aboutsummaryrefslogtreecommitdiffstats
path: root/module/zfs/vdev_indirect.c
blob: 724457df465ba0f76fad25494c6f3df0de11389f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
/*
 * CDDL HEADER START
 *
 * This file and its contents are supplied under the terms of the
 * Common Development and Distribution License ("CDDL"), version 1.0.
 * You may only use this file in accordance with the terms of version
 * 1.0 of the CDDL.
 *
 * A full copy of the text of the CDDL should have accompanied this
 * source.  A copy of the CDDL is also available via the Internet at
 * http://www.illumos.org/license/CDDL.
 *
 * CDDL HEADER END
 */

/*
 * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
 */

#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/vdev_impl.h>
#include <sys/fs/zfs.h>
#include <sys/zio.h>
#include <sys/zio_checksum.h>
#include <sys/metaslab.h>
#include <sys/refcount.h>
#include <sys/dmu.h>
#include <sys/vdev_indirect_mapping.h>
#include <sys/dmu_tx.h>
#include <sys/dsl_synctask.h>
#include <sys/zap.h>
#include <sys/abd.h>
#include <sys/zthr.h>

/*
 * An indirect vdev corresponds to a vdev that has been removed.  Since
 * we cannot rewrite block pointers of snapshots, etc., we keep a
 * mapping from old location on the removed device to the new location
 * on another device in the pool and use this mapping whenever we need
 * to access the DVA.  Unfortunately, this mapping did not respect
 * logical block boundaries when it was first created, and so a DVA on
 * this indirect vdev may be "split" into multiple sections that each
 * map to a different location.  As a consequence, not all DVAs can be
 * translated to an equivalent new DVA.  Instead we must provide a
 * "vdev_remap" operation that executes a callback on each contiguous
 * segment of the new location.  This function is used in multiple ways:
 *
 *  - i/os to this vdev use the callback to determine where the
 *    data is now located, and issue child i/os for each segment's new
 *    location.
 *
 *  - frees and claims to this vdev use the callback to free or claim
 *    each mapped segment.  (Note that we don't actually need to claim
 *    log blocks on indirect vdevs, because we don't allocate to
 *    removing vdevs.  However, zdb uses zio_claim() for its leak
 *    detection.)
 */

/*
 * "Big theory statement" for how we mark blocks obsolete.
 *
 * When a block on an indirect vdev is freed or remapped, a section of
 * that vdev's mapping may no longer be referenced (aka "obsolete").  We
 * keep track of how much of each mapping entry is obsolete.  When
 * an entry becomes completely obsolete, we can remove it, thus reducing
 * the memory used by the mapping.  The complete picture of obsolescence
 * is given by the following data structures, described below:
 *  - the entry-specific obsolete count
 *  - the vdev-specific obsolete spacemap
 *  - the pool-specific obsolete bpobj
 *
 * == On disk data structures used ==
 *
 * We track the obsolete space for the pool using several objects.  Each
 * of these objects is created on demand and freed when no longer
 * needed, and is assumed to be empty if it does not exist.
 * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects.
 *
 *  - Each vic_mapping_object (associated with an indirect vdev) can
 *    have a vimp_counts_object.  This is an array of uint32_t's
 *    with the same number of entries as the vic_mapping_object.  When
 *    the mapping is condensed, entries from the vic_obsolete_sm_object
 *    (see below) are folded into the counts.  Therefore, each
 *    obsolete_counts entry tells us the number of bytes in the
 *    corresponding mapping entry that were not referenced when the
 *    mapping was last condensed.
 *
 *  - Each indirect or removing vdev can have a vic_obsolete_sm_object.
 *    This is a space map containing an alloc entry for every DVA that
 *    has been obsoleted since the last time this indirect vdev was
 *    condensed.  We use this object in order to improve performance
 *    when marking a DVA as obsolete.  Instead of modifying an arbitrary
 *    offset of the vimp_counts_object, we only need to append an entry
 *    to the end of this object.  When a DVA becomes obsolete, it is
 *    added to the obsolete space map.  This happens when the DVA is
 *    freed, remapped and not referenced by a snapshot, or the last
 *    snapshot referencing it is destroyed.
 *
 *  - Each dataset can have a ds_remap_deadlist object.  This is a
 *    deadlist object containing all blocks that were remapped in this
 *    dataset but referenced in a previous snapshot.  Blocks can *only*
 *    appear on this list if they were remapped (dsl_dataset_block_remapped);
 *    blocks that were killed in a head dataset are put on the normal
 *    ds_deadlist and marked obsolete when they are freed.
 *
 *  - The pool can have a dp_obsolete_bpobj.  This is a list of blocks
 *    in the pool that need to be marked obsolete.  When a snapshot is
 *    destroyed, we move some of the ds_remap_deadlist to the obsolete
 *    bpobj (see dsl_destroy_snapshot_handle_remaps()).  We then
 *    asynchronously process the obsolete bpobj, moving its entries to
 *    the specific vdevs' obsolete space maps.
 *
 * == Summary of how we mark blocks as obsolete ==
 *
 * - When freeing a block: if any DVA is on an indirect vdev, append to
 *   vic_obsolete_sm_object.
 * - When remapping a block, add dva to ds_remap_deadlist (if prev snap
 *   references; otherwise append to vic_obsolete_sm_object).
 * - When freeing a snapshot: move parts of ds_remap_deadlist to
 *   dp_obsolete_bpobj (same algorithm as ds_deadlist).
 * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to
 *   individual vdev's vic_obsolete_sm_object.
 */

/*
 * "Big theory statement" for how we condense indirect vdevs.
 *
 * Condensing an indirect vdev's mapping is the process of determining
 * the precise counts of obsolete space for each mapping entry (by
 * integrating the obsolete spacemap into the obsolete counts) and
 * writing out a new mapping that contains only referenced entries.
 *
 * We condense a vdev when we expect the mapping to shrink (see
 * vdev_indirect_should_condense()), but only perform one condense at a
 * time to limit the memory usage.  In addition, we use a separate
 * open-context thread (spa_condense_indirect_thread) to incrementally
 * create the new mapping object in a way that minimizes the impact on
 * the rest of the system.
 *
 * == Generating a new mapping ==
 *
 * To generate a new mapping, we follow these steps:
 *
 * 1. Save the old obsolete space map and create a new mapping object
 *    (see spa_condense_indirect_start_sync()).  This initializes the
 *    spa_condensing_indirect_phys with the "previous obsolete space map",
 *    which is now read only.  Newly obsolete DVAs will be added to a
 *    new (initially empty) obsolete space map, and will not be
 *    considered as part of this condense operation.
 *
 * 2. Construct in memory the precise counts of obsolete space for each
 *    mapping entry, by incorporating the obsolete space map into the
 *    counts.  (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().)
 *
 * 3. Iterate through each mapping entry, writing to the new mapping any
 *    entries that are not completely obsolete (i.e. which don't have
 *    obsolete count == mapping length).  (See
 *    spa_condense_indirect_generate_new_mapping().)
 *
 * 4. Destroy the old mapping object and switch over to the new one
 *    (spa_condense_indirect_complete_sync).
 *
 * == Restarting from failure ==
 *
 * To restart the condense when we import/open the pool, we must start
 * at the 2nd step above: reconstruct the precise counts in memory,
 * based on the space map + counts.  Then in the 3rd step, we start
 * iterating where we left off: at vimp_max_offset of the new mapping
 * object.
 */

int zfs_condense_indirect_vdevs_enable = B_TRUE;

/*
 * Condense if at least this percent of the bytes in the mapping is
 * obsolete.  With the default of 25%, the amount of space mapped
 * will be reduced to 1% of its original size after at most 16
 * condenses.  Higher values will condense less often (causing less
 * i/o); lower values will reduce the mapping size more quickly.
 */
int zfs_indirect_condense_obsolete_pct = 25;

