summaryrefslogtreecommitdiffstats
path: root/module/zfs/rrwlock.c
blob: 710685dbc71e2903ca68d221d62db0907a9ef813 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#pragma ident	"%Z%%M%	%I%	%E% SMI"

#include <sys/refcount.h>
#include <sys/rrwlock.h>

/*
 * This file contains the implementation of a re-entrant read
 * reader/writer lock (aka "rrwlock").
 *
 * This is a normal reader/writer lock with the additional feature
 * of allowing threads who have already obtained a read lock to
 * re-enter another read lock (re-entrant read) - even if there are
 * waiting writers.
 *
 * Callers who have not obtained a read lock give waiting writers priority.
 *
 * The rrwlock_t lock does not allow re-entrant writers, nor does it
 * allow a re-entrant mix of reads and writes (that is, it does not
 * allow a caller who has already obtained a read lock to be able to
 * then grab a write lock without first dropping all read locks, and
 * vice versa).
 *
 * The rrwlock_t uses tsd (thread specific data) to keep a list of
 * nodes (rrw_node_t), where each node keeps track of which specific
 * lock (rrw_node_t::rn_rrl) the thread has grabbed.  Since re-entering
 * should be rare, a thread that grabs multiple reads on the same rrwlock_t
 * will store multiple rrw_node_ts of the same 'rrn_rrl'. Nodes on the
 * tsd list can represent a different rrwlock_t.  This allows a thread
 * to enter multiple and unique rrwlock_ts for read locks at the same time.
 *
 * Since using tsd exposes some overhead, the rrwlock_t only needs to
 * keep tsd data when writers are waiting.  If no writers are waiting, then
 * a reader just bumps the anonymous read count (rr_anon_rcount) - no tsd
 * is needed.  Once a writer attempts to grab the lock, readers then
 * keep tsd data and bump the linked readers count (rr_linked_rcount).
 *
 * If there are waiting writers and there are anonymous readers, then a
 * reader doesn't know if it is a re-entrant lock. But since it may be one,
 * we allow the read to proceed (otherwise it could deadlock).  Since once
 * waiting writers are active, readers no longer bump the anonymous count,
 * the anonymous readers will eventually flush themselves out.  At this point,
 * readers will be able to tell if they are a re-entrant lock (have a
 * rrw_node_t entry for the lock) or not. If they are a re-entrant lock, then
 * we must let the proceed.  If they are not, then the reader blocks for the
 * waiting writers.  Hence, we do not starve writers.
 */

/* global key for TSD */
uint_t rrw_tsd_key;

typedef struct rrw_node {
	struct rrw_node	*rn_next;
	rrwlock_t	*rn_rrl;
} rrw_node_t;

static rrw_node_t *
rrn_find(rrwlock_t *rrl)
{
	rrw_node_t *rn;

	if (refcount_count(&rrl->rr_linked_rcount) == 0)
		return (NULL);

	for (rn = tsd_get(rrw_tsd_key); rn != NULL; rn = rn->rn_next) {
		if (rn->rn_rrl == rrl)
			return (rn);
	}
	return (NULL);
}

/*
 * Add a node to the head of the singly linked list.
 */
static void
rrn_add(rrwlock_t *rrl)
{
	rrw_node_t *rn;

	rn = kmem_alloc(sizeof (*rn), KM_SLEEP);
	rn->rn_rrl = rrl;
	rn->rn_next = tsd_get(rrw_tsd_key);
	VERIFY(tsd_set(rrw_tsd_key, rn) == 0);
}

/*
 * If a node is found for 'rrl', then remove the node from this
 * thread's list and return TRUE; otherwise return FALSE.
 */
static boolean_t
rrn_find_and_remove(rrwlock_t *rrl)
{
	rrw_node_t *rn;
	rrw_node_t *prev = NULL;

	if (refcount_count(&rrl->rr_linked_rcount) == 0)
		return (NULL);

	for (rn = tsd_get(rrw_tsd_key); rn != NULL; rn = rn->rn_next) {
		if (rn->rn_rrl == rrl) {
			if (prev)
				prev->rn_next = rn->rn_next;
			else
				VERIFY(tsd_set(rrw_tsd_key, rn->rn_next) == 0);
			kmem_free(rn, sizeof (*rn));
			return (B_TRUE);
		}
		prev = rn;
	}
	return (B_FALSE);
}

