summaryrefslogtreecommitdiffstats
path: root/module/zfs/vdev_raidz_math.c
blob: 294067e0f99534deedcd59d087f1d9b4a13cf1ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
 */

#include <sys/zfs_context.h>
#include <sys/types.h>
#include <sys/zio.h>
#include <sys/debug.h>
#include <sys/zfs_debug.h>
#include <sys/vdev_raidz.h>
#include <sys/vdev_raidz_impl.h>
#include <sys/simd.h>

extern boolean_t raidz_will_scalar_work(void);

/* Opaque implementation with NULL methods to represent original methods */
static const raidz_impl_ops_t vdev_raidz_original_impl = {
	.name = "original",
	.is_supported = raidz_will_scalar_work,
};

/* RAIDZ parity op that contain the fastest methods */
static raidz_impl_ops_t vdev_raidz_fastest_impl = {
	.name = "fastest"
};

/* All compiled in implementations */
const raidz_impl_ops_t *raidz_all_maths[] = {
	&vdev_raidz_original_impl,
	&vdev_raidz_scalar_impl,
#if defined(__x86_64) && defined(HAVE_SSE2)	/* only x86_64 for now */
	&vdev_raidz_sse2_impl,
#endif
#if defined(__x86_64) && defined(HAVE_SSSE3)	/* only x86_64 for now */
	&vdev_raidz_ssse3_impl,
#endif
#if defined(__x86_64) && defined(HAVE_AVX2)	/* only x86_64 for now */
	&vdev_raidz_avx2_impl,
#endif
#if defined(__x86_64) && defined(HAVE_AVX512F)	/* only x86_64 for now */
	&vdev_raidz_avx512f_impl,
#endif
#if defined(__x86_64) && defined(HAVE_AVX512BW)	/* only x86_64 for now */
	&vdev_raidz_avx512bw_impl,
#endif
#if defined(__aarch64__)
	&vdev_raidz_aarch64_neon_impl,
	&vdev_raidz_aarch64_neonx2_impl,
#endif
};

/* Indicate that benchmark has been completed */
static boolean_t raidz_math_initialized = B_FALSE;

/* Select raidz implementation */
#define	IMPL_FASTEST	(UINT32_MAX)
#define	IMPL_CYCLE	(UINT32_MAX - 1)
#define	IMPL_ORIGINAL	(0)
#define	IMPL_SCALAR	(1)

#define	RAIDZ_IMPL_READ(i)	(*(volatile uint32_t *) &(i))

static uint32_t zfs_vdev_raidz_impl = IMPL_SCALAR;
static uint32_t user_sel_impl = IMPL_FASTEST;

/* Hold all supported implementations */
static size_t raidz_supp_impl_cnt = 0;
static raidz_impl_ops_t *raidz_supp_impl[ARRAY_SIZE(raidz_all_maths)];

#if defined(_KERNEL)
/*
 * kstats values for supported implementations
 * Values represent per disk throughput of 8 disk+parity raidz vdev [B/s]
 */
static raidz_impl_kstat_t raidz_impl_kstats[ARRAY_SIZE(raidz_all_maths) + 1];

/* kstat for benchmarked implementations */
static kstat_t *raidz_math_kstat = NULL;
#endif

/*
 * Returns the RAIDZ operations for raidz_map() parity calculations.   When
 * a SIMD implementation is not allowed in the current context, then fallback
 * to the fastest generic implementation.
 */
const raidz_impl_ops_t *
vdev_raidz_math_get_ops(void)
{
	if (!kfpu_allowed())
		return (&vdev_raidz_scalar_impl);

	raidz_impl_ops_t *ops = NULL;
	const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl);

	switch (impl) {
	case IMPL_FASTEST:
		ASSERT(raidz_math_initialized);
		ops = &vdev_raidz_fastest_impl;
		break;
	case IMPL_CYCLE:
		/* Cycle through all supported implementations */
		ASSERT(raidz_math_initialized);
		ASSERT3U(raidz_supp_impl_cnt, >, 0);
		static size_t cycle_impl_idx = 0;
		size_t idx = (++cycle_impl_idx) % raidz_supp_impl_cnt;
		ops = raidz_supp_impl[idx];
		break;
	case IMPL_ORIGINAL:
		ops = (raidz_impl_ops_t *)&vdev_raidz_original_impl;
		break;
	case IMPL_SCALAR:
		ops = (raidz_impl_ops_t *)&vdev_raidz_scalar_impl;
		break;
	default:
		ASSERT3U(impl, <, raidz_supp_impl_cnt);
		ASSERT3U(raidz_supp_impl_cnt, >, 0);
		if (impl < ARRAY_SIZE(raidz_all_maths))
			ops = raidz_supp_impl[impl];
		break;
	}