/*
 * Condense if the obsolete space map takes up more than this amount of
 * space on disk (logically).  This limits the amount of disk space
 * consumed by the obsolete space map; the default of 1GB is small enough
 * that we typically don't mind "wasting" it.
 */
unsigned long zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024;

/*
 * Don't bother condensing if the mapping uses less than this amount of
 * memory.  The default of 128KB is considered a "trivial" amount of
 * memory and not worth reducing.
 */
unsigned long zfs_condense_min_mapping_bytes = 128 * 1024;

/*
 * This is used by the test suite so that it can ensure that certain
 * actions happen while in the middle of a condense (which might otherwise
 * complete too quickly).  If used to reduce the performance impact of
 * condensing in production, a maximum value of 1 should be sufficient.
 */
int zfs_condense_indirect_commit_entry_delay_ms = 0;

/*
 * If an indirect split block contains more than this many possible unique
 * combinations when being reconstructed, consider it too computationally
 * expensive to check them all. Instead, try at most 100 randomly-selected
 * combinations each time the block is accessed.  This allows all segment
 * copies to participate fairly in the reconstruction when all combinations
 * cannot be checked and prevents repeated use of one bad copy.
 */
int zfs_reconstruct_indirect_combinations_max = 256;


/*
 * Enable to simulate damaged segments and validate reconstruction.  This
 * is intentionally not exposed as a module parameter.
 */
unsigned long zfs_reconstruct_indirect_damage_fraction = 0;

/*
 * The indirect_child_t represents the vdev that we will read from, when we
 * need to read all copies of the data (e.g. for scrub or reconstruction).
 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
 * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
 * ic_vdev is a child of the mirror.
 */
typedef struct indirect_child {
	abd_t *ic_data;
	vdev_t *ic_vdev;

	/*
	 * ic_duplicate is NULL when the ic_data contents are unique, when it
	 * is determined to be a duplicate it references the primary child.
	 */
	struct indirect_child *ic_duplicate;
	list_node_t ic_node; /* node on is_unique_child */
} indirect_child_t;

/*
 * The indirect_split_t represents one mapped segment of an i/o to the
 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
 * For split blocks, there will be several of these.
 */
typedef struct indirect_split {
	list_node_t is_node; /* link on iv_splits */

	/*
	 * is_split_offset is the offset into the i/o.
	 * This is the sum of the previous splits' is_size's.
	 */
	uint64_t is_split_offset;

	vdev_t *is_vdev; /* top-level vdev */
	uint64_t is_target_offset; /* offset on is_vdev */
	uint64_t is_size;
	int is_children; /* number of entries in is_child[] */
	int is_unique_children; /* number of entries in is_unique_child */
	list_t is_unique_child;

	/*
	 * is_good_child is the child that we are currently using to
	 * attempt reconstruction.
	 */
	indirect_child_t *is_good_child;

	indirect_child_t is_child[1]; /* variable-length */
} indirect_split_t;

/*
 * The indirect_vsd_t is associated with each i/o to the indirect vdev.
 * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
 */
typedef struct indirect_vsd {
	boolean_t iv_split_block;
	boolean_t iv_reconstruct;
	uint64_t iv_unique_combinations;
	uint64_t iv_attempts;
	uint64_t iv_attempts_max;

	list_t iv_splits; /* list of indirect_split_t's */
} indirect_vsd_t;

static void
vdev_indirect_map_free(zio_t *zio)
{
	indirect_vsd_t *iv = zio->io_vsd;

	indirect_split_t *is;
	while ((is = list_head(&iv->iv_splits)) != NULL) {
		for (int c = 0; c < is->is_children; c++) {
			indirect_child_t *ic = &is->is_child[c];
			if (ic->ic_data != NULL)
				abd_free(ic->ic_data);
		}
		list_remove(&iv->iv_splits, is);

		indirect_child_t *ic;
		while ((ic = list_head(&is->is_unique_child)) != NULL)
			list_remove(&is->is_unique_child, ic);

		list_destroy(&is->is_unique_child);

		kmem_free(is,
		    offsetof(indirect_split_t, is_child[is->is_children]));
	}
	kmem_free(iv, sizeof (*iv));
}

static const zio_vsd_ops_t vdev_indirect_vsd_ops = {
	.vsd_free = vdev_indirect_map_free,
	.vsd_cksum_report = zio_vsd_default_cksum_report
};

/*
 * Mark the given offset and size as being obsolete.
 */
void
vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size)
{
	spa_t *spa = vd->vdev_spa;

	ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0);
	ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
	ASSERT(size > 0);
	VERIFY(vdev_indirect_mapping_entry_for_offset(
	    vd->vdev_indirect_mapping, offset) != NULL);

	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
		mutex_enter(&vd->vdev_obsolete_lock);
		range_tree_add(vd->vdev_obsolete_segments, offset, size);
		mutex_exit(&vd->vdev_obsolete_lock);
		vdev_dirty(vd, 0, NULL, spa_syncing_txg(spa));
	}
}

/*
 * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This
 * wrapper is provided because the DMU does not know about vdev_t's and
 * cannot directly call vdev_indirect_mark_obsolete.
 */
void
spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset,
    uint64_t size, dmu_tx_t *tx)
{
	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
	ASSERT(dmu_tx_is_syncing(tx));

	/* The DMU can only remap indirect vdevs. */
	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
	vdev_indirect_mark_obsolete(vd, offset, size);
}

static spa_condensing_indirect_t *
spa_condensing_indirect_create(spa_t *spa)
{
	spa_condensing_indirect_phys_t *scip =
	    &spa->spa_condensing_indirect_phys;
	spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP);
	objset_t *mos = spa->spa_meta_objset;

	for (int i = 0; i < TXG_SIZE; i++) {
		list_create(&sci->sci_new_mapping_entries[i],
		    sizeof (vdev_indirect_mapping_entry_t),
		    offsetof(vdev_indirect_mapping_entry_t, vime_node));
	}

	sci->sci_new_mapping =
	    vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object);

	return (sci);
}

static void
spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci)
{
	for (int i = 0; i < TXG_SIZE; i++)
		list_destroy(&sci->sci_new_mapping_entries[i]);

	if (sci->sci_new_mapping != NULL)
		vdev_indirect_mapping_close(sci->sci_new_mapping);

	kmem_free(sci, sizeof (*sci));
}

boolean_t
vdev_indirect_should_condense(vdev_t *vd)
{
	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
	spa_t *spa = vd->vdev_spa;

	ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool));

	if (!zfs_condense_indirect_vdevs_enable)
		return (B_FALSE);

	/*
	 * We can only condense one indirect vdev at a time.
	 */
	if (spa->spa_condensing_indirect != NULL)
		return (B_FALSE);

	if (spa_shutting_down(spa))
		return (B_FALSE);

	/*
	 * The mapping object size must not change while we are
	 * condensing, so we can only condense indirect vdevs
	 * (not vdevs that are still in the middle of being removed).
	 */
	if (vd->vdev_ops != &vdev_indirect_ops)
		return (B_FALSE);

	/*
	 * If nothing new has been marked obsolete, there is no
	 * point in condensing.
	 */
	ASSERTV(uint64_t obsolete_sm_obj);
	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_obj));
	if (vd->vdev_obsolete_sm == NULL) {
		ASSERT0(obsolete_sm_obj);
		return (B_FALSE);
	}

	ASSERT(vd->vdev_obsolete_sm != NULL);

	ASSERT3U(obsolete_sm_obj, ==, space_map_object(vd->vdev_obsolete_sm));

	uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim);
	uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm);
	uint64_t mapping_size = vdev_indirect_mapping_size(vim);
	uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm);

	ASSERT3U(bytes_obsolete, <=, bytes_mapped);

