summaryrefslogtreecommitdiffstats
path: root/module/zfs/txg.c
blob: aad1a8e572ea7c8ab8c48f2dcfeccd83a06a785b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 * Portions Copyright 2011 Martin Matuska
 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
 */

#include <sys/zfs_context.h>
#include <sys/txg_impl.h>
#include <sys/dmu_impl.h>
#include <sys/spa_impl.h>
#include <sys/dmu_tx.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_scan.h>
#include <sys/zil.h>
#include <sys/callb.h>
#include <sys/trace_txg.h>

/*
 * ZFS Transaction Groups
 * ----------------------
 *
 * ZFS transaction groups are, as the name implies, groups of transactions
 * that act on persistent state. ZFS asserts consistency at the granularity of
 * these transaction groups. Each successive transaction group (txg) is
 * assigned a 64-bit consecutive identifier. There are three active
 * transaction group states: open, quiescing, or syncing. At any given time,
 * there may be an active txg associated with each state; each active txg may
 * either be processing, or blocked waiting to enter the next state. There may
 * be up to three active txgs, and there is always a txg in the open state
 * (though it may be blocked waiting to enter the quiescing state). In broad
 * strokes, transactions -- operations that change in-memory structures -- are
 * accepted into the txg in the open state, and are completed while the txg is
 * in the open or quiescing states. The accumulated changes are written to
 * disk in the syncing state.
 *
 * Open
 *
 * When a new txg becomes active, it first enters the open state. New
 * transactions -- updates to in-memory structures -- are assigned to the
 * currently open txg. There is always a txg in the open state so that ZFS can
 * accept new changes (though the txg may refuse new changes if it has hit
 * some limit). ZFS advances the open txg to the next state for a variety of
 * reasons such as it hitting a time or size threshold, or the execution of an
 * administrative action that must be completed in the syncing state.
 *
 * Quiescing
 *
 * After a txg exits the open state, it enters the quiescing state. The
 * quiescing state is intended to provide a buffer between accepting new
 * transactions in the open state and writing them out to stable storage in
 * the syncing state. While quiescing, transactions can continue their
 * operation without delaying either of the other states. Typically, a txg is
 * in the quiescing state very briefly since the operations are bounded by
 * software latencies rather than, say, slower I/O latencies. After all
 * transactions complete, the txg is ready to enter the next state.
 *
 * Syncing
 *
 * In the syncing state, the in-memory state built up during the open and (to
 * a lesser degree) the quiescing states is written to stable storage. The
 * process of writing out modified data can, in turn modify more data. For
 * example when we write new blocks, we need to allocate space for them; those
 * allocations modify metadata (space maps)... which themselves must be
 * written to stable storage. During the sync state, ZFS iterates, writing out
 * data until it converges and all in-memory changes have been written out.
 * The first such pass is the largest as it encompasses all the modified user
 * data (as opposed to filesystem metadata). Subsequent passes typically have
 * far less data to write as they consist exclusively of filesystem metadata.
 *
 * To ensure convergence, after a certain number of passes ZFS begins
 * overwriting locations on stable storage that had been allocated earlier in
 * the syncing state (and subsequently freed). ZFS usually allocates new
 * blocks to optimize for large, continuous, writes. For the syncing state to
 * converge however it must complete a pass where no new blocks are allocated
 * since each allocation requires a modification of persistent metadata.
 * Further, to hasten convergence, after a prescribed number of passes, ZFS
 * also defers frees, and stops compressing.
 *
 * In addition to writing out user data, we must also execute synctasks during
 * the syncing context. A synctask is the mechanism by which some
 * administrative activities work such as creating and destroying snapshots or
 * datasets. Note that when a synctask is initiated it enters the open txg,
 * and ZFS then pushes that txg as quickly as possible to completion of the
 * syncing state in order to reduce the latency of the administrative
 * activity. To complete the syncing state, ZFS writes out a new uberblock,
 * the root of the tree of blocks that comprise all state stored on the ZFS
 * pool. Finally, if there is a quiesced txg waiting, we signal that it can
 * now transition to the syncing state.
 */

static void txg_sync_thread(void *arg);
static void txg_quiesce_thread(void *arg);

