aboutsummaryrefslogtreecommitdiffstats
path: root/module/zfs/range_tree.c
blob: 2c0e4b860a04245d4f5ece3bf0b2e336110d5e86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */
/*
 * Copyright (c) 2013, 2019 by Delphix. All rights reserved.
 */

#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/dmu.h>
#include <sys/dnode.h>
#include <sys/zio.h>
#include <sys/range_tree.h>

/*
 * Range trees are tree-based data structures that can be used to
 * track free space or generally any space allocation information.
 * A range tree keeps track of individual segments and automatically
 * provides facilities such as adjacent extent merging and extent
 * splitting in response to range add/remove requests.
 *
 * A range tree starts out completely empty, with no segments in it.
 * Adding an allocation via range_tree_add to the range tree can either:
 * 1) create a new extent
 * 2) extend an adjacent extent
 * 3) merge two adjacent extents
 * Conversely, removing an allocation via range_tree_remove can:
 * 1) completely remove an extent
 * 2) shorten an extent (if the allocation was near one of its ends)
 * 3) split an extent into two extents, in effect punching a hole
 *
 * A range tree is also capable of 'bridging' gaps when adding
 * allocations. This is useful for cases when close proximity of
 * allocations is an important detail that needs to be represented
 * in the range tree. See range_tree_set_gap(). The default behavior
 * is not to bridge gaps (i.e. the maximum allowed gap size is 0).
 *
 * In order to traverse a range tree, use either the range_tree_walk()
 * or range_tree_vacate() functions.
 *
 * To obtain more accurate information on individual segment
 * operations that the range tree performs "under the hood", you can
 * specify a set of callbacks by passing a range_tree_ops_t structure
 * to the range_tree_create function. Any callbacks that are non-NULL
 * are then called at the appropriate times.
 *
 * The range tree code also supports a special variant of range trees
 * that can bridge small gaps between segments. This kind of tree is used
 * by the dsl scanning code to group I/Os into mostly sequential chunks to
 * optimize disk performance. The code here attempts to do this with as
 * little memory and computational overhead as possible. One limitation of
 * this implementation is that segments of range trees with gaps can only
 * support removing complete segments.
 */

static inline void
rs_copy(range_seg_t *src, range_seg_t *dest, range_tree_t *rt)
{
	ASSERT3U(rt->rt_type, <=, RANGE_SEG_NUM_TYPES);
	size_t size = 0;
	switch (rt->rt_type) {
	case RANGE_SEG32:
		size = sizeof (range_seg32_t);
		break;
	case RANGE_SEG64:
		size = sizeof (range_seg64_t);
		break;
	case RANGE_SEG_GAP:
		size = sizeof (range_seg_gap_t);
		break;
	default:
		VERIFY(0);
	}
	bcopy(src, dest, size);
}

void
range_tree_stat_verify(range_tree_t *rt)
{
	range_seg_t *rs;
	zfs_btree_index_t where;
	uint64_t hist[RANGE_TREE_HISTOGRAM_SIZE] = { 0 };
	int i;

	for (rs = zfs_btree_first(&rt->rt_root, &where); rs != NULL;
	    rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
		uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
		int idx	= highbit64(size) - 1;

		hist[idx]++;
		ASSERT3U(hist[idx], !=, 0);
	}

	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
		if (hist[i] != rt->rt_histogram[i]) {
			zfs_dbgmsg("i=%d, hist=%px, hist=%llu, rt_hist=%llu",
			    i, hist, hist[i], rt->rt_histogram[i]);
		}
		VERIFY3U(hist[i], ==, rt->rt_histogram[i]);
	}
}

static void
range_tree_stat_incr(range_tree_t *rt, range_seg_t *rs)
{
	uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
	int idx = highbit64(size) - 1;

	ASSERT(size != 0);
	ASSERT3U(idx, <,
	    sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));

	rt->rt_histogram[idx]++;
	ASSERT3U(rt->rt_histogram[idx], !=, 0);
}

static void
range_tree_stat_decr(range_tree_t *rt, range_seg_t *rs)
{
	uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
	int idx = highbit64(size) - 1;