	/*
	 * If a high percentage of the bytes that are mapped have become
	 * obsolete, condense (unless the mapping is already small enough).
	 * This has a good chance of reducing the amount of memory used
	 * by the mapping.
	 */
	if (bytes_obsolete * 100 / bytes_mapped >=
	    zfs_indirect_condense_obsolete_pct &&
	    mapping_size > zfs_condense_min_mapping_bytes) {
		zfs_dbgmsg("should condense vdev %llu because obsolete "
		    "spacemap covers %d%% of %lluMB mapping",
		    (u_longlong_t)vd->vdev_id,
		    (int)(bytes_obsolete * 100 / bytes_mapped),
		    (u_longlong_t)bytes_mapped / 1024 / 1024);
		return (B_TRUE);
	}

	/*
	 * If the obsolete space map takes up too much space on disk,
	 * condense in order to free up this disk space.
	 */
	if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) {
		zfs_dbgmsg("should condense vdev %llu because obsolete sm "
		    "length %lluMB >= max size %lluMB",
		    (u_longlong_t)vd->vdev_id,
		    (u_longlong_t)obsolete_sm_size / 1024 / 1024,
		    (u_longlong_t)zfs_condense_max_obsolete_bytes /
		    1024 / 1024);
		return (B_TRUE);
	}

	return (B_FALSE);
}

/*
 * This sync task completes (finishes) a condense, deleting the old
 * mapping and replacing it with the new one.
 */
static void
spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx)
{
	spa_condensing_indirect_t *sci = arg;
	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
	spa_condensing_indirect_phys_t *scip =
	    &spa->spa_condensing_indirect_phys;
	vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev);
	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
	objset_t *mos = spa->spa_meta_objset;
	vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
	uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping);
	uint64_t new_count =
	    vdev_indirect_mapping_num_entries(sci->sci_new_mapping);

	ASSERT(dmu_tx_is_syncing(tx));
	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
	ASSERT3P(sci, ==, spa->spa_condensing_indirect);
	for (int i = 0; i < TXG_SIZE; i++) {
		ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
	}
	ASSERT(vic->vic_mapping_object != 0);
	ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
	ASSERT(scip->scip_next_mapping_object != 0);
	ASSERT(scip->scip_prev_obsolete_sm_object != 0);

	/*
	 * Reset vdev_indirect_mapping to refer to the new object.
	 */
	rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER);
	vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
	vd->vdev_indirect_mapping = sci->sci_new_mapping;
	rw_exit(&vd->vdev_indirect_rwlock);

	sci->sci_new_mapping = NULL;
	vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
	vic->vic_mapping_object = scip->scip_next_mapping_object;
	scip->scip_next_mapping_object = 0;

	space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx);
	spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
	scip->scip_prev_obsolete_sm_object = 0;

	scip->scip_vdev = 0;

	VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
	    DMU_POOL_CONDENSING_INDIRECT, tx));
	spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
	spa->spa_condensing_indirect = NULL;

	zfs_dbgmsg("finished condense of vdev %llu in txg %llu: "
	    "new mapping object %llu has %llu entries "
	    "(was %llu entries)",
	    vd->vdev_id, dmu_tx_get_txg(tx), vic->vic_mapping_object,
	    new_count, old_count);

	vdev_config_dirty(spa->spa_root_vdev);
}

/*
 * This sync task appends entries to the new mapping object.
 */
static void
spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx)
{
	spa_condensing_indirect_t *sci = arg;
	uint64_t txg = dmu_tx_get_txg(tx);
	ASSERTV(spa_t *spa = dmu_tx_pool(tx)->dp_spa);

	ASSERT(dmu_tx_is_syncing(tx));
	ASSERT3P(sci, ==, spa->spa_condensing_indirect);

	vdev_indirect_mapping_add_entries(sci->sci_new_mapping,
	    &sci->sci_new_mapping_entries[txg & TXG_MASK], tx);
	ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK]));
}

/*
 * Open-context function to add one entry to the new mapping.  The new
 * entry will be remembered and written from syncing context.
 */
static void
spa_condense_indirect_commit_entry(spa_t *spa,
    vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count)
{
	spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;

	ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst));

	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
	dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count));
	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;

	/*
	 * If we are the first entry committed this txg, kick off the sync
	 * task to write to the MOS on our behalf.
	 */
	if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) {
		dsl_sync_task_nowait(dmu_tx_pool(tx),
		    spa_condense_indirect_commit_sync, sci,
		    0, ZFS_SPACE_CHECK_NONE, tx);
	}

	vdev_indirect_mapping_entry_t *vime =
	    kmem_alloc(sizeof (*vime), KM_SLEEP);
	vime->vime_mapping = *vimep;
	vime->vime_obsolete_count = count;
	list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime);

	dmu_tx_commit(tx);
}

static void
spa_condense_indirect_generate_new_mapping(vdev_t *vd,
    uint32_t *obsolete_counts, uint64_t start_index, zthr_t *zthr)
{
	spa_t *spa = vd->vdev_spa;
	uint64_t mapi = start_index;
	vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
	uint64_t old_num_entries =
	    vdev_indirect_mapping_num_entries(old_mapping);

	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
	ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev);

	zfs_dbgmsg("starting condense of vdev %llu from index %llu",
	    (u_longlong_t)vd->vdev_id,
	    (u_longlong_t)mapi);

	while (mapi < old_num_entries) {

		if (zthr_iscancelled(zthr)) {
			zfs_dbgmsg("pausing condense of vdev %llu "
			    "at index %llu", (u_longlong_t)vd->vdev_id,
			    (u_longlong_t)mapi);
			break;
		}

		vdev_indirect_mapping_entry_phys_t *entry =
		    &old_mapping->vim_entries[mapi];
		uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst);
		ASSERT3U(obsolete_counts[mapi], <=, entry_size);
		if (obsolete_counts[mapi] < entry_size) {
			spa_condense_indirect_commit_entry(spa, entry,
			    obsolete_counts[mapi]);

			/*
			 * This delay may be requested for testing, debugging,
			 * or performance reasons.
			 */
			hrtime_t now = gethrtime();
			hrtime_t sleep_until = now + MSEC2NSEC(
			    zfs_condense_indirect_commit_entry_delay_ms);
			zfs_sleep_until(sleep_until);
		}

		mapi++;
	}
}

/* ARGSUSED */
static boolean_t
spa_condense_indirect_thread_check(void *arg, zthr_t *zthr)
{
	spa_t *spa = arg;

	return (spa->spa_condensing_indirect != NULL);
}

/* ARGSUSED */
static int
spa_condense_indirect_thread(void *arg, zthr_t *zthr)
{
	spa_t *spa = arg;
	vdev_t *vd;

	ASSERT3P(spa->spa_condensing_indirect, !=, NULL);
	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
	vd = vdev_lookup_top(spa, spa->spa_condensing_indirect_phys.scip_vdev);
	ASSERT3P(vd, !=, NULL);
	spa_config_exit(spa, SCL_VDEV, FTAG);

	spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
	spa_condensing_indirect_phys_t *scip =
	    &spa->spa_condensing_indirect_phys;
	uint32_t *counts;
	uint64_t start_index;
	vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
	space_map_t *prev_obsolete_sm = NULL;

	ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
	ASSERT(scip->scip_next_mapping_object != 0);
	ASSERT(scip->scip_prev_obsolete_sm_object != 0);
	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);

	for (int i = 0; i < TXG_SIZE; i++) {
		/*
		 * The list must start out empty in order for the
		 * _commit_sync() sync task to be properly registered
		 * on the first call to _commit_entry(); so it's wise
		 * to double check and ensure we actually are starting
		 * with empty lists.
		 */
		ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
	}

	VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
	    scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
	space_map_update(prev_obsolete_sm);
	counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping);
	if (prev_obsolete_sm != NULL) {
		vdev_indirect_mapping_load_obsolete_spacemap(old_mapping,
		    counts, prev_obsolete_sm);
	}
	space_map_close(prev_obsolete_sm);