	ASSERT3P(ops, !=, NULL);

	return (ops);
}

/*
 * Select parity generation method for raidz_map
 */
int
vdev_raidz_math_generate(raidz_map_t *rm)
{
	raidz_gen_f gen_parity = NULL;

	switch (raidz_parity(rm)) {
		case 1:
			gen_parity = rm->rm_ops->gen[RAIDZ_GEN_P];
			break;
		case 2:
			gen_parity = rm->rm_ops->gen[RAIDZ_GEN_PQ];
			break;
		case 3:
			gen_parity = rm->rm_ops->gen[RAIDZ_GEN_PQR];
			break;
		default:
			gen_parity = NULL;
			cmn_err(CE_PANIC, "invalid RAID-Z configuration %d",
			    raidz_parity(rm));
			break;
	}

	/* if method is NULL execute the original implementation */
	if (gen_parity == NULL)
		return (RAIDZ_ORIGINAL_IMPL);

	gen_parity(rm);

	return (0);
}

static raidz_rec_f
reconstruct_fun_p_sel(raidz_map_t *rm, const int *parity_valid,
    const int nbaddata)
{
	if (nbaddata == 1 && parity_valid[CODE_P]) {
		return (rm->rm_ops->rec[RAIDZ_REC_P]);
	}
	return ((raidz_rec_f) NULL);
}

static raidz_rec_f
reconstruct_fun_pq_sel(raidz_map_t *rm, const int *parity_valid,
    const int nbaddata)
{
	if (nbaddata == 1) {
		if (parity_valid[CODE_P]) {
			return (rm->rm_ops->rec[RAIDZ_REC_P]);
		} else if (parity_valid[CODE_Q]) {
			return (rm->rm_ops->rec[RAIDZ_REC_Q]);
		}
	} else if (nbaddata == 2 &&
	    parity_valid[CODE_P] && parity_valid[CODE_Q]) {
		return (rm->rm_ops->rec[RAIDZ_REC_PQ]);
	}
	return ((raidz_rec_f) NULL);
}

static raidz_rec_f
reconstruct_fun_pqr_sel(raidz_map_t *rm, const int *parity_valid,
    const int nbaddata)
{
	if (nbaddata == 1) {
		if (parity_valid[CODE_P]) {
			return (rm->rm_ops->rec[RAIDZ_REC_P]);
		} else if (parity_valid[CODE_Q]) {
			return (rm->rm_ops->rec[RAIDZ_REC_Q]);
		} else if (parity_valid[CODE_R]) {
			return (rm->rm_ops->rec[RAIDZ_REC_R]);
		}
	} else if (nbaddata == 2) {
		if (parity_valid[CODE_P] && parity_valid[CODE_Q]) {
			return (rm->rm_ops->rec[RAIDZ_REC_PQ]);
		} else if (parity_valid[CODE_P] && parity_valid[CODE_R]) {
			return (rm->rm_ops->rec[RAIDZ_REC_PR]);
		} else if (parity_valid[CODE_Q] && parity_valid[CODE_R]) {
			return (rm->rm_ops->rec[RAIDZ_REC_QR]);
		}
	} else if (nbaddata == 3 &&
	    parity_valid[CODE_P] && parity_valid[CODE_Q] &&
	    parity_valid[CODE_R]) {
		return (rm->rm_ops->rec[RAIDZ_REC_PQR]);
	}
	return ((raidz_rec_f) NULL);
}

/*
 * Select data reconstruction method for raidz_map
 * @parity_valid - Parity validity flag
 * @dt           - Failed data index array
 * @nbaddata     - Number of failed data columns
 */
int
vdev_raidz_math_reconstruct(raidz_map_t *rm, const int *parity_valid,
    const int *dt, const int nbaddata)
{
	raidz_rec_f rec_fn = NULL;

	switch (raidz_parity(rm)) {
	case PARITY_P:
		rec_fn = reconstruct_fun_p_sel(rm, parity_valid, nbaddata);
		break;
	case PARITY_PQ:
		rec_fn = reconstruct_fun_pq_sel(rm, parity_valid, nbaddata);
		break;
	case PARITY_PQR:
		rec_fn = reconstruct_fun_pqr_sel(rm, parity_valid, nbaddata);
		break;
	default:
		cmn_err(CE_PANIC, "invalid RAID-Z configuration %d",
		    raidz_parity(rm));
		break;
	}

	if (rec_fn == NULL)
		return (RAIDZ_ORIGINAL_IMPL);
	else
		return (rec_fn(rm, dt));
}

const char *raidz_gen_name[] = {
	"gen_p", "gen_pq", "gen_pqr"
};
const char *raidz_rec_name[] = {
	"rec_p", "rec_q", "rec_r",
	"rec_pq", "rec_pr", "rec_qr", "rec_pqr"
};