	ASSERT(size != 0);
	ASSERT3U(idx, <,
	    sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));

	ASSERT3U(rt->rt_histogram[idx], !=, 0);
	rt->rt_histogram[idx]--;
}

static int
range_tree_seg32_compare(const void *x1, const void *x2)
{
	const range_seg32_t *r1 = x1;
	const range_seg32_t *r2 = x2;

	ASSERT3U(r1->rs_start, <=, r1->rs_end);
	ASSERT3U(r2->rs_start, <=, r2->rs_end);

	return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
}

static int
range_tree_seg64_compare(const void *x1, const void *x2)
{
	const range_seg64_t *r1 = x1;
	const range_seg64_t *r2 = x2;

	ASSERT3U(r1->rs_start, <=, r1->rs_end);
	ASSERT3U(r2->rs_start, <=, r2->rs_end);

	return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
}

static int
range_tree_seg_gap_compare(const void *x1, const void *x2)
{
	const range_seg_gap_t *r1 = x1;
	const range_seg_gap_t *r2 = x2;

	ASSERT3U(r1->rs_start, <=, r1->rs_end);
	ASSERT3U(r2->rs_start, <=, r2->rs_end);

	return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
}

range_tree_t *
range_tree_create_impl(range_tree_ops_t *ops, range_seg_type_t type, void *arg,
    uint64_t start, uint64_t shift,
    int (*zfs_btree_compare) (const void *, const void *),
    uint64_t gap)
{
	range_tree_t *rt = kmem_zalloc(sizeof (range_tree_t), KM_SLEEP);

	ASSERT3U(shift, <, 64);
	ASSERT3U(type, <=, RANGE_SEG_NUM_TYPES);
	size_t size;
	int (*compare) (const void *, const void *);
	switch (type) {
	case RANGE_SEG32:
		size = sizeof (range_seg32_t);
		compare = range_tree_seg32_compare;
		break;
	case RANGE_SEG64:
		size = sizeof (range_seg64_t);
		compare = range_tree_seg64_compare;
		break;
	case RANGE_SEG_GAP:
		size = sizeof (range_seg_gap_t);
		compare = range_tree_seg_gap_compare;
		break;
	default:
		panic("Invalid range seg type %d", type);
	}
	zfs_btree_create(&rt->rt_root, compare, size);

	rt->rt_ops = ops;
	rt->rt_gap = gap;
	rt->rt_arg = arg;
	rt->rt_type = type;
	rt->rt_start = start;
	rt->rt_shift = shift;
	rt->rt_btree_compare = zfs_btree_compare;

	if (rt->rt_ops != NULL && rt->rt_ops->rtop_create != NULL)
		rt->rt_ops->rtop_create(rt, rt->rt_arg);

	return (rt);
}

range_tree_t *
range_tree_create(range_tree_ops_t *ops, range_seg_type_t type,
    void *arg, uint64_t start, uint64_t shift)
{
	return (range_tree_create_impl(ops, type, arg, start, shift, NULL, 0));
}

void
range_tree_destroy(range_tree_t *rt)
{
	VERIFY0(rt->rt_space);

	if (rt->rt_ops != NULL && rt->rt_ops->rtop_destroy != NULL)
		rt->rt_ops->rtop_destroy(rt, rt->rt_arg);

	zfs_btree_destroy(&rt->rt_root);
	kmem_free(rt, sizeof (*rt));
}

void
range_tree_adjust_fill(range_tree_t *rt, range_seg_t *rs, int64_t delta)
{
	if (delta < 0 && delta * -1 >= rs_get_fill(rs, rt)) {
		zfs_panic_recover("zfs: attempting to decrease fill to or "
		    "below 0; probable double remove in segment [%llx:%llx]",
		    (longlong_t)rs_get_start(rs, rt),
		    (longlong_t)rs_get_end(rs, rt));
	}
	if (rs_get_fill(rs, rt) + delta > rs_get_end(rs, rt) -
	    rs_get_start(rs, rt)) {
		zfs_panic_recover("zfs: attempting to increase fill beyond "
		    "max; probable double add in segment [%llx:%llx]",
		    (longlong_t)rs_get_start(rs, rt),
		    (longlong_t)rs_get_end(rs, rt));
	}