	/*
	 * Generate new mapping.  Determine what index to continue from
	 * based on the max offset that we've already written in the
	 * new mapping.
	 */
	uint64_t max_offset =
	    vdev_indirect_mapping_max_offset(sci->sci_new_mapping);
	if (max_offset == 0) {
		/* We haven't written anything to the new mapping yet. */
		start_index = 0;
	} else {
		/*
		 * Pick up from where we left off. _entry_for_offset()
		 * returns a pointer into the vim_entries array. If
		 * max_offset is greater than any of the mappings
		 * contained in the table  NULL will be returned and
		 * that indicates we've exhausted our iteration of the
		 * old_mapping.
		 */

		vdev_indirect_mapping_entry_phys_t *entry =
		    vdev_indirect_mapping_entry_for_offset_or_next(old_mapping,
		    max_offset);

		if (entry == NULL) {
			/*
			 * We've already written the whole new mapping.
			 * This special value will cause us to skip the
			 * generate_new_mapping step and just do the sync
			 * task to complete the condense.
			 */
			start_index = UINT64_MAX;
		} else {
			start_index = entry - old_mapping->vim_entries;
			ASSERT3U(start_index, <,
			    vdev_indirect_mapping_num_entries(old_mapping));
		}
	}

	spa_condense_indirect_generate_new_mapping(vd, counts,
	    start_index, zthr);

	vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts);

	/*
	 * If the zthr has received a cancellation signal while running
	 * in generate_new_mapping() or at any point after that, then bail
	 * early. We don't want to complete the condense if the spa is
	 * shutting down.
	 */
	if (zthr_iscancelled(zthr))
		return (0);

	VERIFY0(dsl_sync_task(spa_name(spa), NULL,
	    spa_condense_indirect_complete_sync, sci, 0,
	    ZFS_SPACE_CHECK_EXTRA_RESERVED));

	return (0);
}

/*
 * Sync task to begin the condensing process.
 */
void
spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx)
{
	spa_t *spa = vd->vdev_spa;
	spa_condensing_indirect_phys_t *scip =
	    &spa->spa_condensing_indirect_phys;

	ASSERT0(scip->scip_next_mapping_object);
	ASSERT0(scip->scip_prev_obsolete_sm_object);
	ASSERT0(scip->scip_vdev);
	ASSERT(dmu_tx_is_syncing(tx));
	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS));
	ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping));

	uint64_t obsolete_sm_obj;
	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_obj));
	ASSERT3U(obsolete_sm_obj, !=, 0);

	scip->scip_vdev = vd->vdev_id;
	scip->scip_next_mapping_object =
	    vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx);

	scip->scip_prev_obsolete_sm_object = obsolete_sm_obj;

	/*
	 * We don't need to allocate a new space map object, since
	 * vdev_indirect_sync_obsolete will allocate one when needed.
	 */
	space_map_close(vd->vdev_obsolete_sm);
	vd->vdev_obsolete_sm = NULL;
	VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
	    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));

	VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
	    DMU_POOL_DIRECTORY_OBJECT,
	    DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
	    sizeof (*scip) / sizeof (uint64_t), scip, tx));

	ASSERT3P(spa->spa_condensing_indirect, ==, NULL);
	spa->spa_condensing_indirect = spa_condensing_indirect_create(spa);

	zfs_dbgmsg("starting condense of vdev %llu in txg %llu: "
	    "posm=%llu nm=%llu",
	    vd->vdev_id, dmu_tx_get_txg(tx),
	    (u_longlong_t)scip->scip_prev_obsolete_sm_object,
	    (u_longlong_t)scip->scip_next_mapping_object);

	zthr_wakeup(spa->spa_condense_zthr);
}

/*
 * Sync to the given vdev's obsolete space map any segments that are no longer
 * referenced as of the given txg.
 *
 * If the obsolete space map doesn't exist yet, create and open it.
 */
void
vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx)
{
	spa_t *spa = vd->vdev_spa;
	ASSERTV(vdev_indirect_config_t *vic = &vd->vdev_indirect_config);

	ASSERT3U(vic->vic_mapping_object, !=, 0);
	ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0);
	ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS));

	uint64_t obsolete_sm_object;
	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
	if (obsolete_sm_object == 0) {
		obsolete_sm_object = space_map_alloc(spa->spa_meta_objset,
		    vdev_standard_sm_blksz, tx);

		ASSERT(vd->vdev_top_zap != 0);
		VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
		    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM,
		    sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx));
		ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
		ASSERT3U(obsolete_sm_object, !=, 0);

		spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
		VERIFY0(space_map_open(&vd->vdev_obsolete_sm,
		    spa->spa_meta_objset, obsolete_sm_object,
		    0, vd->vdev_asize, 0));
		space_map_update(vd->vdev_obsolete_sm);
	}

	ASSERT(vd->vdev_obsolete_sm != NULL);
	ASSERT3U(obsolete_sm_object, ==,
	    space_map_object(vd->vdev_obsolete_sm));

	space_map_write(vd->vdev_obsolete_sm,
	    vd->vdev_obsolete_segments, SM_ALLOC, SM_NO_VDEVID, tx);
	space_map_update(vd->vdev_obsolete_sm);
	range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
}

int
spa_condense_init(spa_t *spa)
{
	int error = zap_lookup(spa->spa_meta_objset,
	    DMU_POOL_DIRECTORY_OBJECT,
	    DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
	    sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t),
	    &spa->spa_condensing_indirect_phys);
	if (error == 0) {
		if (spa_writeable(spa)) {
			spa->spa_condensing_indirect =
			    spa_condensing_indirect_create(spa);
		}
		return (0);
	} else if (error == ENOENT) {
		return (0);
	} else {
		return (error);
	}
}

void
spa_condense_fini(spa_t *spa)
{
	if (spa->spa_condensing_indirect != NULL) {
		spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
		spa->spa_condensing_indirect = NULL;
	}
}

void
spa_start_indirect_condensing_thread(spa_t *spa)
{
	ASSERT3P(spa->spa_condense_zthr, ==, NULL);
	spa->spa_condense_zthr = zthr_create(spa_condense_indirect_thread_check,
	    spa_condense_indirect_thread, spa);
}

/*
 * Gets the obsolete spacemap object from the vdev's ZAP.  On success sm_obj
 * will contain either the obsolete spacemap object or zero if none exists.
 * All other errors are returned to the caller.
 */
int
vdev_obsolete_sm_object(vdev_t *vd, uint64_t *sm_obj)
{
	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));

	if (vd->vdev_top_zap == 0) {
		*sm_obj = 0;
		return (0);
	}

	int error = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
	    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (sm_obj), 1, sm_obj);
	if (error == ENOENT) {
		*sm_obj = 0;
		error = 0;
	}

	return (error);
}

/*
 * Gets the obsolete count are precise spacemap object from the vdev's ZAP.
 * On success are_precise will be set to reflect if the counts are precise.
 * All other errors are returned to the caller.
 */
int
vdev_obsolete_counts_are_precise(vdev_t *vd, boolean_t *are_precise)
{
	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));

	if (vd->vdev_top_zap == 0) {
		*are_precise = B_FALSE;
		return (0);
	}

	uint64_t val = 0;
	int error = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
	    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val);
	if (error == 0) {
		*are_precise = (val != 0);
	} else if (error == ENOENT) {
		*are_precise = B_FALSE;
		error = 0;
	}

	return (error);
}

/* ARGSUSED */
static void
vdev_indirect_close(vdev_t *vd)
{
}

/* ARGSUSED */
static int
vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
    uint64_t *ashift)
{
	*psize = *max_psize = vd->vdev_asize +
	    VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
	*ashift = vd->vdev_ashift;
	return (0);
}

typedef struct remap_segment {
	vdev_t *rs_vd;
	uint64_t rs_offset;
	uint64_t rs_asize;
	uint64_t rs_split_offset;
	list_node_t rs_node;
} remap_segment_t;

remap_segment_t *
rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
{
	remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP);
	rs->rs_vd = vd;
	rs->rs_offset = offset;
	rs->rs_asize = asize;
	rs->rs_split_offset = split_offset;
	return (rs);
}