int zfs_txg_timeout = 5;	/* max seconds worth of delta per txg */

/*
 * Prepare the txg subsystem.
 */
void
txg_init(dsl_pool_t *dp, uint64_t txg)
{
	tx_state_t *tx = &dp->dp_tx;
	int c;
	bzero(tx, sizeof (tx_state_t));

	tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);

	for (c = 0; c < max_ncpus; c++) {
		int i;

		mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
		mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_NOLOCKDEP,
		    NULL);
		for (i = 0; i < TXG_SIZE; i++) {
			cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
			    NULL);
			list_create(&tx->tx_cpu[c].tc_callbacks[i],
			    sizeof (dmu_tx_callback_t),
			    offsetof(dmu_tx_callback_t, dcb_node));
		}
	}

	mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);

	cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
	cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
	cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
	cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
	cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);

	tx->tx_open_txg = txg;
}

/*
 * Close down the txg subsystem.
 */
void
txg_fini(dsl_pool_t *dp)
{
	tx_state_t *tx = &dp->dp_tx;
	int c;

	ASSERT0(tx->tx_threads);

	mutex_destroy(&tx->tx_sync_lock);

	cv_destroy(&tx->tx_sync_more_cv);
	cv_destroy(&tx->tx_sync_done_cv);
	cv_destroy(&tx->tx_quiesce_more_cv);
	cv_destroy(&tx->tx_quiesce_done_cv);
	cv_destroy(&tx->tx_exit_cv);

	for (c = 0; c < max_ncpus; c++) {
		int i;

		mutex_destroy(&tx->tx_cpu[c].tc_open_lock);
		mutex_destroy(&tx->tx_cpu[c].tc_lock);
		for (i = 0; i < TXG_SIZE; i++) {
			cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
			list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
		}
	}

	if (tx->tx_commit_cb_taskq != NULL)
		taskq_destroy(tx->tx_commit_cb_taskq);

	vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));

	bzero(tx, sizeof (tx_state_t));
}

/*
 * Start syncing transaction groups.
 */
void
txg_sync_start(dsl_pool_t *dp)
{
	tx_state_t *tx = &dp->dp_tx;

	mutex_enter(&tx->tx_sync_lock);

	dprintf("pool %p\n", dp);

	ASSERT0(tx->tx_threads);

	tx->tx_threads = 2;

	tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
	    dp, 0, &p0, TS_RUN, defclsyspri);

	/*
	 * The sync thread can need a larger-than-default stack size on
	 * 32-bit x86.  This is due in part to nested pools and
	 * scrub_visitbp() recursion.
	 */
	tx->tx_sync_thread = thread_create(NULL, 0, txg_sync_thread,
	    dp, 0, &p0, TS_RUN, defclsyspri);

	mutex_exit(&tx->tx_sync_lock);
}

static void
txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
{
	CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
	mutex_enter(&tx->tx_sync_lock);
}

static void
txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
{
	ASSERT(*tpp != NULL);
	*tpp = NULL;
	tx->tx_threads--;
	cv_broadcast(&tx->tx_exit_cv);
	CALLB_CPR_EXIT(cpr);		/* drops &tx->tx_sync_lock */
	thread_exit();
}

static void
txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time)
{
	CALLB_CPR_SAFE_BEGIN(cpr);

	if (time)
		(void) cv_timedwait_sig(cv, &tx->tx_sync_lock,
		    ddi_get_lbolt() + time);
	else
		cv_wait_sig(cv, &tx->tx_sync_lock);

	CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
}

/*
 * Stop syncing transaction groups.
 */
void
txg_sync_stop(dsl_pool_t *dp)
{
	tx_state_t *tx = &dp->dp_tx;

	dprintf("pool %p\n", dp);
	/*
	 * Finish off any work in progress.
	 */
	ASSERT3U(tx->tx_threads, ==, 2);

	/*
	 * We need to ensure that we've vacated the deferred space_maps.
	 */
	txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);

	/*
	 * Wake all sync threads and wait for them to die.
	 */
	mutex_enter(&tx->tx_sync_lock);