	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
	rs_set_fill(rs, rt, rs_get_fill(rs, rt) + delta);
	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
}

static void
range_tree_add_impl(void *arg, uint64_t start, uint64_t size, uint64_t fill)
{
	range_tree_t *rt = arg;
	zfs_btree_index_t where;
	range_seg_t *rs_before, *rs_after, *rs;
	range_seg_max_t tmp, rsearch;
	uint64_t end = start + size, gap = rt->rt_gap;
	uint64_t bridge_size = 0;
	boolean_t merge_before, merge_after;

	ASSERT3U(size, !=, 0);
	ASSERT3U(fill, <=, size);
	ASSERT3U(start + size, >, start);

	rs_set_start(&rsearch, rt, start);
	rs_set_end(&rsearch, rt, end);
	rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);

	/*
	 * If this is a gap-supporting range tree, it is possible that we
	 * are inserting into an existing segment. In this case simply
	 * bump the fill count and call the remove / add callbacks. If the
	 * new range will extend an existing segment, we remove the
	 * existing one, apply the new extent to it and re-insert it using
	 * the normal code paths.
	 */
	if (rs != NULL) {
		if (gap == 0) {
			zfs_panic_recover("zfs: adding existent segment to "
			    "range tree (offset=%llx size=%llx)",
			    (longlong_t)start, (longlong_t)size);
			return;
		}
		uint64_t rstart = rs_get_start(rs, rt);
		uint64_t rend = rs_get_end(rs, rt);
		if (rstart <= start && rend >= end) {
			range_tree_adjust_fill(rt, rs, fill);
			return;
		}

		zfs_btree_remove(&rt->rt_root, rs);
		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
			rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);

		range_tree_stat_decr(rt, rs);
		rt->rt_space -= rend - rstart;

		fill += rs_get_fill(rs, rt);
		start = MIN(start, rstart);
		end = MAX(end, rend);
		size = end - start;

		range_tree_add_impl(rt, start, size, fill);
		return;
	}

	ASSERT3P(rs, ==, NULL);

	/*
	 * Determine whether or not we will have to merge with our neighbors.
	 * If gap != 0, we might need to merge with our neighbors even if we
	 * aren't directly touching.
	 */
	zfs_btree_index_t where_before, where_after;
	rs_before = zfs_btree_prev(&rt->rt_root, &where, &where_before);
	rs_after = zfs_btree_next(&rt->rt_root, &where, &where_after);

	merge_before = (rs_before != NULL && rs_get_end(rs_before, rt) >=
	    start - gap);
	merge_after = (rs_after != NULL && rs_get_start(rs_after, rt) <= end +
	    gap);

	if (merge_before && gap != 0)
		bridge_size += start - rs_get_end(rs_before, rt);
	if (merge_after && gap != 0)
		bridge_size += rs_get_start(rs_after, rt) - end;

	if (merge_before && merge_after) {
		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) {
			rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
			rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
		}

		range_tree_stat_decr(rt, rs_before);
		range_tree_stat_decr(rt, rs_after);

		rs_copy(rs_after, &tmp, rt);
		uint64_t before_start = rs_get_start_raw(rs_before, rt);
		uint64_t before_fill = rs_get_fill(rs_before, rt);
		uint64_t after_fill = rs_get_fill(rs_after, rt);
		zfs_btree_remove_idx(&rt->rt_root, &where_before);

