp->ms_lock);

		uint64_t ms_free = msp->ms_size -
		    metaslab_allocated_space(msp);

		if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
			ms_free /= vd->vdev_top->vdev_children;

		/*
		 * Convert the metaslab range to a physical range
		 * on our vdev. We use this to determine if we are
		 * in the middle of this metaslab range.
		 */
		range_seg64_t logical_rs, physical_rs;
		logical_rs.rs_start = msp->ms_start;
		logical_rs.rs_end = msp->ms_start + msp->ms_size;
		vdev_xlate(vd, &logical_rs, &physical_rs);

		if (vd->vdev_trim_last_offset <= physical_rs.rs_start) {
			vd->vdev_trim_bytes_est += ms_free;
			mutex_exit(&msp->ms_lock);
			continue;
		} else if (vd->vdev_trim_last_offset > physical_rs.rs_end) {
			vd->vdev_trim_bytes_done += ms_free;
			vd->vdev_trim_bytes_est += ms_free;
			mutex_exit(&msp->ms_lock);
			continue;
		}

		/*
		 * If we get here, we're in the middle of trimming this
		 * metaslab.  Load it and walk the free tree for more
		 * accurate progress estimation.
		 */
		VERIFY0(metaslab_load(msp));

		range_tree_t *rt = msp->ms_allocatable;
		zfs_btree_t *bt = &rt->rt_root;
		zfs_btree_index_t idx;
		for (range_seg_t *rs = zfs_btree_first(bt, &idx);
		    rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) {
			logical_rs.rs_start = rs_get_start(rs, rt);
			logical_rs.rs_end = rs_get_end(rs, rt);
			vdev_xlate(vd, &logical_rs, &physical_rs);

			uint64_t size = physical_rs.rs_end -
			    physical_rs.rs_start;
			vd->vdev_trim_bytes_est += size;
			if (vd->vdev_trim_last_offset >= physical_rs.rs_end) {
				vd->vdev_trim_bytes_done += size;
			} else if (vd->vdev_trim_last_offset >
			    physical_rs.rs_start &&
			    vd->vdev_trim_last_offset <=
			    physical_rs.rs_end) {
				vd->vdev_trim_bytes_done +=
				    vd->vdev_trim_last_offset -
				    physical_rs.rs_start;
			}
		}
		mutex_exit(&msp->ms_lock);
	}
}

/*
 * Load from disk the vdev's manual TRIM information.  This includes the
 * state, progress, and options provided when initiating the manual TRIM.
 */
static int
vdev_trim_load(vdev_t *vd)
{
	int err = 0;
	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
	ASSERT(vd->vdev_leaf_zap != 0);

	if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE ||
	    vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) {
		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
		    sizeof (vd->vdev_trim_last_offset), 1,
		    &vd->vdev_trim_last_offset);
		if (err == ENOENT) {
			vd->vdev_trim_last_offset = 0;
			err = 0;
		}

		if (err == 0) {
			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE,
			    sizeof (vd->vdev_trim_rate), 1,
			    &vd->vdev_trim_rate);
			if (err == ENOENT) {
				vd->vdev_trim_rate = 0;
				err = 0;
			}
		}

		if (err == 0) {
			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
			    sizeof (vd->vdev_trim_partial), 1,
			    &vd->vdev_trim_partial);
			if (err == ENOENT) {
				vd->vdev_trim_partial = 0;
				err = 0;
			}
		}

		if (err == 0) {
			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
			    sizeof (vd->vdev_trim_secure), 1,
			    &vd->vdev_trim_secure);
			if (err == ENOENT) {
				vd->vdev_trim_secure = 0;
				err = 0;
			}
		}
	}

	vdev_trim_calculate_progress(vd);

	return (err);
}

/*
 * Convert the logical range into a physical range and add it to the
 * range tree passed in the trim_args_t.
 */
static void
vdev_trim_range_add(void *arg, uint64_t start, uint64_t size)
{
	trim_args_t *ta = arg;
	vdev_t *vd = ta->trim_vdev;
	range_seg64_t logical_rs, physical_rs;
	logical_rs.rs_start = start;
	logical_rs.rs_end = start + size;

	/*
	 * Every range to be trimmed must be part of ms_allocatable.
	 * When ZFS_DEBUG_TRIM is set load the metaslab to verify this
	 * is always the case.
	 */
	if (zfs_flags & ZFS_DEBUG_TRIM) {
		metaslab_t *msp = ta->trim_msp;
		VERIFY0(metaslab_load(msp));
		VERIFY3B(msp->ms_loaded, ==, B_TRUE);
		VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
	}