	ASSERT3U(tx->tx_threads, ==, 2);

	tx->tx_exiting = 1;

	cv_broadcast(&tx->tx_quiesce_more_cv);
	cv_broadcast(&tx->tx_quiesce_done_cv);
	cv_broadcast(&tx->tx_sync_more_cv);

	while (tx->tx_threads != 0)
		cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);

	tx->tx_exiting = 0;

	mutex_exit(&tx->tx_sync_lock);
}

uint64_t
txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
{
	tx_state_t *tx = &dp->dp_tx;
	tx_cpu_t *tc;
	uint64_t txg;

	/*
	 * It appears the processor id is simply used as a "random"
	 * number to index into the array, and there isn't any other
	 * significance to the chosen tx_cpu. Because.. Why not use
	 * the current cpu to index into the array?
	 */
	kpreempt_disable();
	tc = &tx->tx_cpu[CPU_SEQID];
	kpreempt_enable();

	mutex_enter(&tc->tc_open_lock);
	txg = tx->tx_open_txg;

	mutex_enter(&tc->tc_lock);
	tc->tc_count[txg & TXG_MASK]++;
	mutex_exit(&tc->tc_lock);

	th->th_cpu = tc;
	th->th_txg = txg;

	return (txg);
}

void
txg_rele_to_quiesce(txg_handle_t *th)
{
	tx_cpu_t *tc = th->th_cpu;

	ASSERT(!MUTEX_HELD(&tc->tc_lock));
	mutex_exit(&tc->tc_open_lock);
}

void
txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
{
	tx_cpu_t *tc = th->th_cpu;
	int g = th->th_txg & TXG_MASK;

	mutex_enter(&tc->tc_lock);
	list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
	mutex_exit(&tc->tc_lock);
}

void
txg_rele_to_sync(txg_handle_t *th)
{
	tx_cpu_t *tc = th->th_cpu;
	int g = th->th_txg & TXG_MASK;

	mutex_enter(&tc->tc_lock);
	ASSERT(tc->tc_count[g] != 0);
	if (--tc->tc_count[g] == 0)
		cv_broadcast(&tc->tc_cv[g]);
	mutex_exit(&tc->tc_lock);

	th->th_cpu = NULL;	/* defensive */
}

/*
 * Blocks until all transactions in the group are committed.
 *
 * On return, the transaction group has reached a stable state in which it can
 * then be passed off to the syncing context.
 */
static void
txg_quiesce(dsl_pool_t *dp, uint64_t txg)
{
	tx_state_t *tx = &dp->dp_tx;
	uint64_t tx_open_time;
	int g = txg & TXG_MASK;
	int c;

	/*
	 * Grab all tc_open_locks so nobody else can get into this txg.
	 */
	for (c = 0; c < max_ncpus; c++)
		mutex_enter(&tx->tx_cpu[c].tc_open_lock);

	ASSERT(txg == tx->tx_open_txg);
	tx->tx_open_txg++;
	tx->tx_open_time = tx_open_time = gethrtime();

	DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg);
	DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg);

	/*
	 * Now that we've incremented tx_open_txg, we can let threads
	 * enter the next transaction group.
	 */
	for (c = 0; c < max_ncpus; c++)
		mutex_exit(&tx->tx_cpu[c].tc_open_lock);

	spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_OPEN, tx_open_time);
	spa_txg_history_add(dp->dp_spa, txg + 1, tx_open_time);

	/*
	 * Quiesce the transaction group by waiting for everyone to txg_exit().
	 */
	for (c = 0; c < max_ncpus; c++) {
		tx_cpu_t *tc = &tx->tx_cpu[c];
		mutex_enter(&tc->tc_lock);
		while (tc->tc_count[g] != 0)
			cv_wait(&tc->tc_cv[g], &tc->tc_lock);
		mutex_exit(&tc->tc_lock);
	}

	spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_QUIESCED, gethrtime());
}

static void
txg_do_callbacks(list_t *cb_list)
{
	dmu_tx_do_callbacks(cb_list, 0);

	list_destroy(cb_list);

	kmem_free(cb_list, sizeof (list_t));
}

/*
 * Dispatch the commit callbacks registered on this txg to worker threads.
 *
 * If no callbacks are registered for a given TXG, nothing happens.
 * This function creates a taskq for the associated pool, if needed.
 */
static void
txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
{
	int c;
	tx_state_t *tx = &dp->dp_tx;
	list_t *cb_list;