		/*
		 * We have to re-find the node because our old reference is
		 * invalid as soon as we do any mutating btree operations.
		 */
		rs_after = zfs_btree_find(&rt->rt_root, &tmp, &where_after);
		rs_set_start_raw(rs_after, rt, before_start);
		rs_set_fill(rs_after, rt, after_fill + before_fill + fill);
		rs = rs_after;
	} else if (merge_before) {
		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
			rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);

		range_tree_stat_decr(rt, rs_before);

		uint64_t before_fill = rs_get_fill(rs_before, rt);
		rs_set_end(rs_before, rt, end);
		rs_set_fill(rs_before, rt, before_fill + fill);
		rs = rs_before;
	} else if (merge_after) {
		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
			rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);

		range_tree_stat_decr(rt, rs_after);

		uint64_t after_fill = rs_get_fill(rs_after, rt);
		rs_set_start(rs_after, rt, start);
		rs_set_fill(rs_after, rt, after_fill + fill);
		rs = rs_after;
	} else {
		rs = &tmp;

		rs_set_start(rs, rt, start);
		rs_set_end(rs, rt, end);
		rs_set_fill(rs, rt, fill);
		zfs_btree_add_idx(&rt->rt_root, rs, &where);
	}

	if (gap != 0) {
		ASSERT3U(rs_get_fill(rs, rt), <=, rs_get_end(rs, rt) -
		    rs_get_start(rs, rt));
	} else {
		ASSERT3U(rs_get_fill(rs, rt), ==, rs_get_end(rs, rt) -
		    rs_get_start(rs, rt));
	}

	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);

	range_tree_stat_incr(rt, rs);
	rt->rt_space += size + bridge_size;
}

void
range_tree_add(void *arg, uint64_t start, uint64_t size)
{
	range_tree_add_impl(arg, start, size, size);
}

static void
range_tree_remove_impl(range_tree_t *rt, uint64_t start, uint64_t size,
    boolean_t do_fill)
{
	zfs_btree_index_t where;
	range_seg_t *rs;
	range_seg_max_t rsearch, rs_tmp;
	uint64_t end = start + size;
	boolean_t left_over, right_over;

	VERIFY3U(size, !=, 0);
	VERIFY3U(size, <=, rt->rt_space);
	if (rt->rt_type == RANGE_SEG64)
		ASSERT3U(start + size, >, start);

	rs_set_start(&rsearch, rt, start);
	rs_set_end(&rsearch, rt, end);
	rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);

	/* Make sure we completely overlap with someone */
	if (rs == NULL) {
		zfs_panic_recover("zfs: removing nonexistent segment from "
		    "range tree (offset=%llx size=%llx)",
		    (longlong_t)start, (longlong_t)size);
		return;
	}

	/*
	 * Range trees with gap support must only remove complete segments
	 * from the tree. This allows us to maintain accurate fill accounting
	 * and to ensure that bridged sections are not leaked. If we need to
	 * remove less than the full segment, we can only adjust the fill count.
	 */
	if (rt->rt_gap != 0) {
		if (do_fill) {
			if (rs_get_fill(rs, rt) == size) {
				start = rs_get_start(rs, rt);
				end = rs_get_end(rs, rt);
				size = end - start;
			} else {
				range_tree_adjust_fill(rt, rs, -size);
				return;
			}
		} else if (rs_get_start(rs, rt) != start ||
		    rs_get_end(rs, rt) != end) {
			zfs_panic_recover("zfs: freeing partial segment of "
			    "gap tree (offset=%llx size=%llx) of "
			    "(offset=%llx size=%llx)",
			    (longlong_t)start, (longlong_t)size,
			    (longlong_t)rs_get_start(rs, rt),
			    (longlong_t)rs_get_end(rs, rt) - rs_get_start(rs,
			    rt));
			return;
		}
	}

	VERIFY3U(rs_get_start(rs, rt), <=, start);
	VERIFY3U(rs_get_end(rs, rt), >=, end);

	left_over = (rs_get_start(rs, rt) != start);
	right_over = (rs_get_end(rs, rt) != end);

	range_tree_stat_decr(rt, rs);

	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);

	if (left_over && right_over) {
		range_seg_max_t newseg;
		rs_set_start(&newseg, rt, end);
		rs_set_end_raw(&newseg, rt, rs_get_end_raw(rs, rt));
		rs_set_fill(&newseg, rt, rs_get_end(rs, rt) - end);
		range_tree_stat_incr(rt, &newseg);

