aboutsummaryrefslogtreecommitdiffstats
path: root/module/zfs/space_map.c
blob: 25da0e63c15fce6958e76972e34e7bd27e3afaff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */
/*
 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
 */

#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/dmu.h>
#include <sys/dmu_tx.h>
#include <sys/dnode.h>
#include <sys/dsl_pool.h>
#include <sys/zio.h>
#include <sys/space_map.h>
#include <sys/refcount.h>
#include <sys/zfeature.h>

/*
 * Note on space map block size:
 *
 * The data for a given space map can be kept on blocks of any size.
 * Larger blocks entail fewer I/O operations, but they also cause the
 * DMU to keep more data in-core, and also to waste more I/O bandwidth
 * when only a few blocks have changed since the last transaction group.
 */

/*
 * Enabled whenever we want to stress test the use of double-word
 * space map entries.
 */
boolean_t zfs_force_some_double_word_sm_entries = B_FALSE;

/*
 * Override the default indirect block size of 128K, instead use 16K for
 * spacemaps (2^14 bytes).  This dramatically reduces write inflation since
 * appending to a spacemap typically has to write one data block (4KB) and one
 * or two indirect blocks (16K-32K, rather than 128K).
 */
int space_map_ibs = 14;

boolean_t
sm_entry_is_debug(uint64_t e)
{
	return (SM_PREFIX_DECODE(e) == SM_DEBUG_PREFIX);
}

boolean_t
sm_entry_is_single_word(uint64_t e)
{
	uint8_t prefix = SM_PREFIX_DECODE(e);
	return (prefix != SM_DEBUG_PREFIX && prefix != SM2_PREFIX);
}

boolean_t
sm_entry_is_double_word(uint64_t e)
{
	return (SM_PREFIX_DECODE(e) == SM2_PREFIX);
}

/*
 * Iterate through the space map, invoking the callback on each (non-debug)
 * space map entry. Stop after reading 'end' bytes of the space map.
 */
int
space_map_iterate(space_map_t *sm, uint64_t end, sm_cb_t callback, void *arg)
{
	uint64_t blksz = sm->sm_blksz;

	ASSERT3U(blksz, !=, 0);
	ASSERT3U(end, <=, space_map_length(sm));
	ASSERT0(P2PHASE(end, sizeof (uint64_t)));

	dmu_prefetch(sm->sm_os, space_map_object(sm), 0, 0, end,
	    ZIO_PRIORITY_SYNC_READ);

	int error = 0;
	uint64_t txg = 0, sync_pass = 0;
	for (uint64_t block_base = 0; block_base < end && error == 0;
	    block_base += blksz) {
		dmu_buf_t *db;
		error = dmu_buf_hold(sm->sm_os, space_map_object(sm),
		    block_base, FTAG, &db, DMU_READ_PREFETCH);
		if (error != 0)
			return (error);

		uint64_t *block_start = db->db_data;
		uint64_t block_length = MIN(end - block_base, blksz);
		uint64_t *block_end = block_start +
		    (block_length / sizeof (uint64_t));

		VERIFY0(P2PHASE(block_length, sizeof (uint64_t)));
		VERIFY3U(block_length, !=, 0);
		ASSERT3U(blksz, ==, db->db_size);

		for (uint64_t *block_cursor = block_start;
		    block_cursor < block_end && error == 0; block_cursor++) {
			uint64_t e = *block_cursor;

			if (sm_entry_is_debug(e)) {
				/*
				 * Debug entries are only needed to record the
				 * current TXG and sync pass if available.
				 *
				 * Note though that sometimes there can be
				 * debug entries that are used as padding
				 * at the end of space map blocks in-order
				 * to not split a double-word entry in the
				 * middle between two blocks. These entries
				 * have their TXG field set to 0 and we
				 * skip them without recording the TXG.
				 * [see comment in space_map_write_seg()]
				 */
				uint64_t e_txg = SM_DEBUG_TXG_DECODE(e);
				if (e_txg != 0) {
					txg = e_txg;
					sync_pass = SM_DEBUG_SYNCPASS_DECODE(e);
				} else {
					ASSERT0(SM_DEBUG_SYNCPASS_DECODE(e));
				}
				continue;
			}

			uint64_t raw_offset, raw_run, vdev_id;
			maptype_t type;
			if (sm_entry_is_single_word(e)) {
				type = SM_TYPE_DECODE(e);
				vdev_id = SM_NO_VDEVID;
				raw_offset = SM_OFFSET_DECODE(e);
				raw_run = SM_RUN_DECODE(e);
			} else {
				/* it is a two-word entry */
				ASSERT(sm_entry_is_double_word(e));
				raw_run = SM2_RUN_DECODE(e);
				vdev_id = SM2_VDEV_DECODE(e);