/*
 * Given an indirect vdev and an extent on that vdev, it duplicates the
 * physical entries of the indirect mapping that correspond to the extent
 * to a new array and returns a pointer to it. In addition, copied_entries
 * is populated with the number of mapping entries that were duplicated.
 *
 * Note that the function assumes that the caller holds vdev_indirect_rwlock.
 * This ensures that the mapping won't change due to condensing as we
 * copy over its contents.
 *
 * Finally, since we are doing an allocation, it is up to the caller to
 * free the array allocated in this function.
 */
vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
    uint64_t asize, uint64_t *copied_entries)
{
	vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
	uint64_t entries = 0;

	ASSERT(RW_READ_HELD(&vd->vdev_indirect_rwlock));

	vdev_indirect_mapping_entry_phys_t *first_mapping =
	    vdev_indirect_mapping_entry_for_offset(vim, offset);
	ASSERT3P(first_mapping, !=, NULL);

	vdev_indirect_mapping_entry_phys_t *m = first_mapping;
	while (asize > 0) {
		uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);

		ASSERT3U(offset, >=, DVA_MAPPING_GET_SRC_OFFSET(m));
		ASSERT3U(offset, <, DVA_MAPPING_GET_SRC_OFFSET(m) + size);

		uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
		uint64_t inner_size = MIN(asize, size - inner_offset);

		offset += inner_size;
		asize -= inner_size;
		entries++;
		m++;
	}

	size_t copy_length = entries * sizeof (*first_mapping);
	duplicate_mappings = kmem_alloc(copy_length, KM_SLEEP);
	bcopy(first_mapping, duplicate_mappings, copy_length);
	*copied_entries = entries;

	return (duplicate_mappings);
}

/*
 * Goes through the relevant indirect mappings until it hits a concrete vdev
 * and issues the callback. On the way to the concrete vdev, if any other
 * indirect vdevs are encountered, then the callback will also be called on
 * each of those indirect vdevs. For example, if the segment is mapped to
 * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is
 * mapped to segment B on concrete vdev 2, then the callback will be called on
 * both vdev 1 and vdev 2.
 *
 * While the callback passed to vdev_indirect_remap() is called on every vdev
 * the function encounters, certain callbacks only care about concrete vdevs.
 * These types of callbacks should return immediately and explicitly when they
 * are called on an indirect vdev.
 *
 * Because there is a possibility that a DVA section in the indirect device
 * has been split into multiple sections in our mapping, we keep track
 * of the relevant contiguous segments of the new location (remap_segment_t)
 * in a stack. This way we can call the callback for each of the new sections
 * created by a single section of the indirect device. Note though, that in
 * this scenario the callbacks in each split block won't occur in-order in
 * terms of offset, so callers should not make any assumptions about that.
 *
 * For callbacks that don't handle split blocks and immediately return when
 * they encounter them (as is the case for remap_blkptr_cb), the caller can
 * assume that its callback will be applied from the first indirect vdev
 * encountered to the last one and then the concrete vdev, in that order.
 */
static void
vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize,
    void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg)
{
	list_t stack;
	spa_t *spa = vd->vdev_spa;

	list_create(&stack, sizeof (remap_segment_t),
	    offsetof(remap_segment_t, rs_node));

	for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
	    rs != NULL; rs = list_remove_head(&stack)) {
		vdev_t *v = rs->rs_vd;
		uint64_t num_entries = 0;

		ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
		ASSERT(rs->rs_asize > 0);

		/*
		 * Note: As this function can be called from open context
		 * (e.g. zio_read()), we need the following rwlock to
		 * prevent the mapping from being changed by condensing.
		 *
		 * So we grab the lock and we make a copy of the entries
		 * that are relevant to the extent that we are working on.
		 * Once that is done, we drop the lock and iterate over
		 * our copy of the mapping. Once we are done with the with
		 * the remap segment and we free it, we also free our copy
		 * of the indirect mapping entries that are relevant to it.
		 *
		 * This way we don't need to wait until the function is
		 * finished with a segment, to condense it. In addition, we
		 * don't need a recursive rwlock for the case that a call to
		 * vdev_indirect_remap() needs to call itself (through the
		 * codepath of its callback) for the same vdev in the middle
		 * of its execution.
		 */
		rw_enter(&v->vdev_indirect_rwlock, RW_READER);
		ASSERT3P(v->vdev_indirect_mapping, !=, NULL);

		vdev_indirect_mapping_entry_phys_t *mapping =
		    vdev_indirect_mapping_duplicate_adjacent_entries(v,
		    rs->rs_offset, rs->rs_asize, &num_entries);
		ASSERT3P(mapping, !=, NULL);
		ASSERT3U(num_entries, >, 0);
		rw_exit(&v->vdev_indirect_rwlock);

		for (uint64_t i = 0; i < num_entries; i++) {
			/*
			 * Note: the vdev_indirect_mapping can not change
			 * while we are running.  It only changes while the
			 * removal is in progress, and then only from syncing
			 * context. While a removal is in progress, this
			 * function is only called for frees, which also only
			 * happen from syncing context.
			 */
			vdev_indirect_mapping_entry_phys_t *m = &mapping[i];

			ASSERT3P(m, !=, NULL);
			ASSERT3U(rs->rs_asize, >, 0);

			uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
			uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
			uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);

			ASSERT3U(rs->rs_offset, >=,
			    DVA_MAPPING_GET_SRC_OFFSET(m));
			ASSERT3U(rs->rs_offset, <,
			    DVA_MAPPING_GET_SRC_OFFSET(m) + size);
			ASSERT3U(dst_vdev, !=, v->vdev_id);

			uint64_t inner_offset = rs->rs_offset -
			    DVA_MAPPING_GET_SRC_OFFSET(m);
			uint64_t inner_size =
			    MIN(rs->rs_asize, size - inner_offset);

			vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
			ASSERT3P(dst_v, !=, NULL);

			if (dst_v->vdev_ops == &vdev_indirect_ops) {
				list_insert_head(&stack,
				    rs_alloc(dst_v, dst_offset + inner_offset,
				    inner_size, rs->rs_split_offset));

			}

			if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) &&
			    IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) {
				/*
				 * Note: This clause exists only solely for
				 * testing purposes. We use it to ensure that
				 * split blocks work and that the callbacks
				 * using them yield the same result if issued
				 * in reverse order.
				 */
				uint64_t inner_half = inner_size / 2;

				func(rs->rs_split_offset + inner_half, dst_v,
				    dst_offset + inner_offset + inner_half,
				    inner_half, arg);

				func(rs->rs_split_offset, dst_v,
				    dst_offset + inner_offset,
				    inner_half, arg);
			} else {
				func(rs->rs_split_offset, dst_v,
				    dst_offset + inner_offset,
				    inner_size, arg);
			}

			rs->rs_offset += inner_size;
			rs->rs_asize -= inner_size;
			rs->rs_split_offset += inner_size;
		}
		VERIFY0(rs->rs_asize);

		kmem_free(mapping, num_entries * sizeof (*mapping));
		kmem_free(rs, sizeof (remap_segment_t));
	}
	list_destroy(&stack);
}

static void
vdev_indirect_child_io_done(zio_t *zio)
{
	zio_t *pio = zio->io_private;

	mutex_enter(&pio->io_lock);
	pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
	mutex_exit(&pio->io_lock);

	abd_put(zio->io_abd);
}

/*
 * This is a callback for vdev_indirect_remap() which allocates an
 * indirect_split_t for each split segment and adds it to iv_splits.
 */
static void
vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
    uint64_t size, void *arg)
{
	zio_t *zio = arg;
	indirect_vsd_t *iv = zio->io_vsd;