		// This modifies the buffer already inside the range tree
		rs_set_end(rs, rt, start);

		rs_copy(rs, &rs_tmp, rt);
		if (zfs_btree_next(&rt->rt_root, &where, &where) != NULL)
			zfs_btree_add_idx(&rt->rt_root, &newseg, &where);
		else
			zfs_btree_add(&rt->rt_root, &newseg);

		if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
			rt->rt_ops->rtop_add(rt, &newseg, rt->rt_arg);
	} else if (left_over) {
		// This modifies the buffer already inside the range tree
		rs_set_end(rs, rt, start);
		rs_copy(rs, &rs_tmp, rt);
	} else if (right_over) {
		// This modifies the buffer already inside the range tree
		rs_set_start(rs, rt, end);
		rs_copy(rs, &rs_tmp, rt);
	} else {
		zfs_btree_remove_idx(&rt->rt_root, &where);
		rs = NULL;
	}

	if (rs != NULL) {
		/*
		 * The fill of the leftover segment will always be equal to
		 * the size, since we do not support removing partial segments
		 * of range trees with gaps.
		 */
		rs_set_fill_raw(rs, rt, rs_get_end_raw(rs, rt) -
		    rs_get_start_raw(rs, rt));
		range_tree_stat_incr(rt, &rs_tmp);

		if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
			rt->rt_ops->rtop_add(rt, &rs_tmp, rt->rt_arg);
	}

	rt->rt_space -= size;
}

void
range_tree_remove(void *arg, uint64_t start, uint64_t size)
{
	range_tree_remove_impl(arg, start, size, B_FALSE);
}

void
range_tree_remove_fill(range_tree_t *rt, uint64_t start, uint64_t size)
{
	range_tree_remove_impl(rt, start, size, B_TRUE);
}

void
range_tree_resize_segment(range_tree_t *rt, range_seg_t *rs,
    uint64_t newstart, uint64_t newsize)
{
	int64_t delta = newsize - (rs_get_end(rs, rt) - rs_get_start(rs, rt));

	range_tree_stat_decr(rt, rs);
	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);

	rs_set_start(rs, rt, newstart);
	rs_set_end(rs, rt, newstart + newsize);

	range_tree_stat_incr(rt, rs);
	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);

	rt->rt_space += delta;
}

static range_seg_t *
range_tree_find_impl(range_tree_t *rt, uint64_t start, uint64_t size)
{
	range_seg_max_t rsearch;
	uint64_t end = start + size;

	VERIFY(size != 0);

	rs_set_start(&rsearch, rt, start);
	rs_set_end(&rsearch, rt, end);
	return (zfs_btree_find(&rt->rt_root, &rsearch, NULL));
}

range_seg_t *
range_tree_find(range_tree_t *rt, uint64_t start, uint64_t size)
{
	if (rt->rt_type == RANGE_SEG64)
		ASSERT3U(start + size, >, start);

	range_seg_t *rs = range_tree_find_impl(rt, start, size);
	if (rs != NULL && rs_get_start(rs, rt) <= start &&
	    rs_get_end(rs, rt) >= start + size) {
		return (rs);
	}
	return (NULL);
}

void
range_tree_verify_not_present(range_tree_t *rt, uint64_t off, uint64_t size)
{
	range_seg_t *rs = range_tree_find(rt, off, size);
	if (rs != NULL)
		panic("segment already in tree; rs=%p", (void *)rs);
}

boolean_t
range_tree_contains(range_tree_t *rt, uint64_t start, uint64_t size)
{
	return (range_tree_find(rt, start, size) != NULL);
}

/*
 * Returns the first subset of the given range which overlaps with the range
 * tree. Returns true if there is a segment in the range, and false if there
 * isn't.
 */
boolean_t
range_tree_find_in(range_tree_t *rt, uint64_t start, uint64_t size,
    uint64_t *ostart, uint64_t *osize)
{
	if (rt->rt_type == RANGE_SEG64)
		ASSERT3U(start + size, >, start);

	range_seg_max_t rsearch;
	rs_set_start(&rsearch, rt, start);
	rs_set_end_raw(&rsearch, rt, rs_get_start_raw(&rsearch, rt) + 1);

	zfs_btree_index_t where;
	range_seg_t *rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
	if (rs != NULL) {
		*ostart = start;
		*osize = MIN(size, rs_get_end(rs, rt) - start);
		return (B_TRUE);
	}

	rs = zfs_btree_next(&rt->rt_root, &where, &where);
	if (rs == NULL || rs_get_start(rs, rt) > start + size)
		return (B_FALSE);

