1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/vdev_impl.h>
#include <sys/zio.h>
#include <sys/fs/zfs.h>
/*
* Virtual device vector for mirroring.
*/
typedef struct mirror_child {
vdev_t *mc_vd;
uint64_t mc_offset;
int mc_error;
uint8_t mc_tried;
uint8_t mc_skipped;
uint8_t mc_speculative;
} mirror_child_t;
typedef struct mirror_map {
int mm_children;
int mm_replacing;
int mm_preferred;
int mm_root;
mirror_child_t mm_child[1];
} mirror_map_t;
int vdev_mirror_shift = 21;
static void
vdev_mirror_map_free(zio_t *zio)
{
mirror_map_t *mm = zio->io_vsd;
kmem_free(mm, offsetof(mirror_map_t, mm_child[mm->mm_children]));
}
static mirror_map_t *
vdev_mirror_map_alloc(zio_t *zio)
{
mirror_map_t *mm = NULL;
mirror_child_t *mc;
vdev_t *vd = zio->io_vd;
int c, d;
if (vd == NULL) {
dva_t *dva = zio->io_bp->blk_dva;
spa_t *spa = zio->io_spa;
c = BP_GET_NDVAS(zio->io_bp);
mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP);
mm->mm_children = c;
mm->mm_replacing = B_FALSE;
mm->mm_preferred = spa_get_random(c);
mm->mm_root = B_TRUE;
/*
* Check the other, lower-index DVAs to see if they're on
* the same vdev as the child we picked. If they are, use
* them since they are likely to have been allocated from
* the primary metaslab in use at the time, and hence are
* more likely to have locality with single-copy data.
*/
for (c = mm->mm_preferred, d = c - 1; d >= 0; d--) {
if (DVA_GET_VDEV(&dva[d]) == DVA_GET_VDEV(&dva[c]))
mm->mm_preferred = d;
}
for (c = 0; c < mm->mm_children; c++) {
mc = &mm->mm_child[c];
mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
}
} else {
c = vd->vdev_children;
mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP);
mm->mm_children = c;
mm->mm_replacing = (vd->vdev_ops == &vdev_replacing_ops ||
vd->vdev_ops == &vdev_spare_ops);
mm->mm_preferred = mm->mm_replacing ? 0 :
(zio->io_offset >> vdev_mirror_shift) % c;
mm->mm_root = B_FALSE;
for (c = 0; c < mm->mm_children; c++) {
mc = &mm->mm_child[c];
mc->mc_vd = vd->vdev_child[c];
mc->mc_offset = zio->io_offset;
}
}
zio->io_vsd = mm;
zio->io_vsd_free = vdev_mirror_map_free;
return (mm);
}
static int
vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *ashift)
{
vdev_t *cvd;
uint64_t c;
int numerrors = 0;
int ret, lasterror = 0;
if (vd->vdev_children == 0) {
vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
return (EINVAL);
}
for (c = 0; c < vd->vdev_children; c++) {
cvd = vd->vdev_child[c];
if ((ret = vdev_open(cvd)) != 0) {
lasterror = ret;
numerrors++;
continue;
}
*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
*ashift = MAX(*ashift, cvd->vdev_ashift);
}
if (numerrors == vd->vdev_children) {
vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
return (lasterror);
}
return (0);
}
static void
vdev_mirror_close(vdev_t *vd)
{
uint64_t c;
for (c = 0; c < vd->vdev_children; c++)
vdev_close(vd->vdev_child[c]);
}
static void
vdev_mirror_child_done(zio_t *zio)
{
mirror_child_t *mc = zio->io_private;
mc->mc_error = zio->io_error;
mc->mc_tried = 1;
mc->mc_skipped = 0;
}
static void
vdev_mirror_scrub_done(zio_t *zio)
{
mirror_child_t *mc = zio->io_private;
if (zio->io_error == 0) {
zio_t *pio = zio->io_parent;
mutex_enter(&pio->io_lock);
ASSERT3U(zio->io_size, >=, pio->io_size);
bcopy(zio->io_data, pio->io_data, pio->io_size);
mutex_exit(&pio->io_lock);
}
zio_buf_free(zio->io_data, zio->io_size);
mc->mc_error = zio->io_error;
mc->mc_tried = 1;
mc->mc_skipped = 0;
}
/*
* Try to find a child whose DTL doesn't contain the block we want to read.
