aboutsummaryrefslogtreecommitdiffstats
path: root/module/zfs/metaslab.c
blob: cd1b6ce730f4843bbe5d41f9f4b24f39f4aa48f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 * Copyright (c) 2012 by Delphix. All rights reserved.
 */

#include <sys/zfs_context.h>
#include <sys/dmu.h>
#include <sys/dmu_tx.h>
#include <sys/space_map.h>
#include <sys/metaslab_impl.h>
#include <sys/vdev_impl.h>
#include <sys/zio.h>

#define WITH_DF_BLOCK_ALLOCATOR

/*
 * Allow allocations to switch to gang blocks quickly. We do this to
 * avoid having to load lots of space_maps in a given txg. There are,
 * however, some cases where we want to avoid "fast" ganging and instead
 * we want to do an exhaustive search of all metaslabs on this device.
 * Currently we don't allow any gang, zil, or dump device related allocations
 * to "fast" gang.
 */
#define	CAN_FASTGANG(flags) \
	(!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \
	METASLAB_GANG_AVOID)))

uint64_t metaslab_aliquot = 512ULL << 10;
uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1;	/* force gang blocks */

/*
 * The in-core space map representation is more compact than its on-disk form.
 * The zfs_condense_pct determines how much more compact the in-core
 * space_map representation must be before we compact it on-disk.
 * Values should be greater than or equal to 100.
 */
int zfs_condense_pct = 200;

/*
 * This value defines the number of allowed allocation failures per vdev.
 * If a device reaches this threshold in a given txg then we consider skipping
 * allocations on that device.
 */
int zfs_mg_alloc_failures;

/*
 * Metaslab debugging: when set, keeps all space maps in core to verify frees.
 */
int metaslab_debug = 0;

/*
 * Minimum size which forces the dynamic allocator to change
 * it's allocation strategy.  Once the space map cannot satisfy
 * an allocation of this size then it switches to using more
 * aggressive strategy (i.e search by size rather than offset).
 */
uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;

/*
 * The minimum free space, in percent, which must be available
 * in a space map to continue allocations in a first-fit fashion.
 * Once the space_map's free space drops below this level we dynamically
 * switch to using best-fit allocations.
 */
int metaslab_df_free_pct = 4;

/*
 * A metaslab is considered "free" if it contains a contiguous
 * segment which is greater than metaslab_min_alloc_size.
 */
uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;

/*
 * Max number of space_maps to prefetch.
 */
int metaslab_prefetch_limit = SPA_DVAS_PER_BP;

/*
 * Percentage bonus multiplier for metaslabs that are in the bonus area.
 */
int metaslab_smo_bonus_pct = 150;

/*
 * ==========================================================================
 * Metaslab classes
 * ==========================================================================
 */
metaslab_class_t *
metaslab_class_create(spa_t *spa, space_map_ops_t *ops)
{
	metaslab_class_t *mc;

	mc = kmem_zalloc(sizeof (metaslab_class_t), KM_PUSHPAGE);

	mc->mc_spa = spa;
	mc->mc_rotor = NULL;
	mc->mc_ops = ops;
	mutex_init(&mc->mc_fastwrite_lock, NULL, MUTEX_DEFAULT, NULL);

	return (mc);
}

void
metaslab_class_destroy(metaslab_class_t *mc)
{
	ASSERT(mc->mc_rotor == NULL);
	ASSERT(mc->mc_alloc == 0);
	ASSERT(mc->mc_deferred == 0);
	ASSERT(mc->mc_space == 0);
	ASSERT(mc->mc_dspace == 0);

	mutex_destroy(&mc->mc_fastwrite_lock);
	kmem_free(mc, sizeof (metaslab_class_t));
}

int
metaslab_class_validate(metaslab_class_t *mc)
{
	metaslab_group_t *mg;
	vdev_t *vd;