				/* move on to the second word */
				block_cursor++;
				e = *block_cursor;
				VERIFY3P(block_cursor, <=, block_end);

				type = SM2_TYPE_DECODE(e);
				raw_offset = SM2_OFFSET_DECODE(e);
			}

			uint64_t entry_offset = (raw_offset << sm->sm_shift) +
			    sm->sm_start;
			uint64_t entry_run = raw_run << sm->sm_shift;

			VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
			VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift));
			ASSERT3U(entry_offset, >=, sm->sm_start);
			ASSERT3U(entry_offset, <, sm->sm_start + sm->sm_size);
			ASSERT3U(entry_run, <=, sm->sm_size);
			ASSERT3U(entry_offset + entry_run, <=,
			    sm->sm_start + sm->sm_size);

			space_map_entry_t sme = {
			    .sme_type = type,
			    .sme_vdev = vdev_id,
			    .sme_offset = entry_offset,
			    .sme_run = entry_run,
			    .sme_txg = txg,
			    .sme_sync_pass = sync_pass
			};
			error = callback(&sme, arg);
		}
		dmu_buf_rele(db, FTAG);
	}
	return (error);
}

/*
 * Reads the entries from the last block of the space map into
 * buf in reverse order. Populates nwords with number of words
 * in the last block.
 *
 * Refer to block comment within space_map_incremental_destroy()
 * to understand why this function is needed.
 */
static int
space_map_reversed_last_block_entries(space_map_t *sm, uint64_t *buf,
    uint64_t bufsz, uint64_t *nwords)
{
	int error = 0;
	dmu_buf_t *db;

	/*
	 * Find the offset of the last word in the space map and use
	 * that to read the last block of the space map with
	 * dmu_buf_hold().
	 */
	uint64_t last_word_offset =
	    sm->sm_phys->smp_length - sizeof (uint64_t);
	error = dmu_buf_hold(sm->sm_os, space_map_object(sm), last_word_offset,
	    FTAG, &db, DMU_READ_NO_PREFETCH);
	if (error != 0)
		return (error);

	ASSERT3U(sm->sm_object, ==, db->db_object);
	ASSERT3U(sm->sm_blksz, ==, db->db_size);
	ASSERT3U(bufsz, >=, db->db_size);
	ASSERT(nwords != NULL);

	uint64_t *words = db->db_data;
	*nwords =
	    (sm->sm_phys->smp_length - db->db_offset) / sizeof (uint64_t);

	ASSERT3U(*nwords, <=, bufsz / sizeof (uint64_t));

	uint64_t n = *nwords;
	uint64_t j = n - 1;
	for (uint64_t i = 0; i < n; i++) {
		uint64_t entry = words[i];
		if (sm_entry_is_double_word(entry)) {
			/*
			 * Since we are populating the buffer backwards
			 * we have to be extra careful and add the two
			 * words of the double-word entry in the right
			 * order.
			 */
			ASSERT3U(j, >, 0);
			buf[j - 1] = entry;

			i++;
			ASSERT3U(i, <, n);
			entry = words[i];
			buf[j] = entry;
			j -= 2;
		} else {
			ASSERT(sm_entry_is_debug(entry) ||
			    sm_entry_is_single_word(entry));
			buf[j] = entry;
			j--;
		}
	}

	/*
	 * Assert that we wrote backwards all the
	 * way to the beginning of the buffer.
	 */
	ASSERT3S(j, ==, -1);

	dmu_buf_rele(db, FTAG);
	return (error);
}

/*
 * Note: This function performs destructive actions - specifically
 * it deletes entries from the end of the space map. Thus, callers
 * should ensure that they are holding the appropriate locks for
 * the space map that they provide.
 */
int
space_map_incremental_destroy(space_map_t *sm, sm_cb_t callback, void *arg,
    dmu_tx_t *tx)
{
	uint64_t bufsz = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
	uint64_t *buf = zio_buf_alloc(bufsz);

	dmu_buf_will_dirty(sm->sm_dbuf, tx);