#if defined(_KERNEL)

#define	RAIDZ_KSTAT_LINE_LEN	(17 + 10*12 + 1)

static int
raidz_math_kstat_headers(char *buf, size_t size)
{
	int i;
	ssize_t off;

	ASSERT3U(size, >=, RAIDZ_KSTAT_LINE_LEN);

	off = snprintf(buf, size, "%-17s", "implementation");

	for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++)
		off += snprintf(buf + off, size - off, "%-16s",
		    raidz_gen_name[i]);

	for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++)
		off += snprintf(buf + off, size - off, "%-16s",
		    raidz_rec_name[i]);

	(void) snprintf(buf + off, size - off, "\n");

	return (0);
}

static int
raidz_math_kstat_data(char *buf, size_t size, void *data)
{
	raidz_impl_kstat_t *fstat = &raidz_impl_kstats[raidz_supp_impl_cnt];
	raidz_impl_kstat_t *cstat = (raidz_impl_kstat_t *)data;
	ssize_t off = 0;
	int i;

	ASSERT3U(size, >=, RAIDZ_KSTAT_LINE_LEN);

	if (cstat == fstat) {
		off += snprintf(buf + off, size - off, "%-17s", "fastest");

		for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++) {
			int id = fstat->gen[i];
			off += snprintf(buf + off, size - off, "%-16s",
			    raidz_supp_impl[id]->name);
		}
		for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++) {
			int id = fstat->rec[i];
			off += snprintf(buf + off, size - off, "%-16s",
			    raidz_supp_impl[id]->name);
		}
	} else {
		ptrdiff_t id = cstat - raidz_impl_kstats;

		off += snprintf(buf + off, size - off, "%-17s",
		    raidz_supp_impl[id]->name);

		for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++)
			off += snprintf(buf + off, size - off, "%-16llu",
			    (u_longlong_t)cstat->gen[i]);

		for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++)
			off += snprintf(buf + off, size - off, "%-16llu",
			    (u_longlong_t)cstat->rec[i]);
	}

	(void) snprintf(buf + off, size - off, "\n");

	return (0);
}

static void *
raidz_math_kstat_addr(kstat_t *ksp, loff_t n)
{
	if (n <= raidz_supp_impl_cnt)
		ksp->ks_private = (void *) (raidz_impl_kstats + n);
	else
		ksp->ks_private = NULL;

	return (ksp->ks_private);
}

#define	BENCH_D_COLS	(8ULL)
#define	BENCH_COLS	(BENCH_D_COLS + PARITY_PQR)
#define	BENCH_ZIO_SIZE	(1ULL << SPA_OLD_MAXBLOCKSHIFT)	/* 128 kiB */
#define	BENCH_NS	MSEC2NSEC(25)			/* 25ms */

typedef void (*benchmark_fn)(raidz_map_t *rm, const int fn);

static void
benchmark_gen_impl(raidz_map_t *rm, const int fn)
{
	(void) fn;
	vdev_raidz_generate_parity(rm);
}

static void
benchmark_rec_impl(raidz_map_t *rm, const int fn)
{
	static const int rec_tgt[7][3] = {
		{1, 2, 3},	/* rec_p:   bad QR & D[0]	*/
		{0, 2, 3},	/* rec_q:   bad PR & D[0]	*/
		{0, 1, 3},	/* rec_r:   bad PQ & D[0]	*/
		{2, 3, 4},	/* rec_pq:  bad R  & D[0][1]	*/
		{1, 3, 4},	/* rec_pr:  bad Q  & D[0][1]	*/
		{0, 3, 4},	/* rec_qr:  bad P  & D[0][1]	*/
		{3, 4, 5}	/* rec_pqr: bad    & D[0][1][2] */
	};

	vdev_raidz_reconstruct(rm, rec_tgt[fn], 3);
}

/*
 * Benchmarking of all supported implementations (raidz_supp_impl_cnt)
 * is performed by setting the rm_ops pointer and calling the top level
 * generate/reconstruct methods of bench_rm.
 */
static void
benchmark_raidz_impl(raidz_map_t *bench_rm, const int fn, benchmark_fn bench_fn)
{
	uint64_t run_cnt, speed, best_speed = 0;
	hrtime_t t_start, t_diff;
	raidz_impl_ops_t *curr_impl;
	raidz_impl_kstat_t *fstat = &raidz_impl_kstats[raidz_supp_impl_cnt];
	int impl, i;