* If we can't, try the read on any vdev we haven't already tried.
*/
static int
vdev_mirror_child_select(zio_t *zio)
{
mirror_map_t *mm = zio->io_vsd;
mirror_child_t *mc;
uint64_t txg = zio->io_txg;
int i, c;
ASSERT(zio->io_bp == NULL || zio->io_bp->blk_birth == txg);
/*
* Try to find a child whose DTL doesn't contain the block to read.
* If a child is known to be completely inaccessible (indicated by
* vdev_readable() returning B_FALSE), don't even try.
*/
for (i = 0, c = mm->mm_preferred; i < mm->mm_children; i++, c++) {
if (c >= mm->mm_children)
c = 0;
mc = &mm->mm_child[c];
if (mc->mc_tried || mc->mc_skipped)
continue;
if (!vdev_readable(mc->mc_vd)) {
mc->mc_error = ENXIO;
mc->mc_tried = 1; /* don't even try */
mc->mc_skipped = 1;
continue;
}
if (!vdev_dtl_contains(&mc->mc_vd->vdev_dtl_map, txg, 1))
return (c);
mc->mc_error = ESTALE;
mc->mc_skipped = 1;
mc->mc_speculative = 1;
}
/*
* Every device is either missing or has this txg in its DTL.
* Look for any child we haven't already tried before giving up.
*/
for (c = 0; c < mm->mm_children; c++)
if (!mm->mm_child[c].mc_tried)
return (c);
/*
* Every child failed. There's no place left to look.
*/
return (-1);
}
static int
vdev_mirror_io_start(zio_t *zio)
{
mirror_map_t *mm;
mirror_child_t *mc;
int c, children;
mm = vdev_mirror_map_alloc(zio);
if (zio->io_type == ZIO_TYPE_READ) {
if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_replacing) {
/*
* For scrubbing reads we need to allocate a read
* buffer for each child and issue reads to all
* children. If any child succeeds, it will copy its
* data into zio->io_data in vdev_mirror_scrub_done.
*/
for (c = 0; c < mm->mm_children; c++) {
mc = &mm->mm_child[c];
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
mc->mc_vd, mc->mc_offset,
zio_buf_alloc(zio->io_size), zio->io_size,
zio->io_type, zio->io_priority, 0,
vdev_mirror_scrub_done, mc));
}
return (ZIO_PIPELINE_CONTINUE);
}
/*
* For normal reads just pick one child.
*/
c = vdev_mirror_child_select(zio);
children = (c >= 0);
} else {
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
/*
* If this is a resilvering I/O to a replacing vdev,
* only the last child should be written -- unless the
* first child happens to have a DTL entry here as well.
* All other writes go to all children.
*/
if ((zio->io_flags & ZIO_FLAG_RESILVER) && mm->mm_replacing &&
!vdev_dtl_contains(&mm->mm_child[0].mc_vd->vdev_dtl_map,
zio->io_txg, 1)) {
c = mm->mm_children - 1;
children = 1;
} else {
c = 0;
children = mm->mm_children;
}
}
while (children--) {
mc = &mm->mm_child[c];
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size,
zio->io_type, zio->io_priority, 0,
vdev_mirror_child_done, mc));
c++;
}
return (ZIO_PIPELINE_CONTINUE);
}
static int
vdev_mirror_worst_error(mirror_map_t *mm)
{
int error[2] = { 0, 0 };
for (int c = 0; c < mm->mm_children; c++) {
mirror_child_t *mc = &mm->mm_child[c];
int s = mc->mc_speculative;
error[s] = zio_worst_error(error[s], mc->mc_error);
}
return (error[0] ? error[0] : error[1]);
}
static void
vdev_mirror_io_done(zio_t *zio)
{
mirror_map_t *mm = zio->io_vsd;
mirror_child_t *mc;
int c;
int good_copies = 0;
int unexpected_errors = 0;
for (c = 0; c < mm->mm_children; c++) {
mc = &mm->mm_child[c];
if (mc->mc_error) {
if (!mc->mc_skipped)
unexpected_errors++;
} else if (mc->mc_tried) {
good_copies++;
}
}
if (zio->io_type == ZIO_TYPE_WRITE) {
/*
* XXX -- for now, treat partial writes as success.