	ASSERT(vd->vdev_ops->vdev_op_leaf);
	vdev_xlate(vd, &logical_rs, &physical_rs);

	IMPLY(vd->vdev_top == vd,
	    logical_rs.rs_start == physical_rs.rs_start);
	IMPLY(vd->vdev_top == vd,
	    logical_rs.rs_end == physical_rs.rs_end);

	/*
	 * Only a manual trim will be traversing the vdev sequentially.
	 * For an auto trim all valid ranges should be added.
	 */
	if (ta->trim_type == TRIM_TYPE_MANUAL) {

		/* Only add segments that we have not visited yet */
		if (physical_rs.rs_end <= vd->vdev_trim_last_offset)
			return;

		/* Pick up where we left off mid-range. */
		if (vd->vdev_trim_last_offset > physical_rs.rs_start) {
			ASSERT3U(physical_rs.rs_end, >,
			    vd->vdev_trim_last_offset);
			physical_rs.rs_start = vd->vdev_trim_last_offset;
		}
	}

	ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);

	/*
	 * With raidz, it's possible that the logical range does not live on
	 * this leaf vdev. We only add the physical range to this vdev's if it
	 * has a length greater than 0.
	 */
	if (physical_rs.rs_end > physical_rs.rs_start) {
		range_tree_add(ta->trim_tree, physical_rs.rs_start,
		    physical_rs.rs_end - physical_rs.rs_start);
	} else {
		ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
	}
}

/*
 * Each manual TRIM thread is responsible for trimming the unallocated
 * space for each leaf vdev.  This is accomplished by sequentially iterating
 * over its top-level metaslabs and issuing TRIM I/O for the space described
 * by its ms_allocatable.  While a metaslab is undergoing trimming it is
 * not eligible for new allocations.
 */
static void
vdev_trim_thread(void *arg)
{
	vdev_t *vd = arg;
	spa_t *spa = vd->vdev_spa;
	trim_args_t ta;
	int error = 0;

	/*
	 * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by
	 * vdev_trim().  Wait for the updated values to be reflected
	 * in the zap in order to start with the requested settings.
	 */
	txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);

	ASSERT(vdev_is_concrete(vd));
	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);

	vd->vdev_trim_last_offset = 0;
	vd->vdev_trim_rate = 0;
	vd->vdev_trim_partial = 0;
	vd->vdev_trim_secure = 0;

	VERIFY0(vdev_trim_load(vd));

	ta.trim_vdev = vd;
	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
	ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min;
	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
	ta.trim_type = TRIM_TYPE_MANUAL;
	ta.trim_flags = 0;

	/*
	 * When a secure TRIM has been requested infer that the intent
	 * is that everything must be trimmed.  Override the default
	 * minimum TRIM size to prevent ranges from being skipped.
	 */
	if (vd->vdev_trim_secure) {
		ta.trim_flags |= ZIO_TRIM_SECURE;
		ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
	}

	uint64_t ms_count = 0;
	for (uint64_t i = 0; !vd->vdev_detached &&
	    i < vd->vdev_top->vdev_ms_count; i++) {
		metaslab_t *msp = vd->vdev_top->vdev_ms[i];

		/*
		 * If we've expanded the top-level vdev or it's our
		 * first pass, calculate our progress.
		 */
		if (vd->vdev_top->vdev_ms_count != ms_count) {
			vdev_trim_calculate_progress(vd);
			ms_count = vd->vdev_top->vdev_ms_count;
		}

		spa_config_exit(spa, SCL_CONFIG, FTAG);
		metaslab_disable(msp);
		mutex_enter(&msp->ms_lock);
		VERIFY0(metaslab_load(msp));