	/*
	 * Ideally we would want to iterate from the beginning of the
	 * space map to the end in incremental steps. The issue with this
	 * approach is that we don't have any field on-disk that points
	 * us where to start between each step. We could try zeroing out
	 * entries that we've destroyed, but this doesn't work either as
	 * an entry that is 0 is a valid one (ALLOC for range [0x0:0x200]).
	 *
	 * As a result, we destroy its entries incrementally starting from
	 * the end after applying the callback to each of them.
	 *
	 * The problem with this approach is that we cannot literally
	 * iterate through the words in the space map backwards as we
	 * can't distinguish two-word space map entries from their second
	 * word. Thus we do the following:
	 *
	 * 1] We get all the entries from the last block of the space map
	 *    and put them into a buffer in reverse order. This way the
	 *    last entry comes first in the buffer, the second to last is
	 *    second, etc.
	 * 2] We iterate through the entries in the buffer and we apply
	 *    the callback to each one. As we move from entry to entry we
	 *    we decrease the size of the space map, deleting effectively
	 *    each entry.
	 * 3] If there are no more entries in the space map or the callback
	 *    returns a value other than 0, we stop iterating over the
	 *    space map. If there are entries remaining and the callback
	 *    returned 0, we go back to step [1].
	 */
	int error = 0;
	while (space_map_length(sm) > 0 && error == 0) {
		uint64_t nwords = 0;
		error = space_map_reversed_last_block_entries(sm, buf, bufsz,
		    &nwords);
		if (error != 0)
			break;

		ASSERT3U(nwords, <=, bufsz / sizeof (uint64_t));

		for (uint64_t i = 0; i < nwords; i++) {
			uint64_t e = buf[i];

			if (sm_entry_is_debug(e)) {
				sm->sm_phys->smp_length -= sizeof (uint64_t);
				continue;
			}

			int words = 1;
			uint64_t raw_offset, raw_run, vdev_id;
			maptype_t type;
			if (sm_entry_is_single_word(e)) {
				type = SM_TYPE_DECODE(e);
				vdev_id = SM_NO_VDEVID;
				raw_offset = SM_OFFSET_DECODE(e);
				raw_run = SM_RUN_DECODE(e);
			} else {
				ASSERT(sm_entry_is_double_word(e));
				words = 2;

				raw_run = SM2_RUN_DECODE(e);
				vdev_id = SM2_VDEV_DECODE(e);

				/* move to the second word */
				i++;
				e = buf[i];

				ASSERT3P(i, <=, nwords);

				type = SM2_TYPE_DECODE(e);
				raw_offset = SM2_OFFSET_DECODE(e);
			}

			uint64_t entry_offset =
			    (raw_offset << sm->sm_shift) + sm->sm_start;
			uint64_t entry_run = raw_run << sm->sm_shift;

			VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
			VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift));
			VERIFY3U(entry_offset, >=, sm->sm_start);
			VERIFY3U(entry_offset, <, sm->sm_start + sm->sm_size);
			VERIFY3U(entry_run, <=, sm->sm_size);
			VERIFY3U(entry_offset + entry_run, <=,
			    sm->sm_start + sm->sm_size);

			space_map_entry_t sme = {
			    .sme_type = type,
			    .sme_vdev = vdev_id,
			    .sme_offset = entry_offset,
			    .sme_run = entry_run
			};
			error = callback(&sme, arg);
			if (error != 0)
				break;

			if (type == SM_ALLOC)
				sm->sm_phys->smp_alloc -= entry_run;
			else
				sm->sm_phys->smp_alloc += entry_run;
			sm->sm_phys->smp_length -= words * sizeof (uint64_t);
		}
	}

	if (space_map_length(sm) == 0) {
		ASSERT0(error);
		ASSERT0(space_map_allocated(sm));
	}

	zio_buf_free(buf, bufsz);
	return (error);
}

typedef struct space_map_load_arg {
	space_map_t	*smla_sm;
	range_tree_t	*smla_rt;
	maptype_t	smla_type;
} space_map_load_arg_t;

static int
space_map_load_callback(space_map_entry_t *sme, void *arg)
{
	space_map_load_arg_t *smla = arg;
	if (sme->sme_type == smla->smla_type) {
		VERIFY3U(range_tree_space(smla->smla_rt) + sme->sme_run, <=,
		    smla->smla_sm->sm_size);
		range_tree_add(smla->smla_rt, sme->sme_offset, sme->sme_run);
	} else {
		range_tree_remove(smla->smla_rt, sme->sme_offset, sme->sme_run);
	}

	return (0);
}

/*
 * Load the spacemap into the rangetree, like space_map_load. But only
 * read the first 'length' bytes of the spacemap.
 */
int
space_map_load_length(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
    uint64_t length)
{
	space_map_load_arg_t smla;