void
rrw_init(rrwlock_t *rrl)
{
	mutex_init(&rrl->rr_lock, NULL, MUTEX_DEFAULT, NULL);
	cv_init(&rrl->rr_cv, NULL, CV_DEFAULT, NULL);
	rrl->rr_writer = NULL;
	refcount_create(&rrl->rr_anon_rcount);
	refcount_create(&rrl->rr_linked_rcount);
	rrl->rr_writer_wanted = B_FALSE;
}

void
rrw_destroy(rrwlock_t *rrl)
{
	mutex_destroy(&rrl->rr_lock);
	cv_destroy(&rrl->rr_cv);
	ASSERT(rrl->rr_writer == NULL);
	refcount_destroy(&rrl->rr_anon_rcount);
	refcount_destroy(&rrl->rr_linked_rcount);
}

static void
rrw_enter_read(rrwlock_t *rrl, void *tag)
{
	mutex_enter(&rrl->rr_lock);
	ASSERT(rrl->rr_writer != curthread);
	ASSERT(refcount_count(&rrl->rr_anon_rcount) >= 0);

	while (rrl->rr_writer || (rrl->rr_writer_wanted &&
	    refcount_is_zero(&rrl->rr_anon_rcount) &&
	    rrn_find(rrl) == NULL))
		cv_wait(&rrl->rr_cv, &rrl->rr_lock);

	if (rrl->rr_writer_wanted) {
		/* may or may not be a re-entrant enter */
		rrn_add(rrl);
		(void) refcount_add(&rrl->rr_linked_rcount, tag);
	} else {
		(void) refcount_add(&rrl->rr_anon_rcount, tag);
	}
	ASSERT(rrl->rr_writer == NULL);
	mutex_exit(&rrl->rr_lock);
}

static void
rrw_enter_write(rrwlock_t *rrl)
{
	mutex_enter(&rrl->rr_lock);
	ASSERT(rrl->rr_writer != curthread);

	while (refcount_count(&rrl->rr_anon_rcount) > 0 ||
	    refcount_count(&rrl->rr_linked_rcount) > 0 ||
	    rrl->rr_writer != NULL) {
		rrl->rr_writer_wanted = B_TRUE;
		cv_wait(&rrl->rr_cv, &rrl->rr_lock);
	}
	rrl->rr_writer_wanted = B_FALSE;
	rrl->rr_writer = curthread;
	mutex_exit(&rrl->rr_lock);
}

void
rrw_enter(rrwlock_t *rrl, krw_t rw, void *tag)
{
	if (rw == RW_READER)
		rrw_enter_read(rrl, tag);
	else
		rrw_enter_write(rrl);
}

void
rrw_exit(rrwlock_t *rrl, void *tag)
{
	mutex_enter(&rrl->rr_lock);
	ASSERT(!refcount_is_zero(&rrl->rr_anon_rcount) ||
	    !refcount_is_zero(&rrl->rr_linked_rcount) ||
	    rrl->rr_writer != NULL);

	if (rrl->rr_writer == NULL) {
		if (rrn_find_and_remove(rrl)) {
			if (refcount_remove(&rrl->rr_linked_rcount, tag) == 0)
				cv_broadcast(&rrl->rr_cv);

		} else {
			if (refcount_remove(&rrl->rr_anon_rcount, tag) == 0)
				cv_broadcast(&rrl->rr_cv);
		}
	} else {
		ASSERT(rrl->rr_writer == curthread);
		ASSERT(refcount_is_zero(&rrl->rr_anon_rcount) &&
		    refcount_is_zero(&rrl->rr_linked_rcount));
		rrl->rr_writer = NULL;
		cv_broadcast(&rrl->rr_cv);
	}
	mutex_exit(&rrl->rr_lock);
}

boolean_t
rrw_held(rrwlock_t *rrl, krw_t rw)
{
	boolean_t held;

	mutex_enter(&rrl->rr_lock);
	if (rw == RW_WRITER) {
		held = (rrl->rr_writer == curthread);
	} else {
		held = (!refcount_is_zero(&rrl->rr_anon_rcount) ||
		    !refcount_is_zero(&rrl->rr_linked_rcount));
	}
	mutex_exit(&rrl->rr_lock);

	return (held);
}