	ASSERT3P(vd, !=, NULL);

	if (vd->vdev_ops == &vdev_indirect_ops)
		return;

	int n = 1;
	if (vd->vdev_ops == &vdev_mirror_ops)
		n = vd->vdev_children;

	indirect_split_t *is =
	    kmem_zalloc(offsetof(indirect_split_t, is_child[n]), KM_SLEEP);

	is->is_children = n;
	is->is_size = size;
	is->is_split_offset = split_offset;
	is->is_target_offset = offset;
	is->is_vdev = vd;
	list_create(&is->is_unique_child, sizeof (indirect_child_t),
	    offsetof(indirect_child_t, ic_node));

	/*
	 * Note that we only consider multiple copies of the data for
	 * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
	 * though they use the same ops as mirror, because there's only one
	 * "good" copy under the replacing/spare.
	 */
	if (vd->vdev_ops == &vdev_mirror_ops) {
		for (int i = 0; i < n; i++) {
			is->is_child[i].ic_vdev = vd->vdev_child[i];
			list_link_init(&is->is_child[i].ic_node);
		}
	} else {
		is->is_child[0].ic_vdev = vd;
	}

	list_insert_tail(&iv->iv_splits, is);
}

static void
vdev_indirect_read_split_done(zio_t *zio)
{
	indirect_child_t *ic = zio->io_private;

	if (zio->io_error != 0) {
		/*
		 * Clear ic_data to indicate that we do not have data for this
		 * child.
		 */
		abd_free(ic->ic_data);
		ic->ic_data = NULL;
	}
}

/*
 * Issue reads for all copies (mirror children) of all splits.
 */
static void
vdev_indirect_read_all(zio_t *zio)
{
	indirect_vsd_t *iv = zio->io_vsd;

	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);

	for (indirect_split_t *is = list_head(&iv->iv_splits);
	    is != NULL; is = list_next(&iv->iv_splits, is)) {
		for (int i = 0; i < is->is_children; i++) {
			indirect_child_t *ic = &is->is_child[i];

			if (!vdev_readable(ic->ic_vdev))
				continue;

			/*
			 * Note, we may read from a child whose DTL
			 * indicates that the data may not be present here.
			 * While this might result in a few i/os that will
			 * likely return incorrect data, it simplifies the
			 * code since we can treat scrub and resilver
			 * identically.  (The incorrect data will be
			 * detected and ignored when we verify the
			 * checksum.)
			 */

			ic->ic_data = abd_alloc_sametype(zio->io_abd,
			    is->is_size);
			ic->ic_duplicate = NULL;

			zio_nowait(zio_vdev_child_io(zio, NULL,
			    ic->ic_vdev, is->is_target_offset, ic->ic_data,
			    is->is_size, zio->io_type, zio->io_priority, 0,
			    vdev_indirect_read_split_done, ic));
		}
	}
	iv->iv_reconstruct = B_TRUE;
}

static void
vdev_indirect_io_start(zio_t *zio)
{
	ASSERTV(spa_t *spa = zio->io_spa);
	indirect_vsd_t *iv = kmem_zalloc(sizeof (*iv), KM_SLEEP);
	list_create(&iv->iv_splits,
	    sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));

	zio->io_vsd = iv;
	zio->io_vsd_ops = &vdev_indirect_vsd_ops;

	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
	if (zio->io_type != ZIO_TYPE_READ) {
		ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
		/*
		 * Note: this code can handle other kinds of writes,
		 * but we don't expect them.
		 */
		ASSERT((zio->io_flags & (ZIO_FLAG_SELF_HEAL |
		    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
	}

	vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
	    vdev_indirect_gather_splits, zio);

	indirect_split_t *first = list_head(&iv->iv_splits);
	if (first->is_size == zio->io_size) {
		/*
		 * This is not a split block; we are pointing to the entire
		 * data, which will checksum the same as the original data.
		 * Pass the BP down so that the child i/o can verify the
		 * checksum, and try a different location if available
		 * (e.g. on a mirror).
		 *
		 * While this special case could be handled the same as the
		 * general (split block) case, doing it this way ensures
		 * that the vast majority of blocks on indirect vdevs
		 * (which are not split) are handled identically to blocks
		 * on non-indirect vdevs.  This allows us to be less strict
		 * about performance in the general (but rare) case.
		 */
		ASSERT0(first->is_split_offset);
		ASSERT3P(list_next(&iv->iv_splits, first), ==, NULL);
		zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
		    first->is_vdev, first->is_target_offset,
		    abd_get_offset(zio->io_abd, 0),
		    zio->io_size, zio->io_type, zio->io_priority, 0,
		    vdev_indirect_child_io_done, zio));
	} else {
		iv->iv_split_block = B_TRUE;
		if (zio->io_type == ZIO_TYPE_READ &&
		    zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
			/*
			 * Read all copies.  Note that for simplicity,
			 * we don't bother consulting the DTL in the
			 * resilver case.
			 */
			vdev_indirect_read_all(zio);
		} else {
			/*
			 * If this is a read zio, we read one copy of each
			 * split segment, from the top-level vdev.  Since
			 * we don't know the checksum of each split
			 * individually, the child zio can't ensure that
			 * we get the right data. E.g. if it's a mirror,
			 * it will just read from a random (healthy) leaf
			 * vdev. We have to verify the checksum in
			 * vdev_indirect_io_done().
			 *
			 * For write zios, the vdev code will ensure we write
			 * to all children.
			 */
			for (indirect_split_t *is = list_head(&iv->iv_splits);
			    is != NULL; is = list_next(&iv->iv_splits, is)) {
				zio_nowait(zio_vdev_child_io(zio, NULL,
				    is->is_vdev, is->is_target_offset,
				    abd_get_offset(zio->io_abd,
				    is->is_split_offset), is->is_size,
				    zio->io_type, zio->io_priority, 0,
				    vdev_indirect_child_io_done, zio));
			}

		}
	}

	zio_execute(zio);
}

/*
 * Report a checksum error for a child.
 */
static void
vdev_indirect_checksum_error(zio_t *zio,
    indirect_split_t *is, indirect_child_t *ic)
{
	vdev_t *vd = ic->ic_vdev;

	if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
		return;

	mutex_enter(&vd->vdev_stat_lock);
	vd->vdev_stat.vs_checksum_errors++;
	mutex_exit(&vd->vdev_stat_lock);

	zio_bad_cksum_t zbc = {{{ 0 }}};
	abd_t *bad_abd = ic->ic_data;
	abd_t *good_abd = is->is_good_child->ic_data;
	zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
	    is->is_target_offset, is->is_size, good_abd, bad_abd, &zbc);
}

