summaryrefslogtreecommitdiffstats
path: root/module/zfs/vdev_queue.c
blob: 5a0d3ee97029d7f4016cadadf0fa3c446bb5ccb8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#include <sys/zfs_context.h>
#include <sys/vdev_impl.h>
#include <sys/zio.h>
#include <sys/avl.h>

/*
 * These tunables are for performance analysis.
 */
/*
 * zfs_vdev_max_pending is the maximum number of i/os concurrently
 * pending to each device.  zfs_vdev_min_pending is the initial number
 * of i/os pending to each device (before it starts ramping up to
 * max_pending).
 */
int zfs_vdev_max_pending = 10;
int zfs_vdev_min_pending = 4;

/* deadline = pri + ddi_get_lbolt64() >> time_shift) */
int zfs_vdev_time_shift = 6;

/* exponential I/O issue ramp-up rate */
int zfs_vdev_ramp_rate = 2;

/*
 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
 * For read I/Os, we also aggregate across small adjacency gaps; for writes
 * we include spans of optional I/Os to aid aggregation at the disk even when
 * they aren't able to help us aggregate at this level.
 */
int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE;
int zfs_vdev_read_gap_limit = 32 << 10;
int zfs_vdev_write_gap_limit = 4 << 10;

/*
 * Virtual device vector for disk I/O scheduling.
 */
int
vdev_queue_deadline_compare(const void *x1, const void *x2)
{
	const zio_t *z1 = x1;
	const zio_t *z2 = x2;

	if (z1->io_deadline < z2->io_deadline)
		return (-1);
	if (z1->io_deadline > z2->io_deadline)
		return (1);

	if (z1->io_offset < z2->io_offset)
		return (-1);
	if (z1->io_offset > z2->io_offset)
		return (1);

	if (z1 < z2)
		return (-1);
	if (z1 > z2)
		return (1);

	return (0);
}

int
vdev_queue_offset_compare(const void *x1, const void *x2)
{
	const zio_t *z1 = x1;
	const zio_t *z2 = x2;

	if (z1->io_offset < z2->io_offset)
		return (-1);
	if (z1->io_offset > z2->io_offset)
		return (1);

	if (z1 < z2)
		return (-1);
	if (z1 > z2)
		return (1);

	return (0);
}

void
vdev_queue_init(vdev_t *vd)
{
	vdev_queue_t *vq = &vd->vdev_queue;

	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);

	avl_create(&vq->vq_deadline_tree, vdev_queue_deadline_compare,
	    sizeof (zio_t), offsetof(struct zio, io_deadline_node));

	avl_create(&vq->vq_read_tree, vdev_queue_offset_compare,
	    sizeof (zio_t), offsetof(struct zio, io_offset_node));

	avl_create(&vq->vq_write_tree, vdev_queue_offset_compare,
	    sizeof (zio_t), offsetof(struct zio, io_offset_node));

	avl_create(&vq->vq_pending_tree, vdev_queue_offset_compare,
	    sizeof (zio_t), offsetof(struct zio, io_offset_node));
}

void
vdev_queue_fini(vdev_t *vd)
{
	vdev_queue_t *vq = &vd->vdev_queue;

	avl_destroy(&vq->vq_deadline_tree);
	avl_destroy(&vq->vq_read_tree);
	avl_destroy(&vq->vq_write_tree);
	avl_destroy(&vq->vq_pending_tree);

	mutex_destroy(&vq->vq_lock);
}

static void
vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
{
	avl_add(&vq->vq_deadline_tree, zio);
	avl_add(zio->io_vdev_tree, zio);
}

static void
vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
{
	avl_remove(&vq->vq_deadline_tree, zio);
	avl_remove(zio->io_vdev_tree, zio);
}

static void
vdev_queue_agg_io_done(zio_t *aio)
{
	zio_t *pio;