	*ostart = rs_get_start(rs, rt);
	*osize = MIN(start + size, rs_get_end(rs, rt)) -
	    rs_get_start(rs, rt);
	return (B_TRUE);
}

/*
 * Ensure that this range is not in the tree, regardless of whether
 * it is currently in the tree.
 */
void
range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size)
{
	range_seg_t *rs;

	if (size == 0)
		return;

	if (rt->rt_type == RANGE_SEG64)
		ASSERT3U(start + size, >, start);

	while ((rs = range_tree_find_impl(rt, start, size)) != NULL) {
		uint64_t free_start = MAX(rs_get_start(rs, rt), start);
		uint64_t free_end = MIN(rs_get_end(rs, rt), start + size);
		range_tree_remove(rt, free_start, free_end - free_start);
	}
}

void
range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst)
{
	range_tree_t *rt;

	ASSERT0(range_tree_space(*rtdst));
	ASSERT0(zfs_btree_numnodes(&(*rtdst)->rt_root));

	rt = *rtsrc;
	*rtsrc = *rtdst;
	*rtdst = rt;
}

void
range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg)
{
	if (rt->rt_ops != NULL && rt->rt_ops->rtop_vacate != NULL)
		rt->rt_ops->rtop_vacate(rt, rt->rt_arg);

	if (func != NULL) {
		range_seg_t *rs;
		zfs_btree_index_t *cookie = NULL;

		while ((rs = zfs_btree_destroy_nodes(&rt->rt_root, &cookie)) !=
		    NULL) {
			func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
			    rs_get_start(rs, rt));
		}
	} else {
		zfs_btree_clear(&rt->rt_root);
	}

	bzero(rt->rt_histogram, sizeof (rt->rt_histogram));
	rt->rt_space = 0;
}

void
range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg)
{
	zfs_btree_index_t where;
	for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where);
	    rs != NULL; rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
		func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
		    rs_get_start(rs, rt));
	}
}

range_seg_t *
range_tree_first(range_tree_t *rt)
{
	return (zfs_btree_first(&rt->rt_root, NULL));
}

uint64_t
range_tree_space(range_tree_t *rt)
{
	return (rt->rt_space);
}

uint64_t
range_tree_numsegs(range_tree_t *rt)
{
	return ((rt == NULL) ? 0 : zfs_btree_numnodes(&rt->rt_root));
}

boolean_t
range_tree_is_empty(range_tree_t *rt)
{
	ASSERT(rt != NULL);
	return (range_tree_space(rt) == 0);
}

/* ARGSUSED */
void
rt_btree_create(range_tree_t *rt, void *arg)
{
	zfs_btree_t *size_tree = arg;

	size_t size;
	switch (rt->rt_type) {
	case RANGE_SEG32:
		size = sizeof (range_seg32_t);
		break;
	case RANGE_SEG64:
		size = sizeof (range_seg64_t);
		break;
	case RANGE_SEG_GAP:
		size = sizeof (range_seg_gap_t);
		break;
	default:
		panic("Invalid range seg type %d", rt->rt_type);
	}
	zfs_btree_create(size_tree, rt->rt_btree_compare, size);
}

/* ARGSUSED */
void
rt_btree_destroy(range_tree_t *rt, void *arg)
{
	zfs_btree_t *size_tree = arg;
	ASSERT0(zfs_btree_numnodes(size_tree));

	zfs_btree_destroy(size_tree);
}

/* ARGSUSED */
void
rt_btree_add(range_tree_t *rt, range_seg_t *rs, void *arg)
{
	zfs_btree_t *size_tree = arg;

	zfs_btree_add(size_tree, rs);
}

/* ARGSUSED */
void
rt_btree_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
{
	zfs_btree_t *size_tree = arg;

	zfs_btree_remove(size_tree, rs);
}

/* ARGSUSED */
void
rt_btree_vacate(range_tree_t *rt, void *arg)
{
	zfs_btree_t *size_tree = arg;
	zfs_btree_clear(size_tree);
	zfs_btree_destroy(size_tree);

	rt_btree_create(rt, arg);
}

range_tree_ops_t rt_btree_ops = {
	.rtop_create = rt_btree_create,
	.rtop_destroy = rt_btree_destroy,
	.rtop_add = rt_btree_add,
	.rtop_remove = rt_btree_remove,
	.rtop_vacate = rt_btree_vacate
};