/*
 * Issue repair i/os for any incorrect copies.  We do this by comparing
 * each split segment's correct data (is_good_child's ic_data) with each
 * other copy of the data.  If they differ, then we overwrite the bad data
 * with the good copy.  Note that we do this without regard for the DTL's,
 * which simplifies this code and also issues the optimal number of writes
 * (based on which copies actually read bad data, as opposed to which we
 * think might be wrong).  For the same reason, we always use
 * ZIO_FLAG_SELF_HEAL, to bypass the DTL check in zio_vdev_io_start().
 */
static void
vdev_indirect_repair(zio_t *zio)
{
	indirect_vsd_t *iv = zio->io_vsd;

	enum zio_flag flags = ZIO_FLAG_IO_REPAIR;

	if (!(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)))
		flags |= ZIO_FLAG_SELF_HEAL;

	if (!spa_writeable(zio->io_spa))
		return;

	for (indirect_split_t *is = list_head(&iv->iv_splits);
	    is != NULL; is = list_next(&iv->iv_splits, is)) {
		for (int c = 0; c < is->is_children; c++) {
			indirect_child_t *ic = &is->is_child[c];
			if (ic == is->is_good_child)
				continue;
			if (ic->ic_data == NULL)
				continue;
			if (ic->ic_duplicate == is->is_good_child)
				continue;

			zio_nowait(zio_vdev_child_io(zio, NULL,
			    ic->ic_vdev, is->is_target_offset,
			    is->is_good_child->ic_data, is->is_size,
			    ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
			    ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
			    NULL, NULL));

			vdev_indirect_checksum_error(zio, is, ic);
		}
	}
}

/*
 * Report checksum errors on all children that we read from.
 */
static void
vdev_indirect_all_checksum_errors(zio_t *zio)
{
	indirect_vsd_t *iv = zio->io_vsd;

	if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
		return;

	for (indirect_split_t *is = list_head(&iv->iv_splits);
	    is != NULL; is = list_next(&iv->iv_splits, is)) {
		for (int c = 0; c < is->is_children; c++) {
			indirect_child_t *ic = &is->is_child[c];

			if (ic->ic_data == NULL)
				continue;

			vdev_t *vd = ic->ic_vdev;

			mutex_enter(&vd->vdev_stat_lock);
			vd->vdev_stat.vs_checksum_errors++;
			mutex_exit(&vd->vdev_stat_lock);

			zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
			    is->is_target_offset, is->is_size,
			    NULL, NULL, NULL);
		}
	}
}

/*
 * Copy data from all the splits to a main zio then validate the checksum.
 * If then checksum is successfully validated return success.
 */
static int
vdev_indirect_splits_checksum_validate(indirect_vsd_t *iv, zio_t *zio)
{
	zio_bad_cksum_t zbc;

	for (indirect_split_t *is = list_head(&iv->iv_splits);
	    is != NULL; is = list_next(&iv->iv_splits, is)) {

		ASSERT3P(is->is_good_child->ic_data, !=, NULL);
		ASSERT3P(is->is_good_child->ic_duplicate, ==, NULL);

		abd_copy_off(zio->io_abd, is->is_good_child->ic_data,
		    is->is_split_offset, 0, is->is_size);
	}

	return (zio_checksum_error(zio, &zbc));
}

/*
 * There are relatively few possible combinations making it feasible to
 * deterministically check them all.  We do this by setting the good_child
 * to the next unique split version.  If we reach the end of the list then
 * "carry over" to the next unique split version (like counting in base
 * is_unique_children, but each digit can have a different base).
 */
static int
vdev_indirect_splits_enumerate_all(indirect_vsd_t *iv, zio_t *zio)
{
	boolean_t more = B_TRUE;

	iv->iv_attempts = 0;

	for (indirect_split_t *is = list_head(&iv->iv_splits);
	    is != NULL; is = list_next(&iv->iv_splits, is))
		is->is_good_child = list_head(&is->is_unique_child);

	while (more == B_TRUE) {
		iv->iv_attempts++;
		more = B_FALSE;

		if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
			return (0);

		for (indirect_split_t *is = list_head(&iv->iv_splits);
		    is != NULL; is = list_next(&iv->iv_splits, is)) {
			is->is_good_child = list_next(&is->is_unique_child,
			    is->is_good_child);
			if (is->is_good_child != NULL) {
				more = B_TRUE;
				break;
			}

			is->is_good_child = list_head(&is->is_unique_child);
		}
	}

	ASSERT3S(iv->iv_attempts, <=, iv->iv_unique_combinations);

	return (SET_ERROR(ECKSUM));
}

/*
 * There are too many combinations to try all of them in a reasonable amount
 * of time.  So try a fixed number of random combinations from the unique
 * split versions, after which we'll consider the block unrecoverable.
 */
static int
vdev_indirect_splits_enumerate_randomly(indirect_vsd_t *iv, zio_t *zio)
{
	iv->iv_attempts = 0;

	while (iv->iv_attempts < iv->iv_attempts_max) {
		iv->iv_attempts++;

		for (indirect_split_t *is = list_head(&iv->iv_splits);
		    is != NULL; is = list_next(&iv->iv_splits, is)) {
			indirect_child_t *ic = list_head(&is->is_unique_child);
			int children = is->is_unique_children;

			for (int i = spa_get_random(children); i > 0; i--)
				ic = list_next(&is->is_unique_child, ic);

			ASSERT3P(ic, !=, NULL);
			is->is_good_child = ic;
		}

		if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
			return (0);
	}

	return (SET_ERROR(ECKSUM));
}

/*
 * This is a validation function for reconstruction.  It randomly selects
 * a good combination, if one can be found, and then it intentionally
 * damages all other segment copes by zeroing them.  This forces the
 * reconstruction algorithm to locate the one remaining known good copy.
 */
static int
vdev_indirect_splits_damage(indirect_vsd_t *iv, zio_t *zio)
{
	int error;

	/* Presume all the copies are unique for initial selection. */
	for (indirect_split_t *is = list_head(&iv->iv_splits);
	    is != NULL; is = list_next(&iv->iv_splits, is)) {
		is->is_unique_children = 0;

		for (int i = 0; i < is->is_children; i++) {
			indirect_child_t *ic = &is->is_child[i];
			if (ic->ic_data != NULL) {
				is->is_unique_children++;
				list_insert_tail(&is->is_unique_child, ic);
			}
		}

		if (list_is_empty(&is->is_unique_child)) {
			error = SET_ERROR(EIO);
			goto out;
		}
	}

	/*
	 * Set each is_good_child to a randomly-selected child which
	 * is known to contain validated data.
	 */
	error = vdev_indirect_splits_enumerate_randomly(iv, zio);
	if (error)
		goto out;

	/*
	 * Damage all but the known good copy by zeroing it.  This will
	 * result in two or less unique copies per indirect_child_t.
	 * Both may need to be checked in order to reconstruct the block.
	 * Set iv->iv_attempts_max such that all unique combinations will
	 * enumerated, but limit the damage to at most 12 indirect splits.
	 */
	iv->iv_attempts_max = 1;

	for (indirect_split_t *is = list_head(&iv->iv_splits);
	    is != NULL; is = list_next(&iv->iv_splits, is)) {
		for (int c = 0; c < is->is_children; c++) {
			indirect_child_t *ic = &is->is_child[c];

			if (ic == is->is_good_child)
				continue;
			if (ic->ic_data == NULL)
				continue;

			abd_zero(ic->ic_data, ic->ic_data->abd_size);
		}

		iv->iv_attempts_max *= 2;
		if (iv->iv_attempts_max >= (1ULL << 12)) {
			iv->iv_attempts_max = UINT64_MAX;
			break;
		}
	}

out:
	/* Empty the unique children lists so they can be reconstructed. */
	for (indirect_split_t *is = list_head(&iv->iv_splits);
	    is != NULL; is = list_next(&iv->iv_splits, is)) {
		indirect_child_t *ic;
		while ((ic = list_head(&is->is_unique_child)) != NULL)
			list_remove(&is->is_unique_child, ic);