		/*
		 * If a partial TRIM was requested skip metaslabs which have
		 * never been initialized and thus have never been written.
		 */
		if (msp->ms_sm == NULL && vd->vdev_trim_partial) {
			mutex_exit(&msp->ms_lock);
			metaslab_enable(msp, B_FALSE, B_FALSE);
			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
			vdev_trim_calculate_progress(vd);
			continue;
		}

		ta.trim_msp = msp;
		range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta);
		range_tree_vacate(msp->ms_trim, NULL, NULL);
		mutex_exit(&msp->ms_lock);

		error = vdev_trim_ranges(&ta);
		metaslab_enable(msp, B_TRUE, B_FALSE);
		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);

		range_tree_vacate(ta.trim_tree, NULL, NULL);
		if (error != 0)
			break;
	}

	spa_config_exit(spa, SCL_CONFIG, FTAG);
	mutex_enter(&vd->vdev_trim_io_lock);
	while (vd->vdev_trim_inflight[0] > 0) {
		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
	}
	mutex_exit(&vd->vdev_trim_io_lock);

	range_tree_destroy(ta.trim_tree);

	mutex_enter(&vd->vdev_trim_lock);
	if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) {
		vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
		    vd->vdev_trim_rate, vd->vdev_trim_partial,
		    vd->vdev_trim_secure);
	}
	ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0);

	/*
	 * Drop the vdev_trim_lock while we sync out the txg since it's
	 * possible that a device might be trying to come online and must
	 * check to see if it needs to restart a trim. That thread will be
	 * holding the spa_config_lock which would prevent the txg_wait_synced
	 * from completing.
	 */
	mutex_exit(&vd->vdev_trim_lock);
	txg_wait_synced(spa_get_dsl(spa), 0);
	mutex_enter(&vd->vdev_trim_lock);

	vd->vdev_trim_thread = NULL;
	cv_broadcast(&vd->vdev_trim_cv);
	mutex_exit(&vd->vdev_trim_lock);

	thread_exit();
}

/*
 * Initiates a manual TRIM for the vdev_t.  Callers must hold vdev_trim_lock,
 * the vdev_t must be a leaf and cannot already be manually trimming.
 */
void
vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure)
{
	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
	ASSERT(vd->vdev_ops->vdev_op_leaf);
	ASSERT(vdev_is_concrete(vd));
	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
	ASSERT(!vd->vdev_detached);
	ASSERT(!vd->vdev_trim_exit_wanted);
	ASSERT(!vd->vdev_top->vdev_removing);

	vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure);
	vd->vdev_trim_thread = thread_create(NULL, 0,
	    vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
}

/*
 * Wait for the trimming thread to be terminated (canceled or stopped).
 */
static void
vdev_trim_stop_wait_impl(vdev_t *vd)
{
	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));

	while (vd->vdev_trim_thread != NULL)
		cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock);

	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
	vd->vdev_trim_exit_wanted = B_FALSE;
}

/*
 * Wait for vdev trim threads which were listed to cleanly exit.
 */
void
vdev_trim_stop_wait(spa_t *spa, list_t *vd_list)
{
	vdev_t *vd;

	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	while ((vd = list_remove_head(vd_list)) != NULL) {
		mutex_enter(&vd->vdev_trim_lock);
		vdev_trim_stop_wait_impl(vd);
		mutex_exit(&vd->vdev_trim_lock);
	}
}

/*
 * Stop trimming a device, with the resultant trimming state being tgt_state.
 * For blocking behavior pass NULL for vd_list.  Otherwise, when a list_t is
 * provided the stopping vdev is inserted in to the list.  Callers are then
 * required to call vdev_trim_stop_wait() to block for all the trim threads
 * to exit.  The caller must hold vdev_trim_lock and must not be writing to
 * the spa config, as the trimming thread may try to enter the config as a
 * reader before exiting.
 */
void
vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list)
{
	ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
	ASSERT(vd->vdev_ops->vdev_op_leaf);
	ASSERT(vdev_is_concrete(vd));

	/*
	 * Allow cancel requests to proceed even if the trim thread has
	 * stopped.
	 */
	if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED)
		return;

	vdev_trim_change_state(vd, tgt_state, 0, 0, 0);
	vd->vdev_trim_exit_wanted = B_TRUE;

	if (vd_list == NULL) {
		vdev_trim_stop_wait_impl(vd);
	} else {
		ASSERT(MUTEX_HELD(&spa_namespace_lock));
		list_insert_tail(vd_list, vd);
	}
}

/*
 * Requests that all listed vdevs stop trimming.
 */
static void
vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state,
    list_t *vd_list)
{
	if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
		mutex_enter(&vd->vdev_trim_lock);
		vdev_trim_stop(vd, tgt_state, vd_list);
		mutex_exit(&vd->vdev_trim_lock);
		return;
	}

	for (uint64_t i = 0; i < vd->vdev_children; i++) {
		vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state,
		    vd_list);
	}
}