	VERIFY0(range_tree_space(rt));

	if (maptype == SM_FREE)
		range_tree_add(rt, sm->sm_start, sm->sm_size);

	smla.smla_rt = rt;
	smla.smla_sm = sm;
	smla.smla_type = maptype;
	int err = space_map_iterate(sm, length,
	    space_map_load_callback, &smla);

	if (err != 0)
		range_tree_vacate(rt, NULL, NULL);

	return (err);
}

/*
 * Load the space map disk into the specified range tree. Segments of maptype
 * are added to the range tree, other segment types are removed.
 */
int
space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
{
	return (space_map_load_length(sm, rt, maptype, space_map_length(sm)));
}

void
space_map_histogram_clear(space_map_t *sm)
{
	if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
		return;

	bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram));
}

boolean_t
space_map_histogram_verify(space_map_t *sm, range_tree_t *rt)
{
	/*
	 * Verify that the in-core range tree does not have any
	 * ranges smaller than our sm_shift size.
	 */
	for (int i = 0; i < sm->sm_shift; i++) {
		if (rt->rt_histogram[i] != 0)
			return (B_FALSE);
	}
	return (B_TRUE);
}

void
space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
{
	int idx = 0;

	ASSERT(dmu_tx_is_syncing(tx));
	VERIFY3U(space_map_object(sm), !=, 0);

	if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
		return;

	dmu_buf_will_dirty(sm->sm_dbuf, tx);

	ASSERT(space_map_histogram_verify(sm, rt));
	/*
	 * Transfer the content of the range tree histogram to the space
	 * map histogram. The space map histogram contains 32 buckets ranging
	 * between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
	 * however, can represent ranges from 2^0 to 2^63. Since the space
	 * map only cares about allocatable blocks (minimum of sm_shift) we
	 * can safely ignore all ranges in the range tree smaller than sm_shift.
	 */
	for (int i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {

		/*
		 * Since the largest histogram bucket in the space map is
		 * 2^(32+sm_shift-1), we need to normalize the values in
		 * the range tree for any bucket larger than that size. For
		 * example given an sm_shift of 9, ranges larger than 2^40
		 * would get normalized as if they were 1TB ranges. Assume
		 * the range tree had a count of 5 in the 2^44 (16TB) bucket,
		 * the calculation below would normalize this to 5 * 2^4 (16).
		 */
		ASSERT3U(i, >=, idx + sm->sm_shift);
		sm->sm_phys->smp_histogram[idx] +=
		    rt->rt_histogram[i] << (i - idx - sm->sm_shift);

		/*
		 * Increment the space map's index as long as we haven't
		 * reached the maximum bucket size. Accumulate all ranges
		 * larger than the max bucket size into the last bucket.
		 */
		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
			ASSERT3U(idx + sm->sm_shift, ==, i);
			idx++;
			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
		}
	}
}

static void
space_map_write_intro_debug(space_map_t *sm, maptype_t maptype, dmu_tx_t *tx)
{
	dmu_buf_will_dirty(sm->sm_dbuf, tx);

	uint64_t dentry = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) |
	    SM_DEBUG_ACTION_ENCODE(maptype) |
	    SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(tx->tx_pool->dp_spa)) |
	    SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));

	dmu_write(sm->sm_os, space_map_object(sm), sm->sm_phys->smp_length,
	    sizeof (dentry), &dentry, tx);

	sm->sm_phys->smp_length += sizeof (dentry);
}

/*
 * Writes one or more entries given a segment.
 *
 * Note: The function may release the dbuf from the pointer initially
 * passed to it, and return a different dbuf. Also, the space map's
 * dbuf must be dirty for the changes in sm_phys to take effect.
 */
static void
space_map_write_seg(space_map_t *sm, uint64_t rstart, uint64_t rend,
    maptype_t maptype, uint64_t vdev_id, uint8_t words, dmu_buf_t **dbp,
    void *tag, dmu_tx_t *tx)
{
	ASSERT3U(words, !=, 0);
	ASSERT3U(words, <=, 2);

	/* ensure the vdev_id can be represented by the space map */
	ASSERT3U(vdev_id, <=, SM_NO_VDEVID);

	/*
	 * if this is a single word entry, ensure that no vdev was
	 * specified.
	 */
	IMPLY(words == 1, vdev_id == SM_NO_VDEVID);

	dmu_buf_t *db = *dbp;
	ASSERT3U(db->db_size, ==, sm->sm_blksz);

	uint64_t *block_base = db->db_data;
	uint64_t *block_end = block_base + (sm->sm_blksz / sizeof (uint64_t));
	uint64_t *block_cursor = block_base +
	    (sm->sm_phys->smp_length - db->db_offset) / sizeof (uint64_t);