		is->is_unique_children = 0;
	}

	return (error);
}

/*
 * This function is called when we have read all copies of the data and need
 * to try to find a combination of copies that gives us the right checksum.
 *
 * If we pointed to any mirror vdevs, this effectively does the job of the
 * mirror.  The mirror vdev code can't do its own job because we don't know
 * the checksum of each split segment individually.
 *
 * We have to try every unique combination of copies of split segments, until
 * we find one that checksums correctly.  Duplicate segment copies are first
 * identified and latter skipped during reconstruction.  This optimization
 * reduces the search space and ensures that of the remaining combinations
 * at most one is correct.
 *
 * When the total number of combinations is small they can all be checked.
 * For example, if we have 3 segments in the split, and each points to a
 * 2-way mirror with unique copies, we will have the following pieces of data:
 *
 *       |     mirror child
 * split |     [0]        [1]
 * ======|=====================
 *   A   |  data_A_0   data_A_1
 *   B   |  data_B_0   data_B_1
 *   C   |  data_C_0   data_C_1
 *
 * We will try the following (mirror children)^(number of splits) (2^3=8)
 * combinations, which is similar to bitwise-little-endian counting in
 * binary.  In general each "digit" corresponds to a split segment, and the
 * base of each digit is is_children, which can be different for each
 * digit.
 *
 * "low bit"        "high bit"
 *        v                 v
 * data_A_0 data_B_0 data_C_0
 * data_A_1 data_B_0 data_C_0
 * data_A_0 data_B_1 data_C_0
 * data_A_1 data_B_1 data_C_0
 * data_A_0 data_B_0 data_C_1
 * data_A_1 data_B_0 data_C_1
 * data_A_0 data_B_1 data_C_1
 * data_A_1 data_B_1 data_C_1
 *
 * Note that the split segments may be on the same or different top-level
 * vdevs. In either case, we may need to try lots of combinations (see
 * zfs_reconstruct_indirect_combinations_max).  This ensures that if a mirror
 * has small silent errors on all of its children, we can still reconstruct
 * the correct data, as long as those errors are at sufficiently-separated
 * offsets (specifically, separated by the largest block size - default of
 * 128KB, but up to 16MB).
 */
static void
vdev_indirect_reconstruct_io_done(zio_t *zio)
{
	indirect_vsd_t *iv = zio->io_vsd;
	boolean_t known_good = B_FALSE;
	int error;

	iv->iv_unique_combinations = 1;
	iv->iv_attempts_max = UINT64_MAX;

	if (zfs_reconstruct_indirect_combinations_max > 0)
		iv->iv_attempts_max = zfs_reconstruct_indirect_combinations_max;

	/*
	 * If nonzero, every 1/x blocks will be damaged, in order to validate
	 * reconstruction when there are split segments with damaged copies.
	 * Known_good will be TRUE when reconstruction is known to be possible.
	 */
	if (zfs_reconstruct_indirect_damage_fraction != 0 &&
	    spa_get_random(zfs_reconstruct_indirect_damage_fraction) == 0)
		known_good = (vdev_indirect_splits_damage(iv, zio) == 0);

	/*
	 * Determine the unique children for a split segment and add them
	 * to the is_unique_child list.  By restricting reconstruction
	 * to these children, only unique combinations will be considered.
	 * This can vastly reduce the search space when there are a large
	 * number of indirect splits.
	 */
	for (indirect_split_t *is = list_head(&iv->iv_splits);
	    is != NULL; is = list_next(&iv->iv_splits, is)) {
		is->is_unique_children = 0;

		for (int i = 0; i < is->is_children; i++) {
			indirect_child_t *ic_i = &is->is_child[i];

			if (ic_i->ic_data == NULL ||
			    ic_i->ic_duplicate != NULL)
				continue;

			for (int j = i + 1; j < is->is_children; j++) {
				indirect_child_t *ic_j = &is->is_child[j];

				if (ic_j->ic_data == NULL ||
				    ic_j->ic_duplicate != NULL)
					continue;

				if (abd_cmp(ic_i->ic_data, ic_j->ic_data) == 0)
					ic_j->ic_duplicate = ic_i;
			}

			is->is_unique_children++;
			list_insert_tail(&is->is_unique_child, ic_i);
		}

		/* Reconstruction is impossible, no valid children */
		EQUIV(list_is_empty(&is->is_unique_child),
		    is->is_unique_children == 0);
		if (list_is_empty(&is->is_unique_child)) {
			zio->io_error = EIO;
			vdev_indirect_all_checksum_errors(zio);
			zio_checksum_verified(zio);
			return;
		}

		iv->iv_unique_combinations *= is->is_unique_children;
	}

	if (iv->iv_unique_combinations <= iv->iv_attempts_max)
		error = vdev_indirect_splits_enumerate_all(iv, zio);
	else
		error = vdev_indirect_splits_enumerate_randomly(iv, zio);

	if (error != 0) {
		/* All attempted combinations failed. */
		ASSERT3B(known_good, ==, B_FALSE);
		zio->io_error = error;
		vdev_indirect_all_checksum_errors(zio);
	} else {
		/*
		 * The checksum has been successfully validated.  Issue
		 * repair I/Os to any copies of splits which don't match
		 * the validated version.
		 */
		ASSERT0(vdev_indirect_splits_checksum_validate(iv, zio));
		vdev_indirect_repair(zio);
		zio_checksum_verified(zio);
	}
}

static void
vdev_indirect_io_done(zio_t *zio)
{
	indirect_vsd_t *iv = zio->io_vsd;

	if (iv->iv_reconstruct) {
		/*
		 * We have read all copies of the data (e.g. from mirrors),
		 * either because this was a scrub/resilver, or because the
		 * one-copy read didn't checksum correctly.
		 */
		vdev_indirect_reconstruct_io_done(zio);
		return;
	}

	if (!iv->iv_split_block) {
		/*
		 * This was not a split block, so we passed the BP down,
		 * and the checksum was handled by the (one) child zio.
		 */
		return;
	}

	zio_bad_cksum_t zbc;
	int ret = zio_checksum_error(zio, &zbc);
	if (ret == 0) {
		zio_checksum_verified(zio);
		return;
	}

	/*
	 * The checksum didn't match.  Read all copies of all splits, and
	 * then we will try to reconstruct.  The next time
	 * vdev_indirect_io_done() is called, iv_reconstruct will be set.
	 */
	vdev_indirect_read_all(zio);

	zio_vdev_io_redone(zio);
}

vdev_ops_t vdev_indirect_ops = {
	vdev_indirect_open,
	vdev_indirect_close,
	vdev_default_asize,
	vdev_indirect_io_start,
	vdev_indirect_io_done,
	NULL,
	NULL,
	NULL,
	NULL,
	vdev_indirect_remap,
	VDEV_TYPE_INDIRECT,	/* name of this vdev type */
	B_FALSE			/* leaf vdev */
};

#if defined(_KERNEL)
EXPORT_SYMBOL(rs_alloc);
EXPORT_SYMBOL(spa_condense_fini);
EXPORT_SYMBOL(spa_start_indirect_condensing_thread);
EXPORT_SYMBOL(spa_condense_indirect_start_sync);
EXPORT_SYMBOL(spa_condense_init);
EXPORT_SYMBOL(spa_vdev_indirect_mark_obsolete);
EXPORT_SYMBOL(vdev_indirect_mark_obsolete);
EXPORT_SYMBOL(vdev_indirect_should_condense);
EXPORT_SYMBOL(vdev_indirect_sync_obsolete);
EXPORT_SYMBOL(vdev_obsolete_counts_are_precise);
EXPORT_SYMBOL(vdev_obsolete_sm_object);

module_param(zfs_condense_indirect_vdevs_enable, int, 0644);
MODULE_PARM_DESC(zfs_condense_indirect_vdevs_enable,
	"Whether to attempt condensing indirect vdev mappings");

/* CSTYLED */
module_param(zfs_condense_min_mapping_bytes, ulong, 0644);
MODULE_PARM_DESC(zfs_condense_min_mapping_bytes,
	"Minimum size of vdev mapping to condense");

/* CSTYLED */
module_param(zfs_condense_max_obsolete_bytes, ulong, 0644);
MODULE_PARM_DESC(zfs_condense_max_obsolete_bytes,
	"Minimum size obsolete spacemap to attempt condensing");

module_param(zfs_condense_indirect_commit_entry_delay_ms, int, 0644);
MODULE_PARM_DESC(zfs_condense_indirect_commit_entry_delay_ms,
	"Delay while condensing vdev mapping");

module_param(zfs_reconstruct_indirect_combinations_max, int, 0644);
MODULE_PARM_DESC(zfs_reconstruct_indirect_combinations_max,
	"Maximum number of combinations when reconstructing split segments");
#endif