/*
 * Convenience function to stop trimming of a vdev tree and set all trim
 * thread pointers to NULL.
 */
void
vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state)
{
	spa_t *spa = vd->vdev_spa;
	list_t vd_list;
	vdev_t *vd_l2cache;

	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	list_create(&vd_list, sizeof (vdev_t),
	    offsetof(vdev_t, vdev_trim_node));

	vdev_trim_stop_all_impl(vd, tgt_state, &vd_list);

	/*
	 * Iterate over cache devices and request stop trimming the
	 * whole device in case we export the pool or remove the cache
	 * device prematurely.
	 */
	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
		vd_l2cache = spa->spa_l2cache.sav_vdevs[i];
		vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list);
	}

	vdev_trim_stop_wait(spa, &vd_list);

	if (vd->vdev_spa->spa_sync_on) {
		/* Make sure that our state has been synced to disk */
		txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
	}

	list_destroy(&vd_list);
}

/*
 * Conditionally restarts a manual TRIM given its on-disk state.
 */
void
vdev_trim_restart(vdev_t *vd)
{
	ASSERT(MUTEX_HELD(&spa_namespace_lock));
	ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));

	if (vd->vdev_leaf_zap != 0) {
		mutex_enter(&vd->vdev_trim_lock);
		uint64_t trim_state = VDEV_TRIM_NONE;
		int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
		    sizeof (trim_state), 1, &trim_state);
		ASSERT(err == 0 || err == ENOENT);
		vd->vdev_trim_state = trim_state;

		uint64_t timestamp = 0;
		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME,
		    sizeof (timestamp), 1, &timestamp);
		ASSERT(err == 0 || err == ENOENT);
		vd->vdev_trim_action_time = timestamp;

		if (vd->vdev_trim_state == VDEV_TRIM_SUSPENDED ||
		    vd->vdev_offline) {
			/* load progress for reporting, but don't resume */
			VERIFY0(vdev_trim_load(vd));
		} else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE &&
		    vdev_writeable(vd) && !vd->vdev_top->vdev_removing &&
		    vd->vdev_trim_thread == NULL) {
			VERIFY0(vdev_trim_load(vd));
			vdev_trim(vd, vd->vdev_trim_rate,
			    vd->vdev_trim_partial, vd->vdev_trim_secure);
		}

		mutex_exit(&vd->vdev_trim_lock);
	}

	for (uint64_t i = 0; i < vd->vdev_children; i++) {
		vdev_trim_restart(vd->vdev_child[i]);
	}
}

/*
 * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that
 * every TRIM range is contained within ms_allocatable.
 */
static void
vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size)
{
	trim_args_t *ta = arg;
	metaslab_t *msp = ta->trim_msp;

	VERIFY3B(msp->ms_loaded, ==, B_TRUE);
	VERIFY3U(msp->ms_disabled, >, 0);
	VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
}

/*
 * Each automatic TRIM thread is responsible for managing the trimming of a
 * top-level vdev in the pool.  No automatic TRIM state is maintained on-disk.
 *
 * N.B. This behavior is different from a manual TRIM where a thread
 * is created for each leaf vdev, instead of each top-level vdev.
 */
static void
vdev_autotrim_thread(void *arg)
{
	vdev_t *vd = arg;
	spa_t *spa = vd->vdev_spa;
	int shift = 0;

	mutex_enter(&vd->vdev_autotrim_lock);
	ASSERT3P(vd->vdev_top, ==, vd);
	ASSERT3P(vd->vdev_autotrim_thread, !=, NULL);
	mutex_exit(&vd->vdev_autotrim_lock);
	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);

	uint64_t extent_bytes_max = zfs_trim_extent_bytes_max;
	uint64_t extent_bytes_min = zfs_trim_extent_bytes_min;

	while (!vdev_autotrim_should_stop(vd)) {
		int txgs_per_trim = MAX(zfs_trim_txg_batch, 1);
		boolean_t issued_trim = B_FALSE;