	for (impl = 0; impl < raidz_supp_impl_cnt; impl++) {
		/* set an implementation to benchmark */
		curr_impl = raidz_supp_impl[impl];
		bench_rm->rm_ops = curr_impl;

		run_cnt = 0;
		t_start = gethrtime();

		do {
			for (i = 0; i < 25; i++, run_cnt++)
				bench_fn(bench_rm, fn);

			t_diff = gethrtime() - t_start;
		} while (t_diff < BENCH_NS);

		speed = run_cnt * BENCH_ZIO_SIZE * NANOSEC;
		speed /= (t_diff * BENCH_COLS);

		if (bench_fn == benchmark_gen_impl)
			raidz_impl_kstats[impl].gen[fn] = speed;
		else
			raidz_impl_kstats[impl].rec[fn] = speed;

		/* Update fastest implementation method */
		if (speed > best_speed) {
			best_speed = speed;

			if (bench_fn == benchmark_gen_impl) {
				fstat->gen[fn] = impl;
				vdev_raidz_fastest_impl.gen[fn] =
				    curr_impl->gen[fn];
			} else {
				fstat->rec[fn] = impl;
				vdev_raidz_fastest_impl.rec[fn] =
				    curr_impl->rec[fn];
			}
		}
	}
}
#endif

/*
 * Initialize and benchmark all supported implementations.
 */
static void
benchmark_raidz(void)
{
	raidz_impl_ops_t *curr_impl;
	int i, c;

	/* Move supported impl into raidz_supp_impl */
	for (i = 0, c = 0; i < ARRAY_SIZE(raidz_all_maths); i++) {
		curr_impl = (raidz_impl_ops_t *)raidz_all_maths[i];

		if (curr_impl->init)
			curr_impl->init();

		if (curr_impl->is_supported())
			raidz_supp_impl[c++] = (raidz_impl_ops_t *)curr_impl;
	}
	membar_producer();		/* complete raidz_supp_impl[] init */
	raidz_supp_impl_cnt = c;	/* number of supported impl */

#if defined(_KERNEL)
	zio_t *bench_zio = NULL;
	raidz_map_t *bench_rm = NULL;
	uint64_t bench_parity;

	/* Fake a zio and run the benchmark on a warmed up buffer */
	bench_zio = kmem_zalloc(sizeof (zio_t), KM_SLEEP);
	bench_zio->io_offset = 0;
	bench_zio->io_size = BENCH_ZIO_SIZE; /* only data columns */
	bench_zio->io_abd = abd_alloc_linear(BENCH_ZIO_SIZE, B_TRUE);
	memset(abd_to_buf(bench_zio->io_abd), 0xAA, BENCH_ZIO_SIZE);

	/* Benchmark parity generation methods */
	for (int fn = 0; fn < RAIDZ_GEN_NUM; fn++) {
		bench_parity = fn + 1;
		/* New raidz_map is needed for each generate_p/q/r */
		bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT,
		    BENCH_D_COLS + bench_parity, bench_parity);

		benchmark_raidz_impl(bench_rm, fn, benchmark_gen_impl);

		vdev_raidz_map_free(bench_rm);
	}

	/* Benchmark data reconstruction methods */
	bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT,
	    BENCH_COLS, PARITY_PQR);

	for (int fn = 0; fn < RAIDZ_REC_NUM; fn++)
		benchmark_raidz_impl(bench_rm, fn, benchmark_rec_impl);

	vdev_raidz_map_free(bench_rm);

	/* cleanup the bench zio */
	abd_free(bench_zio->io_abd);
	kmem_free(bench_zio, sizeof (zio_t));
#else
	/*
	 * Skip the benchmark in user space to avoid impacting libzpool
	 * consumers (zdb, zhack, zinject, ztest).  The last implementation
	 * is assumed to be the fastest and used by default.
	 */
	memcpy(&vdev_raidz_fastest_impl,
	    raidz_supp_impl[raidz_supp_impl_cnt - 1],
	    sizeof (vdev_raidz_fastest_impl));
	strcpy(vdev_raidz_fastest_impl.name, "fastest");
#endif /* _KERNEL */
}

void
vdev_raidz_math_init(void)
{
	/* Determine the fastest available implementation. */
	benchmark_raidz();