	for (c = 0; c < max_ncpus; c++) {
		tx_cpu_t *tc = &tx->tx_cpu[c];
		/*
		 * No need to lock tx_cpu_t at this point, since this can
		 * only be called once a txg has been synced.
		 */

		int g = txg & TXG_MASK;

		if (list_is_empty(&tc->tc_callbacks[g]))
			continue;

		if (tx->tx_commit_cb_taskq == NULL) {
			/*
			 * Commit callback taskq hasn't been created yet.
			 */
			tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
			    max_ncpus, defclsyspri, max_ncpus, max_ncpus * 2,
			    TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
		}

		cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
		list_create(cb_list, sizeof (dmu_tx_callback_t),
		    offsetof(dmu_tx_callback_t, dcb_node));

		list_move_tail(cb_list, &tc->tc_callbacks[g]);

		(void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
		    txg_do_callbacks, cb_list, TQ_SLEEP);
	}
}

/*
 * Wait for pending commit callbacks of already-synced transactions to finish
 * processing.
 * Calling this function from within a commit callback will deadlock.
 */
void
txg_wait_callbacks(dsl_pool_t *dp)
{
	tx_state_t *tx = &dp->dp_tx;

	if (tx->tx_commit_cb_taskq != NULL)
		taskq_wait_outstanding(tx->tx_commit_cb_taskq, 0);
}

static boolean_t
txg_is_syncing(dsl_pool_t *dp)
{
	tx_state_t *tx = &dp->dp_tx;
	ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
	return (tx->tx_syncing_txg != 0);
}

static boolean_t
txg_is_quiescing(dsl_pool_t *dp)
{
	tx_state_t *tx = &dp->dp_tx;
	ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
	return (tx->tx_quiescing_txg != 0);
}

static boolean_t
txg_has_quiesced_to_sync(dsl_pool_t *dp)
{
	tx_state_t *tx = &dp->dp_tx;
	ASSERT(MUTEX_HELD(&tx->tx_sync_lock));
	return (tx->tx_quiesced_txg != 0);
}

static void
txg_sync_thread(void *arg)
{
	dsl_pool_t *dp = arg;
	spa_t *spa = dp->dp_spa;
	tx_state_t *tx = &dp->dp_tx;
	callb_cpr_t cpr;
	clock_t start, delta;

	(void) spl_fstrans_mark();
	txg_thread_enter(tx, &cpr);

	start = delta = 0;
	for (;;) {
		clock_t timeout = zfs_txg_timeout * hz;
		clock_t timer;
		uint64_t txg;
		uint64_t dirty_min_bytes =
		    zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100;

		/*
		 * We sync when we're scanning, there's someone waiting
		 * on us, or the quiesce thread has handed off a txg to
		 * us, or we have reached our timeout.
		 */
		timer = (delta >= timeout ? 0 : timeout - delta);
		while (!dsl_scan_active(dp->dp_scan) &&
		    !tx->tx_exiting && timer > 0 &&
		    tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
		    !txg_has_quiesced_to_sync(dp) &&
		    dp->dp_dirty_total < dirty_min_bytes) {
			dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
			    tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
			txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
			delta = ddi_get_lbolt() - start;
			timer = (delta > timeout ? 0 : timeout - delta);
		}

		/*
		 * Wait until the quiesce thread hands off a txg to us,
		 * prompting it to do so if necessary.
		 */
		while (!tx->tx_exiting && !txg_has_quiesced_to_sync(dp)) {
			if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
				tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
			cv_broadcast(&tx->tx_quiesce_more_cv);
			txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
		}

		if (tx->tx_exiting)
			txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);

		/*
		 * Consume the quiesced txg which has been handed off to
		 * us.  This may cause the quiescing thread to now be
		 * able to quiesce another txg, so we must signal it.
		 */
		ASSERT(tx->tx_quiesced_txg != 0);
		txg = tx->tx_quiesced_txg;
		tx->tx_quiesced_txg = 0;
		tx->tx_syncing_txg = txg;
		DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg);
		txg_stat_t *ts = spa_txg_history_init_io(spa, txg, dp);
		cv_broadcast(&tx->tx_quiesce_more_cv);

		dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
		    txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
		mutex_exit(&tx->tx_sync_lock);

		start = ddi_get_lbolt();
		spa_sync(spa, txg);
		delta = ddi_get_lbolt() - start;

		mutex_enter(&tx->tx_sync_lock);
		tx->tx_synced_txg = txg;
		tx->tx_syncing_txg = 0;
		DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg);
		spa_txg_history_fini_io(spa, ts);
		cv_broadcast(&tx->tx_sync_done_cv);