	ASSERT3P(block_cursor, <=, block_end);

	uint64_t size = (rend - rstart) >> sm->sm_shift;
	uint64_t start = (rstart - sm->sm_start) >> sm->sm_shift;
	uint64_t run_max = (words == 2) ? SM2_RUN_MAX : SM_RUN_MAX;

	ASSERT3U(rstart, >=, sm->sm_start);
	ASSERT3U(rstart, <, sm->sm_start + sm->sm_size);
	ASSERT3U(rend - rstart, <=, sm->sm_size);
	ASSERT3U(rend, <=, sm->sm_start + sm->sm_size);

	while (size != 0) {
		ASSERT3P(block_cursor, <=, block_end);

		/*
		 * If we are at the end of this block, flush it and start
		 * writing again from the beginning.
		 */
		if (block_cursor == block_end) {
			dmu_buf_rele(db, tag);

			uint64_t next_word_offset = sm->sm_phys->smp_length;
			VERIFY0(dmu_buf_hold(sm->sm_os,
			    space_map_object(sm), next_word_offset,
			    tag, &db, DMU_READ_PREFETCH));
			dmu_buf_will_dirty(db, tx);

			/* update caller's dbuf */
			*dbp = db;

			ASSERT3U(db->db_size, ==, sm->sm_blksz);

			block_base = db->db_data;
			block_cursor = block_base;
			block_end = block_base +
			    (db->db_size / sizeof (uint64_t));
		}

		/*
		 * If we are writing a two-word entry and we only have one
		 * word left on this block, just pad it with an empty debug
		 * entry and write the two-word entry in the next block.
		 */
		uint64_t *next_entry = block_cursor + 1;
		if (next_entry == block_end && words > 1) {
			ASSERT3U(words, ==, 2);
			*block_cursor = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) |
			    SM_DEBUG_ACTION_ENCODE(0) |
			    SM_DEBUG_SYNCPASS_ENCODE(0) |
			    SM_DEBUG_TXG_ENCODE(0);
			block_cursor++;
			sm->sm_phys->smp_length += sizeof (uint64_t);
			ASSERT3P(block_cursor, ==, block_end);
			continue;
		}

		uint64_t run_len = MIN(size, run_max);
		switch (words) {
		case 1:
			*block_cursor = SM_OFFSET_ENCODE(start) |
			    SM_TYPE_ENCODE(maptype) |
			    SM_RUN_ENCODE(run_len);
			block_cursor++;
			break;
		case 2:
			/* write the first word of the entry */
			*block_cursor = SM_PREFIX_ENCODE(SM2_PREFIX) |
			    SM2_RUN_ENCODE(run_len) |
			    SM2_VDEV_ENCODE(vdev_id);
			block_cursor++;

			/* move on to the second word of the entry */
			ASSERT3P(block_cursor, <, block_end);
			*block_cursor = SM2_TYPE_ENCODE(maptype) |
			    SM2_OFFSET_ENCODE(start);
			block_cursor++;
			break;
		default:
			panic("%d-word space map entries are not supported",
			    words);
			break;
		}
		sm->sm_phys->smp_length += words * sizeof (uint64_t);

		start += run_len;
		size -= run_len;
	}
	ASSERT0(size);

}

/*
 * Note: The space map's dbuf must be dirty for the changes in sm_phys to
 * take effect.
 */
static void
space_map_write_impl(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
    uint64_t vdev_id, dmu_tx_t *tx)
{
	spa_t *spa = tx->tx_pool->dp_spa;
	dmu_buf_t *db;

	space_map_write_intro_debug(sm, maptype, tx);

#ifdef DEBUG
	/*
	 * We do this right after we write the intro debug entry
	 * because the estimate does not take it into account.
	 */
	uint64_t initial_objsize = sm->sm_phys->smp_length;
	uint64_t estimated_growth =
	    space_map_estimate_optimal_size(sm, rt, SM_NO_VDEVID);
	uint64_t estimated_final_objsize = initial_objsize + estimated_growth;
#endif