	while ((pio = zio_walk_parents(aio)) != NULL)
		if (aio->io_type == ZIO_TYPE_READ)
			bcopy((char *)aio->io_data + (pio->io_offset -
			    aio->io_offset), pio->io_data, pio->io_size);

	zio_buf_free(aio->io_data, aio->io_size);
}

/*
 * Compute the range spanned by two i/os, which is the endpoint of the last
 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
 */
#define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
#define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))

static zio_t *
vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit)
{
	zio_t *fio, *lio, *aio, *dio, *nio, *mio;
	avl_tree_t *t;
	int flags;
	uint64_t maxspan = zfs_vdev_aggregation_limit;
	uint64_t maxgap;
	int stretch;

again:
	ASSERT(MUTEX_HELD(&vq->vq_lock));

	if (avl_numnodes(&vq->vq_pending_tree) >= pending_limit ||
	    avl_numnodes(&vq->vq_deadline_tree) == 0)
		return (NULL);

	fio = lio = avl_first(&vq->vq_deadline_tree);

	t = fio->io_vdev_tree;
	flags = fio->io_flags & ZIO_FLAG_AGG_INHERIT;
	maxgap = (t == &vq->vq_read_tree) ? zfs_vdev_read_gap_limit : 0;

	if (!(flags & ZIO_FLAG_DONT_AGGREGATE)) {
		/*
		 * We can aggregate I/Os that are sufficiently adjacent and of
		 * the same flavor, as expressed by the AGG_INHERIT flags.
		 * The latter requirement is necessary so that certain
		 * attributes of the I/O, such as whether it's a normal I/O
		 * or a scrub/resilver, can be preserved in the aggregate.
		 * We can include optional I/Os, but don't allow them
		 * to begin a range as they add no benefit in that situation.
		 */

		/*
		 * We keep track of the last non-optional I/O.
		 */
		mio = (fio->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : fio;

		/*
		 * Walk backwards through sufficiently contiguous I/Os
		 * recording the last non-option I/O.
		 */
		while ((dio = AVL_PREV(t, fio)) != NULL &&
		    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
		    IO_SPAN(dio, lio) <= maxspan &&
		    IO_GAP(dio, fio) <= maxgap) {
			fio = dio;
			if (mio == NULL && !(fio->io_flags & ZIO_FLAG_OPTIONAL))
				mio = fio;
		}

		/*
		 * Skip any initial optional I/Os.
		 */
		while ((fio->io_flags & ZIO_FLAG_OPTIONAL) && fio != lio) {
			fio = AVL_NEXT(t, fio);
			ASSERT(fio != NULL);
		}

		/*
		 * Walk forward through sufficiently contiguous I/Os.
		 */
		while ((dio = AVL_NEXT(t, lio)) != NULL &&
		    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
		    IO_SPAN(fio, dio) <= maxspan &&
		    IO_GAP(lio, dio) <= maxgap) {
			lio = dio;
			if (!(lio->io_flags & ZIO_FLAG_OPTIONAL))
				mio = lio;
		}

		/*
		 * Now that we've established the range of the I/O aggregation
		 * we must decide what to do with trailing optional I/Os.
		 * For reads, there's nothing to do. While we are unable to
		 * aggregate further, it's possible that a trailing optional
		 * I/O would allow the underlying device to aggregate with
		 * subsequent I/Os. We must therefore determine if the next
		 * non-optional I/O is close enough to make aggregation
		 * worthwhile.
		 */
		stretch = B_FALSE;
		if (t != &vq->vq_read_tree && mio != NULL) {
			nio = lio;
			while ((dio = AVL_NEXT(t, nio)) != NULL &&
			    IO_GAP(nio, dio) == 0 &&
			    IO_GAP(mio, dio) <= zfs_vdev_write_gap_limit) {
				nio = dio;
				if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
					stretch = B_TRUE;
					break;
				}
			}
		}