		/*
		 * Dispatch commit callbacks to worker threads.
		 */
		txg_dispatch_callbacks(dp, txg);
	}
}

static void
txg_quiesce_thread(void *arg)
{
	dsl_pool_t *dp = arg;
	tx_state_t *tx = &dp->dp_tx;
	callb_cpr_t cpr;

	txg_thread_enter(tx, &cpr);

	for (;;) {
		uint64_t txg;

		/*
		 * We quiesce when there's someone waiting on us.
		 * However, we can only have one txg in "quiescing" or
		 * "quiesced, waiting to sync" state.  So we wait until
		 * the "quiesced, waiting to sync" txg has been consumed
		 * by the sync thread.
		 */
		while (!tx->tx_exiting &&
		    (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
		    txg_has_quiesced_to_sync(dp)))
			txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);

		if (tx->tx_exiting)
			txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);

		txg = tx->tx_open_txg;
		dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
		    txg, tx->tx_quiesce_txg_waiting,
		    tx->tx_sync_txg_waiting);
		tx->tx_quiescing_txg = txg;

		mutex_exit(&tx->tx_sync_lock);
		txg_quiesce(dp, txg);
		mutex_enter(&tx->tx_sync_lock);

		/*
		 * Hand this txg off to the sync thread.
		 */
		dprintf("quiesce done, handing off txg %llu\n", txg);
		tx->tx_quiescing_txg = 0;
		tx->tx_quiesced_txg = txg;
		DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg);
		cv_broadcast(&tx->tx_sync_more_cv);
		cv_broadcast(&tx->tx_quiesce_done_cv);
	}
}

/*
 * Delay this thread by delay nanoseconds if we are still in the open
 * transaction group and there is already a waiting txg quiesing or quiesced.
 * Abort the delay if this txg stalls or enters the quiesing state.
 */
void
txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution)
{
	tx_state_t *tx = &dp->dp_tx;
	hrtime_t start = gethrtime();

	/* don't delay if this txg could transition to quiescing immediately */
	if (tx->tx_open_txg > txg ||
	    tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
		return;

	mutex_enter(&tx->tx_sync_lock);
	if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
		mutex_exit(&tx->tx_sync_lock);
		return;
	}

	while (gethrtime() - start < delay &&
	    tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) {
		(void) cv_timedwait_hires(&tx->tx_quiesce_more_cv,
		    &tx->tx_sync_lock, delay, resolution, 0);
	}

	DMU_TX_STAT_BUMP(dmu_tx_delay);

	mutex_exit(&tx->tx_sync_lock);
}

void
txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
{
	tx_state_t *tx = &dp->dp_tx;

	ASSERT(!dsl_pool_config_held(dp));

	mutex_enter(&tx->tx_sync_lock);
	ASSERT3U(tx->tx_threads, ==, 2);
	if (txg == 0)
		txg = tx->tx_open_txg + TXG_DEFER_SIZE;
	if (tx->tx_sync_txg_waiting < txg)
		tx->tx_sync_txg_waiting = txg;
	dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
	    txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
	while (tx->tx_synced_txg < txg) {
		dprintf("broadcasting sync more "
		    "tx_synced=%llu waiting=%llu dp=%p\n",
		    tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
		cv_broadcast(&tx->tx_sync_more_cv);
		cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
	}
	mutex_exit(&tx->tx_sync_lock);
}

void
txg_wait_open(dsl_pool_t *dp, uint64_t txg)
{
	tx_state_t *tx = &dp->dp_tx;

	ASSERT(!dsl_pool_config_held(dp));

	mutex_enter(&tx->tx_sync_lock);
	ASSERT3U(tx->tx_threads, ==, 2);
	if (txg == 0)
		txg = tx->tx_open_txg + 1;
	if (tx->tx_quiesce_txg_waiting < txg)
		tx->tx_quiesce_txg_waiting = txg;
	dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
	    txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
	while (tx->tx_open_txg < txg) {
		cv_broadcast(&tx->tx_quiesce_more_cv);
		cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
	}
	mutex_exit(&tx->tx_sync_lock);
}