	/*
	 * Find the offset right after the last word in the space map
	 * and use that to get a hold of the last block, so we can
	 * start appending to it.
	 */
	uint64_t next_word_offset = sm->sm_phys->smp_length;
	VERIFY0(dmu_buf_hold(sm->sm_os, space_map_object(sm),
	    next_word_offset, FTAG, &db, DMU_READ_PREFETCH));
	ASSERT3U(db->db_size, ==, sm->sm_blksz);

	dmu_buf_will_dirty(db, tx);

	zfs_btree_t *t = &rt->rt_root;
	zfs_btree_index_t where;
	for (range_seg_t *rs = zfs_btree_first(t, &where); rs != NULL;
	    rs = zfs_btree_next(t, &where, &where)) {
		uint64_t offset = (rs_get_start(rs, rt) - sm->sm_start) >>
		    sm->sm_shift;
		uint64_t length = (rs_get_end(rs, rt) - rs_get_start(rs, rt)) >>
		    sm->sm_shift;
		uint8_t words = 1;

		/*
		 * We only write two-word entries when both of the following
		 * are true:
		 *
		 * [1] The feature is enabled.
		 * [2] The offset or run is too big for a single-word entry,
		 *	or the vdev_id is set (meaning not equal to
		 *	SM_NO_VDEVID).
		 *
		 * Note that for purposes of testing we've added the case that
		 * we write two-word entries occasionally when the feature is
		 * enabled and zfs_force_some_double_word_sm_entries has been
		 * set.
		 */
		if (spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_V2) &&
		    (offset >= (1ULL << SM_OFFSET_BITS) ||
		    length > SM_RUN_MAX ||
		    vdev_id != SM_NO_VDEVID ||
		    (zfs_force_some_double_word_sm_entries &&
		    spa_get_random(100) == 0)))
			words = 2;

		space_map_write_seg(sm, rs_get_start(rs, rt), rs_get_end(rs,
		    rt), maptype, vdev_id, words, &db, FTAG, tx);
	}

	dmu_buf_rele(db, FTAG);

#ifdef DEBUG
	/*
	 * We expect our estimation to be based on the worst case
	 * scenario [see comment in space_map_estimate_optimal_size()].
	 * Therefore we expect the actual objsize to be equal or less
	 * than whatever we estimated it to be.
	 */
	ASSERT3U(estimated_final_objsize, >=, sm->sm_phys->smp_length);
#endif
}

/*
 * Note: This function manipulates the state of the given space map but
 * does not hold any locks implicitly. Thus the caller is responsible
 * for synchronizing writes to the space map.
 */
void
space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
    uint64_t vdev_id, dmu_tx_t *tx)
{
	ASSERT(dsl_pool_sync_context(dmu_objset_pool(sm->sm_os)));
	VERIFY3U(space_map_object(sm), !=, 0);

	dmu_buf_will_dirty(sm->sm_dbuf, tx);

	/*
	 * This field is no longer necessary since the in-core space map
	 * now contains the object number but is maintained for backwards
	 * compatibility.
	 */
	sm->sm_phys->smp_object = sm->sm_object;

	if (range_tree_is_empty(rt)) {
		VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object);
		return;
	}

	if (maptype == SM_ALLOC)
		sm->sm_phys->smp_alloc += range_tree_space(rt);
	else
		sm->sm_phys->smp_alloc -= range_tree_space(rt);

	uint64_t nodes = zfs_btree_numnodes(&rt->rt_root);
	uint64_t rt_space = range_tree_space(rt);

	space_map_write_impl(sm, rt, maptype, vdev_id, tx);

	/*
	 * Ensure that the space_map's accounting wasn't changed
	 * while we were in the middle of writing it out.
	 */
	VERIFY3U(nodes, ==, zfs_btree_numnodes(&rt->rt_root));
	VERIFY3U(range_tree_space(rt), ==, rt_space);
}

static int
space_map_open_impl(space_map_t *sm)
{
	int error;
	u_longlong_t blocks;

	error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf);
	if (error)
		return (error);

	dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks);
	sm->sm_phys = sm->sm_dbuf->db_data;
	return (0);
}

int
space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
    uint64_t start, uint64_t size, uint8_t shift)
{
	space_map_t *sm;
	int error;

	ASSERT(*smp == NULL);
	ASSERT(os != NULL);
	ASSERT(object != 0);

	sm = kmem_alloc(sizeof (space_map_t), KM_SLEEP);

	sm->sm_start = start;
	sm->sm_size = size;
	sm->sm_shift = shift;
	sm->sm_os = os;
	sm->sm_object = object;
	sm->sm_blksz = 0;
	sm->sm_dbuf = NULL;
	sm->sm_phys = NULL;

	error = space_map_open_impl(sm);
	if (error != 0) {
		space_map_close(sm);
		return (error);
	}
	*smp = sm;

	return (0);
}

void
space_map_close(space_map_t *sm)
{
	if (sm == NULL)
		return;

	if (sm->sm_dbuf != NULL)
		dmu_buf_rele(sm->sm_dbuf, sm);
	sm->sm_dbuf = NULL;
	sm->sm_phys = NULL;

	kmem_free(sm, sizeof (*sm));
}

void
space_map_truncate(space_map_t *sm, int blocksize, dmu_tx_t *tx)
{
	objset_t *os = sm->sm_os;
	spa_t *spa = dmu_objset_spa(os);
	dmu_object_info_t doi;