		/*
		 * All of the metaslabs are divided in to groups of size
		 * num_metaslabs / zfs_trim_txg_batch.  Each of these groups
		 * is composed of metaslabs which are spread evenly over the
		 * device.
		 *
		 * For example, when zfs_trim_txg_batch = 32 (default) then
		 * group 0 will contain metaslabs 0, 32, 64, ...;
		 * group 1 will contain metaslabs 1, 33, 65, ...;
		 * group 2 will contain metaslabs 2, 34, 66, ...; and so on.
		 *
		 * On each pass through the while() loop one of these groups
		 * is selected.  This is accomplished by using a shift value
		 * to select the starting metaslab, then striding over the
		 * metaslabs using the zfs_trim_txg_batch size.  This is
		 * done to accomplish two things.
		 *
		 * 1) By dividing the metaslabs in to groups, and making sure
		 *    that each group takes a minimum of one txg to process.
		 *    Then zfs_trim_txg_batch controls the minimum number of
		 *    txgs which must occur before a metaslab is revisited.
		 *
		 * 2) Selecting non-consecutive metaslabs distributes the
		 *    TRIM commands for a group evenly over the entire device.
		 *    This can be advantageous for certain types of devices.
		 */
		for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count;
		    i += txgs_per_trim) {
			metaslab_t *msp = vd->vdev_ms[i];
			range_tree_t *trim_tree;

			spa_config_exit(spa, SCL_CONFIG, FTAG);
			metaslab_disable(msp);
			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);

			mutex_enter(&msp->ms_lock);

			/*
			 * Skip the metaslab when it has never been allocated
			 * or when there are no recent frees to trim.
			 */
			if (msp->ms_sm == NULL ||
			    range_tree_is_empty(msp->ms_trim)) {
				mutex_exit(&msp->ms_lock);
				metaslab_enable(msp, B_FALSE, B_FALSE);
				continue;
			}

			/*
			 * Skip the metaslab when it has already been disabled.
			 * This may happen when a manual TRIM or initialize
			 * operation is running concurrently.  In the case
			 * of a manual TRIM, the ms_trim tree will have been
			 * vacated.  Only ranges added after the manual TRIM
			 * disabled the metaslab will be included in the tree.
			 * These will be processed when the automatic TRIM
			 * next revisits this metaslab.
			 */
			if (msp->ms_disabled > 1) {
				mutex_exit(&msp->ms_lock);
				metaslab_enable(msp, B_FALSE, B_FALSE);
				continue;
			}

			/*
			 * Allocate an empty range tree which is swapped in
			 * for the existing ms_trim tree while it is processed.
			 */
			trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
			    0, 0);
			range_tree_swap(&msp->ms_trim, &trim_tree);
			ASSERT(range_tree_is_empty(msp->ms_trim));

			/*
			 * There are two cases when constructing the per-vdev
			 * trim trees for a metaslab.  If the top-level vdev
			 * has no children then it is also a leaf and should
			 * be trimmed.  Otherwise our children are the leaves
			 * and a trim tree should be constructed for each.
			 */
			trim_args_t *tap;
			uint64_t children = vd->vdev_children;
			if (children == 0) {
				children = 1;
				tap = kmem_zalloc(sizeof (trim_args_t) *
				    children, KM_SLEEP);
				tap[0].trim_vdev = vd;
			} else {
				tap = kmem_zalloc(sizeof (trim_args_t) *
				    children, KM_SLEEP);

				for (uint64_t c = 0; c < children; c++) {
					tap[c].trim_vdev = vd->vdev_child[c];
				}
			}

			for (uint64_t c = 0; c < children; c++) {
				trim_args_t *ta = &tap[c];
				vdev_t *cvd = ta->trim_vdev;

				ta->trim_msp = msp;
				ta->trim_extent_bytes_max = extent_bytes_max;
				ta->trim_extent_bytes_min = extent_bytes_min;
				ta->trim_type = TRIM_TYPE_AUTO;
				ta->trim_flags = 0;

				if (cvd->vdev_detached ||
				    !vdev_writeable(cvd) ||
				    !cvd->vdev_has_trim ||
				    cvd->vdev_trim_thread != NULL) {
					continue;
				}

				/*
				 * When a device has an attached hot spare, or
				 * is being replaced it will not be trimmed.
				 * This is done to avoid adding additional
				 * stress to a potentially unhealthy device,
				 * and to minimize the required rebuild time.
				 */
				if (!cvd->vdev_ops->vdev_op_leaf)
					continue;

				ta->trim_tree = range_tree_create(NULL,
				    RANGE_SEG64, NULL, 0, 0);
				range_tree_walk(trim_tree,
				    vdev_trim_range_add, ta);
			}

			mutex_exit(&msp->ms_lock);
			spa_config_exit(spa, SCL_CONFIG, FTAG);