/*
 * If there isn't a txg syncing or in the pipeline, push another txg through
 * the pipeline by queiscing the open txg.
 */
void
txg_kick(dsl_pool_t *dp)
{
	tx_state_t *tx = &dp->dp_tx;

	ASSERT(!dsl_pool_config_held(dp));

	mutex_enter(&tx->tx_sync_lock);
	if (!txg_is_syncing(dp) &&
	    !txg_is_quiescing(dp) &&
	    tx->tx_quiesce_txg_waiting <= tx->tx_open_txg &&
	    tx->tx_sync_txg_waiting <= tx->tx_synced_txg &&
	    tx->tx_quiesced_txg <= tx->tx_synced_txg) {
		tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1;
		cv_broadcast(&tx->tx_quiesce_more_cv);
	}
	mutex_exit(&tx->tx_sync_lock);
}

boolean_t
txg_stalled(dsl_pool_t *dp)
{
	tx_state_t *tx = &dp->dp_tx;
	return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
}

boolean_t
txg_sync_waiting(dsl_pool_t *dp)
{
	tx_state_t *tx = &dp->dp_tx;

	return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
	    tx->tx_quiesced_txg != 0);
}

/*
 * Verify that this txg is active (open, quiescing, syncing).  Non-active
 * txg's should not be manipulated.
 */
#ifdef ZFS_DEBUG
void
txg_verify(spa_t *spa, uint64_t txg)
{
	ASSERTV(dsl_pool_t *dp = spa_get_dsl(spa));
	if (txg <= TXG_INITIAL || txg == ZILTEST_TXG)
		return;
	ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg);
	ASSERT3U(txg, >=, dp->dp_tx.tx_synced_txg);
	ASSERT3U(txg, >=, dp->dp_tx.tx_open_txg - TXG_CONCURRENT_STATES);
}
#endif

/*
 * Per-txg object lists.
 */
void
txg_list_create(txg_list_t *tl, spa_t *spa, size_t offset)
{
	int t;

	mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);

	tl->tl_offset = offset;
	tl->tl_spa = spa;

	for (t = 0; t < TXG_SIZE; t++)
		tl->tl_head[t] = NULL;
}

static boolean_t
txg_list_empty_impl(txg_list_t *tl, uint64_t txg)
{
	ASSERT(MUTEX_HELD(&tl->tl_lock));
	TXG_VERIFY(tl->tl_spa, txg);
	return (tl->tl_head[txg & TXG_MASK] == NULL);
}

boolean_t
txg_list_empty(txg_list_t *tl, uint64_t txg)
{
	mutex_enter(&tl->tl_lock);
	boolean_t ret = txg_list_empty_impl(tl, txg);
	mutex_exit(&tl->tl_lock);

	return (ret);
}

void
txg_list_destroy(txg_list_t *tl)
{
	int t;

	mutex_enter(&tl->tl_lock);
	for (t = 0; t < TXG_SIZE; t++)
		ASSERT(txg_list_empty_impl(tl, t));
	mutex_exit(&tl->tl_lock);

	mutex_destroy(&tl->tl_lock);
}

/*
 * Returns true if all txg lists are empty.
 *
 * Warning: this is inherently racy (an item could be added immediately
 * after this function returns).
 */
boolean_t
txg_all_lists_empty(txg_list_t *tl)
{
	mutex_enter(&tl->tl_lock);
	for (int i = 0; i < TXG_SIZE; i++) {
		if (!txg_list_empty_impl(tl, i)) {
			mutex_exit(&tl->tl_lock);
			return (B_FALSE);
		}
	}
	mutex_exit(&tl->tl_lock);
	return (B_TRUE);
}

/*
 * Add an entry to the list (unless it's already on the list).
 * Returns B_TRUE if it was actually added.
 */
boolean_t
txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
{
	int t = txg & TXG_MASK;
	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
	boolean_t add;