	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
	ASSERT(dmu_tx_is_syncing(tx));
	VERIFY3U(dmu_tx_get_txg(tx), <=, spa_final_dirty_txg(spa));

	dmu_object_info_from_db(sm->sm_dbuf, &doi);

	/*
	 * If the space map has the wrong bonus size (because
	 * SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or
	 * the wrong block size (because space_map_blksz has changed),
	 * free and re-allocate its object with the updated sizes.
	 *
	 * Otherwise, just truncate the current object.
	 */
	if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
	    doi.doi_bonus_size != sizeof (space_map_phys_t)) ||
	    doi.doi_data_block_size != blocksize ||
	    doi.doi_metadata_block_size != 1 << space_map_ibs) {
		zfs_dbgmsg("txg %llu, spa %s, sm %px, reallocating "
		    "object[%llu]: old bonus %u, old blocksz %u",
		    dmu_tx_get_txg(tx), spa_name(spa), sm, sm->sm_object,
		    doi.doi_bonus_size, doi.doi_data_block_size);

		space_map_free(sm, tx);
		dmu_buf_rele(sm->sm_dbuf, sm);

		sm->sm_object = space_map_alloc(sm->sm_os, blocksize, tx);
		VERIFY0(space_map_open_impl(sm));
	} else {
		VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx));

		/*
		 * If the spacemap is reallocated, its histogram
		 * will be reset.  Do the same in the common case so that
		 * bugs related to the uncommon case do not go unnoticed.
		 */
		bzero(sm->sm_phys->smp_histogram,
		    sizeof (sm->sm_phys->smp_histogram));
	}

	dmu_buf_will_dirty(sm->sm_dbuf, tx);
	sm->sm_phys->smp_length = 0;
	sm->sm_phys->smp_alloc = 0;
}

uint64_t
space_map_alloc(objset_t *os, int blocksize, dmu_tx_t *tx)
{
	spa_t *spa = dmu_objset_spa(os);
	uint64_t object;
	int bonuslen;

	if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
		spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
		bonuslen = sizeof (space_map_phys_t);
		ASSERT3U(bonuslen, <=, dmu_bonus_max());
	} else {
		bonuslen = SPACE_MAP_SIZE_V0;
	}

	object = dmu_object_alloc_ibs(os, DMU_OT_SPACE_MAP, blocksize,
	    space_map_ibs, DMU_OT_SPACE_MAP_HEADER, bonuslen, tx);

	return (object);
}

void
space_map_free_obj(objset_t *os, uint64_t smobj, dmu_tx_t *tx)
{
	spa_t *spa = dmu_objset_spa(os);
	if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
		dmu_object_info_t doi;

		VERIFY0(dmu_object_info(os, smobj, &doi));
		if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
			spa_feature_decr(spa,
			    SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
		}
	}

	VERIFY0(dmu_object_free(os, smobj, tx));
}

void
space_map_free(space_map_t *sm, dmu_tx_t *tx)
{
	if (sm == NULL)
		return;

	space_map_free_obj(sm->sm_os, space_map_object(sm), tx);
	sm->sm_object = 0;
}

/*
 * Given a range tree, it makes a worst-case estimate of how much
 * space would the tree's segments take if they were written to
 * the given space map.
 */
uint64_t
space_map_estimate_optimal_size(space_map_t *sm, range_tree_t *rt,
    uint64_t vdev_id)
{
	spa_t *spa = dmu_objset_spa(sm->sm_os);
	uint64_t shift = sm->sm_shift;
	uint64_t *histogram = rt->rt_histogram;
	uint64_t entries_for_seg = 0;