/*
 * Remove any overlapping ranges between the given segment [start, end)
 * from removefrom. Add non-overlapping leftovers to addto.
 */
void
range_tree_remove_xor_add_segment(uint64_t start, uint64_t end,
    range_tree_t *removefrom, range_tree_t *addto)
{
	zfs_btree_index_t where;
	range_seg_max_t starting_rs;
	rs_set_start(&starting_rs, removefrom, start);
	rs_set_end_raw(&starting_rs, removefrom, rs_get_start_raw(&starting_rs,
	    removefrom) + 1);

	range_seg_t *curr = zfs_btree_find(&removefrom->rt_root,
	    &starting_rs, &where);

	if (curr == NULL)
		curr = zfs_btree_next(&removefrom->rt_root, &where, &where);

	range_seg_t *next;
	for (; curr != NULL; curr = next) {
		if (start == end)
			return;
		VERIFY3U(start, <, end);

		/* there is no overlap */
		if (end <= rs_get_start(curr, removefrom)) {
			range_tree_add(addto, start, end - start);
			return;
		}

		uint64_t overlap_start = MAX(rs_get_start(curr, removefrom),
		    start);
		uint64_t overlap_end = MIN(rs_get_end(curr, removefrom),
		    end);
		uint64_t overlap_size = overlap_end - overlap_start;
		ASSERT3S(overlap_size, >, 0);
		range_seg_max_t rs;
		rs_copy(curr, &rs, removefrom);

		range_tree_remove(removefrom, overlap_start, overlap_size);

		if (start < overlap_start)
			range_tree_add(addto, start, overlap_start - start);

		start = overlap_end;
		next = zfs_btree_find(&removefrom->rt_root, &rs, &where);
		/*
		 * If we find something here, we only removed part of the
		 * curr segment. Either there's some left at the end
		 * because we've reached the end of the range we're removing,
		 * or there's some left at the start because we started
		 * partway through the range.  Either way, we continue with
		 * the loop. If it's the former, we'll return at the start of
		 * the loop, and if it's the latter we'll see if there is more
		 * area to process.
		 */
		if (next != NULL) {
			ASSERT(start == end || start == rs_get_end(&rs,
			    removefrom));
		}

		next = zfs_btree_next(&removefrom->rt_root, &where, &where);
	}
	VERIFY3P(curr, ==, NULL);

	if (start != end) {
		VERIFY3U(start, <, end);
		range_tree_add(addto, start, end - start);
	} else {
		VERIFY3U(start, ==, end);
	}
}

/*
 * For each entry in rt, if it exists in removefrom, remove it
 * from removefrom. Otherwise, add it to addto.
 */
void
range_tree_remove_xor_add(range_tree_t *rt, range_tree_t *removefrom,
    range_tree_t *addto)
{
	zfs_btree_index_t where;
	for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where); rs;
	    rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
		range_tree_remove_xor_add_segment(rs_get_start(rs, rt),
		    rs_get_end(rs, rt), removefrom, addto);
	}
}

uint64_t
range_tree_min(range_tree_t *rt)
{
	range_seg_t *rs = zfs_btree_first(&rt->rt_root, NULL);
	return (rs != NULL ? rs_get_start(rs, rt) : 0);
}

uint64_t
range_tree_max(range_tree_t *rt)
{
	range_seg_t *rs = zfs_btree_last(&rt->rt_root, NULL);
	return (rs != NULL ? rs_get_end(rs, rt) : 0);
}

uint64_t
range_tree_span(range_tree_t *rt)
{
	return (range_tree_max(rt) - range_tree_min(rt));
}