*
* Now that we support write reallocation, it would be better
* to treat partial failure as real failure unless there are
* no non-degraded top-level vdevs left, and not update DTLs
* if we intend to reallocate.
*/
/* XXPOLICY */
if (good_copies != mm->mm_children) {
/*
* Always require at least one good copy.
*
* For ditto blocks (io_vd == NULL), require
* all copies to be good.
*
* XXX -- for replacing vdevs, there's no great answer.
* If the old device is really dead, we may not even
* be able to access it -- so we only want to
* require good writes to the new device. But if
* the new device turns out to be flaky, we want
* to be able to detach it -- which requires all
* writes to the old device to have succeeded.
*/
if (good_copies == 0 || zio->io_vd == NULL)
zio->io_error = vdev_mirror_worst_error(mm);
}
return;
}
ASSERT(zio->io_type == ZIO_TYPE_READ);
/*
* If we don't have a good copy yet, keep trying other children.
*/
/* XXPOLICY */
if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
ASSERT(c >= 0 && c < mm->mm_children);
mc = &mm->mm_child[c];
zio_vdev_io_redone(zio);
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size,
ZIO_TYPE_READ, zio->io_priority, 0,
vdev_mirror_child_done, mc));
return;
}
/* XXPOLICY */
if (good_copies == 0) {
zio->io_error = vdev_mirror_worst_error(mm);
ASSERT(zio->io_error != 0);
}
if (good_copies && (spa_mode & FWRITE) &&
(unexpected_errors ||
(zio->io_flags & ZIO_FLAG_RESILVER) ||
((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_replacing))) {
/*
* Use the good data we have in hand to repair damaged children.
*/
for (c = 0; c < mm->mm_children; c++) {
/*
* Don't rewrite known good children.
* Not only is it unnecessary, it could
* actually be harmful: if the system lost
* power while rewriting the only good copy,
* there would be no good copies left!
*/
mc = &mm->mm_child[c];
if (mc->mc_error == 0) {
if (mc->mc_tried)
continue;
if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
!vdev_dtl_contains(&mc->mc_vd->vdev_dtl_map,
zio->io_txg, 1))
continue;
mc->mc_error = ESTALE;
}
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
mc->mc_vd, mc->mc_offset,
zio->io_data, zio->io_size,
ZIO_TYPE_WRITE, zio->io_priority,
ZIO_FLAG_IO_REPAIR, NULL, NULL));
}
}
}
static void
vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
{
if (faulted == vd->vdev_children)
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_NO_REPLICAS);
else if (degraded + faulted != 0)
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
else
vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
}
vdev_ops_t vdev_mirror_ops = {
vdev_mirror_open,
vdev_mirror_close,
vdev_default_asize,
vdev_mirror_io_start,
vdev_mirror_io_done,
vdev_mirror_state_change,
VDEV_TYPE_MIRROR, /* name of this vdev type */
B_FALSE /* not a leaf vdev */
};
vdev_ops_t vdev_replacing_ops = {
vdev_mirror_open,
vdev_mirror_close,
vdev_default_asize,
vdev_mirror_io_start,
vdev_mirror_io_done,
vdev_mirror_state_change,
VDEV_TYPE_REPLACING, /* name of this vdev type */
B_FALSE /* not a leaf vdev */
};
vdev_ops_t vdev_spare_ops = {
vdev_mirror_open,
vdev_mirror_close,
vdev_default_asize,
vdev_mirror_io_start,
vdev_mirror_io_done,
vdev_mirror_state_change,
VDEV_TYPE_SPARE, /* name of this vdev type */
B_FALSE /* not a leaf vdev */
};
|