			/*
			 * Issue the TRIM I/Os for all ranges covered by the
			 * TRIM trees.  These ranges are safe to TRIM because
			 * no new allocations will be performed until the call
			 * to metaslab_enabled() below.
			 */
			for (uint64_t c = 0; c < children; c++) {
				trim_args_t *ta = &tap[c];

				/*
				 * Always yield to a manual TRIM if one has
				 * been started for the child vdev.
				 */
				if (ta->trim_tree == NULL ||
				    ta->trim_vdev->vdev_trim_thread != NULL) {
					continue;
				}

				/*
				 * After this point metaslab_enable() must be
				 * called with the sync flag set.  This is done
				 * here because vdev_trim_ranges() is allowed
				 * to be interrupted (EINTR) before issuing all
				 * of the required TRIM I/Os.
				 */
				issued_trim = B_TRUE;

				int error = vdev_trim_ranges(ta);
				if (error)
					break;
			}

			/*
			 * Verify every range which was trimmed is still
			 * contained within the ms_allocatable tree.
			 */
			if (zfs_flags & ZFS_DEBUG_TRIM) {
				mutex_enter(&msp->ms_lock);
				VERIFY0(metaslab_load(msp));
				VERIFY3P(tap[0].trim_msp, ==, msp);
				range_tree_walk(trim_tree,
				    vdev_trim_range_verify, &tap[0]);
				mutex_exit(&msp->ms_lock);
			}

			range_tree_vacate(trim_tree, NULL, NULL);
			range_tree_destroy(trim_tree);

			metaslab_enable(msp, issued_trim, B_FALSE);
			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);

			for (uint64_t c = 0; c < children; c++) {
				trim_args_t *ta = &tap[c];

				if (ta->trim_tree == NULL)
					continue;

				range_tree_vacate(ta->trim_tree, NULL, NULL);
				range_tree_destroy(ta->trim_tree);
			}

			kmem_free(tap, sizeof (trim_args_t) * children);
		}

		spa_config_exit(spa, SCL_CONFIG, FTAG);

		/*
		 * After completing the group of metaslabs wait for the next
		 * open txg.  This is done to make sure that a minimum of
		 * zfs_trim_txg_batch txgs will occur before these metaslabs
		 * are trimmed again.
		 */
		txg_wait_open(spa_get_dsl(spa), 0, issued_trim);

		shift++;
		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
	}

	for (uint64_t c = 0; c < vd->vdev_children; c++) {
		vdev_t *cvd = vd->vdev_child[c];
		mutex_enter(&cvd->vdev_trim_io_lock);

		while (cvd->vdev_trim_inflight[1] > 0) {
			cv_wait(&cvd->vdev_trim_io_cv,
			    &cvd->vdev_trim_io_lock);
		}
		mutex_exit(&cvd->vdev_trim_io_lock);
	}

	spa_config_exit(spa, SCL_CONFIG, FTAG);

	/*
	 * When exiting because the autotrim property was set to off, then
	 * abandon any unprocessed ms_trim ranges to reclaim the memory.
	 */
	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) {
		for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
			metaslab_t *msp = vd->vdev_ms[i];

			mutex_enter(&msp->ms_lock);
			range_tree_vacate(msp->ms_trim, NULL, NULL);
			mutex_exit(&msp->ms_lock);
		}
	}

	mutex_enter(&vd->vdev_autotrim_lock);
	ASSERT(vd->vdev_autotrim_thread != NULL);
	vd->vdev_autotrim_thread = NULL;
	cv_broadcast(&vd->vdev_autotrim_cv);
	mutex_exit(&vd->vdev_autotrim_lock);

	thread_exit();
}

/*
 * Starts an autotrim thread, if needed, for each top-level vdev which can be
 * trimmed.  A top-level vdev which has been evacuated will never be trimmed.
 */
void
vdev_autotrim(spa_t *spa)
{
	vdev_t *root_vd = spa->spa_root_vdev;

	for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
		vdev_t *tvd = root_vd->vdev_child[i];

		mutex_enter(&tvd->vdev_autotrim_lock);
		if (vdev_writeable(tvd) && !tvd->vdev_removing &&
		    tvd->vdev_autotrim_thread == NULL) {
			ASSERT3P(tvd->vdev_top, ==, tvd);

			tvd->vdev_autotrim_thread = thread_create(NULL, 0,
			    vdev_autotrim_thread, tvd, 0, &p0, TS_RUN,
			    maxclsyspri);
			ASSERT(tvd->vdev_autotrim_thread != NULL);
		}
		mutex_exit(&tvd->vdev_autotrim_lock);
	}
}