		if (stretch) {
			/* This may be a no-op. */
			VERIFY((dio = AVL_NEXT(t, lio)) != NULL);
			dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
		} else {
			while (lio != mio && lio != fio) {
				ASSERT(lio->io_flags & ZIO_FLAG_OPTIONAL);
				lio = AVL_PREV(t, lio);
				ASSERT(lio != NULL);
			}
		}
	}

	if (fio != lio) {
		uint64_t size = IO_SPAN(fio, lio);
		ASSERT(size <= zfs_vdev_aggregation_limit);

		aio = zio_vdev_delegated_io(fio->io_vd, fio->io_offset,
		    zio_buf_alloc(size), size, fio->io_type, ZIO_PRIORITY_AGG,
		    flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
		    vdev_queue_agg_io_done, NULL);

		nio = fio;
		do {
			dio = nio;
			nio = AVL_NEXT(t, dio);
			ASSERT(dio->io_type == aio->io_type);
			ASSERT(dio->io_vdev_tree == t);

			if (dio->io_flags & ZIO_FLAG_NODATA) {
				ASSERT(dio->io_type == ZIO_TYPE_WRITE);
				bzero((char *)aio->io_data + (dio->io_offset -
				    aio->io_offset), dio->io_size);
			} else if (dio->io_type == ZIO_TYPE_WRITE) {
				bcopy(dio->io_data, (char *)aio->io_data +
				    (dio->io_offset - aio->io_offset),
				    dio->io_size);
			}

			zio_add_child(dio, aio);
			vdev_queue_io_remove(vq, dio);
			zio_vdev_io_bypass(dio);
			zio_execute(dio);
		} while (dio != lio);

		avl_add(&vq->vq_pending_tree, aio);

		return (aio);
	}

	ASSERT(fio->io_vdev_tree == t);
	vdev_queue_io_remove(vq, fio);

	/*
	 * If the I/O is or was optional and therefore has no data, we need to
	 * simply discard it. We need to drop the vdev queue's lock to avoid a
	 * deadlock that we could encounter since this I/O will complete
	 * immediately.
	 */
	if (fio->io_flags & ZIO_FLAG_NODATA) {
		mutex_exit(&vq->vq_lock);
		zio_vdev_io_bypass(fio);
		zio_execute(fio);
		mutex_enter(&vq->vq_lock);
		goto again;
	}

	avl_add(&vq->vq_pending_tree, fio);

	return (fio);
}

zio_t *
vdev_queue_io(zio_t *zio)
{
	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
	zio_t *nio;

	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);

	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
		return (zio);

	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;

	if (zio->io_type == ZIO_TYPE_READ)
		zio->io_vdev_tree = &vq->vq_read_tree;
	else
		zio->io_vdev_tree = &vq->vq_write_tree;

	mutex_enter(&vq->vq_lock);

	zio->io_deadline = (ddi_get_lbolt64() >> zfs_vdev_time_shift) +
	    zio->io_priority;

	vdev_queue_io_add(vq, zio);

	nio = vdev_queue_io_to_issue(vq, zfs_vdev_min_pending);

	mutex_exit(&vq->vq_lock);

	if (nio == NULL)
		return (NULL);

	if (nio->io_done == vdev_queue_agg_io_done) {
		zio_nowait(nio);
		return (NULL);
	}

	return (nio);
}

void
vdev_queue_io_done(zio_t *zio)
{
	vdev_queue_t *vq = &zio->io_vd->vdev_queue;

	mutex_enter(&vq->vq_lock);

	avl_remove(&vq->vq_pending_tree, zio);

	for (int i = 0; i < zfs_vdev_ramp_rate; i++) {
		zio_t *nio = vdev_queue_io_to_issue(vq, zfs_vdev_max_pending);
		if (nio == NULL)
			break;
		mutex_exit(&vq->vq_lock);
		if (nio->io_done == vdev_queue_agg_io_done) {
			zio_nowait(nio);
		} else {
			zio_vdev_io_reissue(nio);
			zio_execute(nio);
		}
		mutex_enter(&vq->vq_lock);
	}

	mutex_exit(&vq->vq_lock);
}