	TXG_VERIFY(tl->tl_spa, txg);
	mutex_enter(&tl->tl_lock);
	add = (tn->tn_member[t] == 0);
	if (add) {
		tn->tn_member[t] = 1;
		tn->tn_next[t] = tl->tl_head[t];
		tl->tl_head[t] = tn;
	}
	mutex_exit(&tl->tl_lock);

	return (add);
}

/*
 * Add an entry to the end of the list, unless it's already on the list.
 * (walks list to find end)
 * Returns B_TRUE if it was actually added.
 */
boolean_t
txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
{
	int t = txg & TXG_MASK;
	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
	boolean_t add;

	TXG_VERIFY(tl->tl_spa, txg);
	mutex_enter(&tl->tl_lock);
	add = (tn->tn_member[t] == 0);
	if (add) {
		txg_node_t **tp;

		for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
			continue;

		tn->tn_member[t] = 1;
		tn->tn_next[t] = NULL;
		*tp = tn;
	}
	mutex_exit(&tl->tl_lock);

	return (add);
}

/*
 * Remove the head of the list and return it.
 */
void *
txg_list_remove(txg_list_t *tl, uint64_t txg)
{
	int t = txg & TXG_MASK;
	txg_node_t *tn;
	void *p = NULL;

	TXG_VERIFY(tl->tl_spa, txg);
	mutex_enter(&tl->tl_lock);
	if ((tn = tl->tl_head[t]) != NULL) {
		ASSERT(tn->tn_member[t]);
		ASSERT(tn->tn_next[t] == NULL || tn->tn_next[t]->tn_member[t]);
		p = (char *)tn - tl->tl_offset;
		tl->tl_head[t] = tn->tn_next[t];
		tn->tn_next[t] = NULL;
		tn->tn_member[t] = 0;
	}
	mutex_exit(&tl->tl_lock);

	return (p);
}

/*
 * Remove a specific item from the list and return it.
 */
void *
txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
{
	int t = txg & TXG_MASK;
	txg_node_t *tn, **tp;

	TXG_VERIFY(tl->tl_spa, txg);
	mutex_enter(&tl->tl_lock);

	for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
		if ((char *)tn - tl->tl_offset == p) {
			*tp = tn->tn_next[t];
			tn->tn_next[t] = NULL;
			tn->tn_member[t] = 0;
			mutex_exit(&tl->tl_lock);
			return (p);
		}
	}

	mutex_exit(&tl->tl_lock);

	return (NULL);
}

boolean_t
txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
{
	int t = txg & TXG_MASK;
	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);

	TXG_VERIFY(tl->tl_spa, txg);
	return (tn->tn_member[t] != 0);
}

/*
 * Walk a txg list
 */
void *
txg_list_head(txg_list_t *tl, uint64_t txg)
{
	int t = txg & TXG_MASK;
	txg_node_t *tn;

	mutex_enter(&tl->tl_lock);
	tn = tl->tl_head[t];
	mutex_exit(&tl->tl_lock);

	TXG_VERIFY(tl->tl_spa, txg);
	return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
}

void *
txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
{
	int t = txg & TXG_MASK;
	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);

	TXG_VERIFY(tl->tl_spa, txg);

	mutex_enter(&tl->tl_lock);
	tn = tn->tn_next[t];
	mutex_exit(&tl->tl_lock);

	return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
}

#if defined(_KERNEL)
EXPORT_SYMBOL(txg_init);
EXPORT_SYMBOL(txg_fini);
EXPORT_SYMBOL(txg_sync_start);
EXPORT_SYMBOL(txg_sync_stop);
EXPORT_SYMBOL(txg_hold_open);
EXPORT_SYMBOL(txg_rele_to_quiesce);
EXPORT_SYMBOL(txg_rele_to_sync);
EXPORT_SYMBOL(txg_register_callbacks);
EXPORT_SYMBOL(txg_delay);
EXPORT_SYMBOL(txg_wait_synced);
EXPORT_SYMBOL(txg_wait_open);
EXPORT_SYMBOL(txg_wait_callbacks);
EXPORT_SYMBOL(txg_stalled);
EXPORT_SYMBOL(txg_sync_waiting);

module_param(zfs_txg_timeout, int, 0644);
MODULE_PARM_DESC(zfs_txg_timeout, "Max seconds worth of delta per txg");
#endif