	/*
	 * In order to get a quick estimate of the optimal size that this
	 * range tree would have on-disk as a space map, we iterate through
	 * its histogram buckets instead of iterating through its nodes.
	 *
	 * Note that this is a highest-bound/worst-case estimate for the
	 * following reasons:
	 *
	 * 1] We assume that we always add a debug padding for each block
	 *    we write and we also assume that we start at the last word
	 *    of a block attempting to write a two-word entry.
	 * 2] Rounding up errors due to the way segments are distributed
	 *    in the buckets of the range tree's histogram.
	 * 3] The activation of zfs_force_some_double_word_sm_entries
	 *    (tunable) when testing.
	 *
	 * = Math and Rounding Errors =
	 *
	 * rt_histogram[i] bucket of a range tree represents the number
	 * of entries in [2^i, (2^(i+1))-1] of that range_tree. Given
	 * that, we want to divide the buckets into groups: Buckets that
	 * can be represented using a single-word entry, ones that can
	 * be represented with a double-word entry, and ones that can
	 * only be represented with multiple two-word entries.
	 *
	 * [Note that if the new encoding feature is not enabled there
	 * are only two groups: single-word entry buckets and multiple
	 * single-word entry buckets. The information below assumes
	 * two-word entries enabled, but it can easily applied when
	 * the feature is not enabled]
	 *
	 * To find the highest bucket that can be represented with a
	 * single-word entry we look at the maximum run that such entry
	 * can have, which is 2^(SM_RUN_BITS + sm_shift) [remember that
	 * the run of a space map entry is shifted by sm_shift, thus we
	 * add it to the exponent]. This way, excluding the value of the
	 * maximum run that can be represented by a single-word entry,
	 * all runs that are smaller exist in buckets 0 to
	 * SM_RUN_BITS + shift - 1.
	 *
	 * To find the highest bucket that can be represented with a
	 * double-word entry, we follow the same approach. Finally, any
	 * bucket higher than that are represented with multiple two-word
	 * entries. To be more specific, if the highest bucket whose
	 * segments can be represented with a single two-word entry is X,
	 * then bucket X+1 will need 2 two-word entries for each of its
	 * segments, X+2 will need 4, X+3 will need 8, ...etc.
	 *
	 * With all of the above we make our estimation based on bucket
	 * groups. There is a rounding error though. As we mentioned in
	 * the example with the one-word entry, the maximum run that can
	 * be represented in a one-word entry 2^(SM_RUN_BITS + shift) is
	 * not part of bucket SM_RUN_BITS + shift - 1. Thus, segments of
	 * that length fall into the next bucket (and bucket group) where
	 * we start counting two-word entries and this is one more reason
	 * why the estimated size may end up being bigger than the actual
	 * size written.
	 */
	uint64_t size = 0;
	uint64_t idx = 0;

	if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) ||
	    (vdev_id == SM_NO_VDEVID && sm->sm_size < SM_OFFSET_MAX)) {

		/*
		 * If we are trying to force some double word entries just
		 * assume the worst-case of every single word entry being
		 * written as a double word entry.
		 */
		uint64_t entry_size =
		    (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) &&
		    zfs_force_some_double_word_sm_entries) ?
		    (2 * sizeof (uint64_t)) : sizeof (uint64_t);

		uint64_t single_entry_max_bucket = SM_RUN_BITS + shift - 1;
		for (; idx <= single_entry_max_bucket; idx++)
			size += histogram[idx] * entry_size;

		if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2)) {
			for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) {
				ASSERT3U(idx, >=, single_entry_max_bucket);
				entries_for_seg =
				    1ULL << (idx - single_entry_max_bucket);
				size += histogram[idx] *
				    entries_for_seg * entry_size;
			}
			return (size);
		}
	}

	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2));

	uint64_t double_entry_max_bucket = SM2_RUN_BITS + shift - 1;
	for (; idx <= double_entry_max_bucket; idx++)
		size += histogram[idx] * 2 * sizeof (uint64_t);

	for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) {
		ASSERT3U(idx, >=, double_entry_max_bucket);
		entries_for_seg = 1ULL << (idx - double_entry_max_bucket);
		size += histogram[idx] *
		    entries_for_seg * 2 * sizeof (uint64_t);
	}

	/*
	 * Assume the worst case where we start with the padding at the end
	 * of the current block and we add an extra padding entry at the end
	 * of all subsequent blocks.
	 */
	size += ((size / sm->sm_blksz) + 1) * sizeof (uint64_t);

	return (size);
}

uint64_t
space_map_object(space_map_t *sm)
{
	return (sm != NULL ? sm->sm_object : 0);
}

int64_t
space_map_allocated(space_map_t *sm)
{
	return (sm != NULL ? sm->sm_phys->smp_alloc : 0);
}

uint64_t
space_map_length(space_map_t *sm)
{
	return (sm != NULL ? sm->sm_phys->smp_length : 0);
}

uint64_t
space_map_nblocks(space_map_t *sm)
{
	if (sm == NULL)
		return (0);
	return (DIV_ROUND_UP(space_map_length(sm), sm->sm_blksz));
}