#if defined(_KERNEL)
	/* Install kstats for all implementations */
	raidz_math_kstat = kstat_create("zfs", 0, "vdev_raidz_bench", "misc",
	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
	if (raidz_math_kstat != NULL) {
		raidz_math_kstat->ks_data = NULL;
		raidz_math_kstat->ks_ndata = UINT32_MAX;
		kstat_set_raw_ops(raidz_math_kstat,
		    raidz_math_kstat_headers,
		    raidz_math_kstat_data,
		    raidz_math_kstat_addr);
		kstat_install(raidz_math_kstat);
	}
#endif

	/* Finish initialization */
	atomic_swap_32(&zfs_vdev_raidz_impl, user_sel_impl);
	raidz_math_initialized = B_TRUE;
}

void
vdev_raidz_math_fini(void)
{
	raidz_impl_ops_t const *curr_impl;

#if defined(_KERNEL)
	if (raidz_math_kstat != NULL) {
		kstat_delete(raidz_math_kstat);
		raidz_math_kstat = NULL;
	}
#endif

	for (int i = 0; i < ARRAY_SIZE(raidz_all_maths); i++) {
		curr_impl = raidz_all_maths[i];
		if (curr_impl->fini)
			curr_impl->fini();
	}
}

static const struct {
	char *name;
	uint32_t sel;
} math_impl_opts[] = {
		{ "cycle",	IMPL_CYCLE },
		{ "fastest",	IMPL_FASTEST },
		{ "original",	IMPL_ORIGINAL },
		{ "scalar",	IMPL_SCALAR }
};

/*
 * Function sets desired raidz implementation.
 *
 * If we are called before init(), user preference will be saved in
 * user_sel_impl, and applied in later init() call. This occurs when module
 * parameter is specified on module load. Otherwise, directly update
 * zfs_vdev_raidz_impl.
 *
 * @val		Name of raidz implementation to use
 * @param	Unused.
 */
int
vdev_raidz_impl_set(const char *val)
{
	int err = -EINVAL;
	char req_name[RAIDZ_IMPL_NAME_MAX];
	uint32_t impl = RAIDZ_IMPL_READ(user_sel_impl);
	size_t i;

	/* sanitize input */
	i = strnlen(val, RAIDZ_IMPL_NAME_MAX);
	if (i == 0 || i == RAIDZ_IMPL_NAME_MAX)
		return (err);

	strlcpy(req_name, val, RAIDZ_IMPL_NAME_MAX);
	while (i > 0 && !!isspace(req_name[i-1]))
		i--;
	req_name[i] = '\0';

	/* Check mandatory options */
	for (i = 0; i < ARRAY_SIZE(math_impl_opts); i++) {
		if (strcmp(req_name, math_impl_opts[i].name) == 0) {
			impl = math_impl_opts[i].sel;
			err = 0;
			break;
		}
	}

	/* check all supported impl if init() was already called */
	if (err != 0 && raidz_math_initialized) {
		/* check all supported implementations */
		for (i = 0; i < raidz_supp_impl_cnt; i++) {
			if (strcmp(req_name, raidz_supp_impl[i]->name) == 0) {
				impl = i;
				err = 0;
				break;
			}
		}
	}

	if (err == 0) {
		if (raidz_math_initialized)
			atomic_swap_32(&zfs_vdev_raidz_impl, impl);
		else
			atomic_swap_32(&user_sel_impl, impl);
	}

	return (err);
}

#if defined(_KERNEL) && defined(__linux__)

static int
zfs_vdev_raidz_impl_set(const char *val, zfs_kernel_param_t *kp)
{
	return (vdev_raidz_impl_set(val));
}

static int
zfs_vdev_raidz_impl_get(char *buffer, zfs_kernel_param_t *kp)
{
	int i, cnt = 0;
	char *fmt;
	const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl);

	ASSERT(raidz_math_initialized);

	/* list mandatory options */
	for (i = 0; i < ARRAY_SIZE(math_impl_opts) - 2; i++) {
		fmt = (impl == math_impl_opts[i].sel) ? "[%s] " : "%s ";
		cnt += sprintf(buffer + cnt, fmt, math_impl_opts[i].name);
	}

	/* list all supported implementations */
	for (i = 0; i < raidz_supp_impl_cnt; i++) {
		fmt = (i == impl) ? "[%s] " : "%s ";
		cnt += sprintf(buffer + cnt, fmt, raidz_supp_impl[i]->name);
	}

	return (cnt);
}

module_param_call(zfs_vdev_raidz_impl, zfs_vdev_raidz_impl_set,
    zfs_vdev_raidz_impl_get, NULL, 0644);
MODULE_PARM_DESC(zfs_vdev_raidz_impl, "Select raidz implementation.");
#endif