/*
 * Wait for the vdev_autotrim_thread associated with the passed top-level
 * vdev to be terminated (canceled or stopped).
 */
void
vdev_autotrim_stop_wait(vdev_t *tvd)
{
	mutex_enter(&tvd->vdev_autotrim_lock);
	if (tvd->vdev_autotrim_thread != NULL) {
		tvd->vdev_autotrim_exit_wanted = B_TRUE;

		while (tvd->vdev_autotrim_thread != NULL) {
			cv_wait(&tvd->vdev_autotrim_cv,
			    &tvd->vdev_autotrim_lock);
		}

		ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL);
		tvd->vdev_autotrim_exit_wanted = B_FALSE;
	}
	mutex_exit(&tvd->vdev_autotrim_lock);
}

/*
 * Wait for all of the vdev_autotrim_thread associated with the pool to
 * be terminated (canceled or stopped).
 */
void
vdev_autotrim_stop_all(spa_t *spa)
{
	vdev_t *root_vd = spa->spa_root_vdev;

	for (uint64_t i = 0; i < root_vd->vdev_children; i++)
		vdev_autotrim_stop_wait(root_vd->vdev_child[i]);
}

/*
 * Conditionally restart all of the vdev_autotrim_thread's for the pool.
 */
void
vdev_autotrim_restart(spa_t *spa)
{
	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	if (spa->spa_autotrim)
		vdev_autotrim(spa);
}

static void
vdev_trim_l2arc_thread(void *arg)
{
	vdev_t		*vd = arg;
	spa_t		*spa = vd->vdev_spa;
	l2arc_dev_t	*dev = l2arc_vdev_get(vd);
	trim_args_t	ta;
	range_seg64_t 	physical_rs;

	ASSERT(vdev_is_concrete(vd));
	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);

	vd->vdev_trim_last_offset = 0;
	vd->vdev_trim_rate = 0;
	vd->vdev_trim_partial = 0;
	vd->vdev_trim_secure = 0;

	bzero(&ta, sizeof (ta));
	ta.trim_vdev = vd;
	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
	ta.trim_type = TRIM_TYPE_MANUAL;
	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
	ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
	ta.trim_flags = 0;

	physical_rs.rs_start = vd->vdev_trim_bytes_done = 0;
	physical_rs.rs_end = vd->vdev_trim_bytes_est =
	    vdev_get_min_asize(vd);

	range_tree_add(ta.trim_tree, physical_rs.rs_start,
	    physical_rs.rs_end - physical_rs.rs_start);

	mutex_enter(&vd->vdev_trim_lock);
	vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
	mutex_exit(&vd->vdev_trim_lock);

	(void) vdev_trim_ranges(&ta);

	spa_config_exit(spa, SCL_CONFIG, FTAG);
	mutex_enter(&vd->vdev_trim_io_lock);
	while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) {
		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
	}
	mutex_exit(&vd->vdev_trim_io_lock);

	range_tree_vacate(ta.trim_tree, NULL, NULL);
	range_tree_destroy(ta.trim_tree);

	mutex_enter(&vd->vdev_trim_lock);
	if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) {
		vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
		    vd->vdev_trim_rate, vd->vdev_trim_partial,
		    vd->vdev_trim_secure);
	}
	ASSERT(vd->vdev_trim_thread != NULL ||
	    vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0);

	/*
	 * Drop the vdev_trim_lock while we sync out the txg since it's
	 * possible that a device might be trying to come online and
	 * must check to see if it needs to restart a trim. That thread
	 * will be holding the spa_config_lock which would prevent the
	 * txg_wait_synced from completing. Same strategy as in
	 * vdev_trim_thread().
	 */
	mutex_exit(&vd->vdev_trim_lock);
	txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
	mutex_enter(&vd->vdev_trim_lock);

	/*
	 * Update the header of the cache device here, before
	 * broadcasting vdev_trim_cv which may lead to the removal
	 * of the device. The same applies for setting l2ad_trim_all to
	 * false.
	 */
	spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd,
	    RW_READER);
	bzero(dev->l2ad_dev_hdr, dev->l2ad_dev_hdr_asize);
	l2arc_dev_hdr_update(dev);
	spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd);

	vd->vdev_trim_thread = NULL;
	if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE)
		dev->l2ad_trim_all = B_FALSE;

	cv_broadcast(&vd->vdev_trim_cv);
	mutex_exit(&vd->vdev_trim_lock);

	thread_exit();
}

/*
 * Punches out TRIM threads for the L2ARC devices in a spa and assigns them
 * to vd->vdev_trim_thread variable. This facilitates the management of
 * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition
 * to a pool or pool creation or when the header of the device is invalid.
 */
void
vdev_trim_l2arc(spa_t *spa)
{
	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	/*
	 * Locate the spa's l2arc devices and kick off TRIM threads.
	 */
	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
		vdev_t *vd = spa->spa_l2cache.sav_vdevs[i];
		l2arc_dev_t *dev = l2arc_vdev_get(vd);

		if (dev == NULL || !dev->l2ad_trim_all) {
			/*
			 * Don't attempt TRIM if the vdev is UNAVAIL or if the
			 * cache device was not marked for whole device TRIM
			 * (ie l2arc_trim_ahead = 0, or the L2ARC device header
			 * is valid with trim_state = VDEV_TRIM_COMPLETE and
			 * l2ad_log_entries > 0).
			 */
			continue;
		}

		mutex_enter(&vd->vdev_trim_lock);
		ASSERT(vd->vdev_ops->vdev_op_leaf);
		ASSERT(vdev_is_concrete(vd));
		ASSERT3P(vd->vdev_trim_thread, ==, NULL);
		ASSERT(!vd->vdev_detached);
		ASSERT(!vd->vdev_trim_exit_wanted);
		ASSERT(!vd->vdev_top->vdev_removing);
		vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
		vd->vdev_trim_thread = thread_create(NULL, 0,
		    vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
		mutex_exit(&vd->vdev_trim_lock);
	}
}

/*
 * A wrapper which calls vdev_trim_ranges(). It is intended to be called
 * on leaf vdevs.
 */
int
vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size)
{
	trim_args_t		ta;
	range_seg64_t 		physical_rs;
	int			error;
	physical_rs.rs_start = start;
	physical_rs.rs_end = start + size;

	ASSERT(vdev_is_concrete(vd));
	ASSERT(vd->vdev_ops->vdev_op_leaf);
	ASSERT(!vd->vdev_detached);
	ASSERT(!vd->vdev_top->vdev_removing);

	bzero(&ta, sizeof (ta));
	ta.trim_vdev = vd;
	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
	ta.trim_type = TRIM_TYPE_SIMPLE;
	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
	ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
	ta.trim_flags = 0;

	ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);

	if (physical_rs.rs_end > physical_rs.rs_start) {
		range_tree_add(ta.trim_tree, physical_rs.rs_start,
		    physical_rs.rs_end - physical_rs.rs_start);
	} else {
		ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
	}

	error = vdev_trim_ranges(&ta);

	mutex_enter(&vd->vdev_trim_io_lock);
	while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) {
		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
	}
	mutex_exit(&vd->vdev_trim_io_lock);

	range_tree_vacate(ta.trim_tree, NULL, NULL);
	range_tree_destroy(ta.trim_tree);

	return (error);
}

EXPORT_SYMBOL(vdev_trim);
EXPORT_SYMBOL(vdev_trim_stop);
EXPORT_SYMBOL(vdev_trim_stop_all);
EXPORT_SYMBOL(vdev_trim_stop_wait);
EXPORT_SYMBOL(vdev_trim_restart);
EXPORT_SYMBOL(vdev_autotrim);
EXPORT_SYMBOL(vdev_autotrim_stop_all);
EXPORT_SYMBOL(vdev_autotrim_stop_wait);
EXPORT_SYMBOL(vdev_autotrim_restart);
EXPORT_SYMBOL(vdev_trim_l2arc);
EXPORT_SYMBOL(vdev_trim_simple);

/* BEGIN CSTYLED */
ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW,
    "Max size of TRIM commands, larger will be split");

ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW,
    "Min size of TRIM commands, smaller will be skipped");

ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW,
    "Skip metaslabs which have never been initialized");

ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW,
    "Min number of txgs to aggregate frees before issuing TRIM");

ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW,
    "Max queued TRIMs outstanding per leaf vdev");
/* END CSTYLED */