	/*
	 * Must hold one of the spa_config locks.
	 */
	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));

	if ((mg = mc->mc_rotor) == NULL)
		return (0);

	do {
		vd = mg->mg_vd;
		ASSERT(vd->vdev_mg != NULL);
		ASSERT3P(vd->vdev_top, ==, vd);
		ASSERT3P(mg->mg_class, ==, mc);
		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
	} while ((mg = mg->mg_next) != mc->mc_rotor);

	return (0);
}

void
metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
    int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
{
	atomic_add_64(&mc->mc_alloc, alloc_delta);
	atomic_add_64(&mc->mc_deferred, defer_delta);
	atomic_add_64(&mc->mc_space, space_delta);
	atomic_add_64(&mc->mc_dspace, dspace_delta);
}

uint64_t
metaslab_class_get_alloc(metaslab_class_t *mc)
{
	return (mc->mc_alloc);
}

uint64_t
metaslab_class_get_deferred(metaslab_class_t *mc)
{
	return (mc->mc_deferred);
}

uint64_t
metaslab_class_get_space(metaslab_class_t *mc)
{
	return (mc->mc_space);
}

uint64_t
metaslab_class_get_dspace(metaslab_class_t *mc)
{
	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
}

/*
 * ==========================================================================
 * Metaslab groups
 * ==========================================================================
 */
static int
metaslab_compare(const void *x1, const void *x2)
{
	const metaslab_t *m1 = x1;
	const metaslab_t *m2 = x2;

	if (m1->ms_weight < m2->ms_weight)
		return (1);
	if (m1->ms_weight > m2->ms_weight)
		return (-1);

	/*
	 * If the weights are identical, use the offset to force uniqueness.
	 */
	if (m1->ms_map->sm_start < m2->ms_map->sm_start)
		return (-1);
	if (m1->ms_map->sm_start > m2->ms_map->sm_start)
		return (1);

	ASSERT3P(m1, ==, m2);

	return (0);
}

metaslab_group_t *
metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
{
	metaslab_group_t *mg;

	mg = kmem_zalloc(sizeof (metaslab_group_t), KM_PUSHPAGE);
	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
	    sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
	mg->mg_vd = vd;
	mg->mg_class = mc;
	mg->mg_activation_count = 0;

	return (mg);
}

void
metaslab_group_destroy(metaslab_group_t *mg)
{
	ASSERT(mg->mg_prev == NULL);
	ASSERT(mg->mg_next == NULL);
	/*
	 * We may have gone below zero with the activation count
	 * either because we never activated in the first place or
	 * because we're done, and possibly removing the vdev.
	 */
	ASSERT(mg->mg_activation_count <= 0);

	avl_destroy(&mg->mg_metaslab_tree);
	mutex_destroy(&mg->mg_lock);
	kmem_free(mg, sizeof (metaslab_group_t));
}

void
metaslab_group_activate(metaslab_group_t *mg)
{
	metaslab_class_t *mc = mg->mg_class;
	metaslab_group_t *mgprev, *mgnext;

	ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));

	ASSERT(mc->mc_rotor != mg);
	ASSERT(mg->mg_prev == NULL);
	ASSERT(mg->mg_next == NULL);
	ASSERT(mg->mg_activation_count <= 0);

	if (++mg->mg_activation_count <= 0)
		return;

	mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);

	if ((mgprev = mc->mc_rotor) == NULL) {
		mg->mg_prev = mg;
		mg->mg_next = mg;
	} else {
		mgnext = mgprev->mg_next;
		mg->mg_prev = mgprev;
		mg->mg_next = mgnext;
		mgprev->mg_next = mg;
		mgnext->mg_prev = mg;
	}
	mc->mc_rotor = mg;
}

void
metaslab_group_passivate(metaslab_group_t *mg)
{
	metaslab_class_t *mc = mg->mg_class;
	metaslab_group_t *mgprev, *mgnext;

	ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));

	if (--mg->mg_activation_count != 0) {
		ASSERT(mc->mc_rotor != mg);
		ASSERT(mg->mg_prev == NULL);
		ASSERT(mg->mg_next == NULL);
		ASSERT(mg->mg_activation_count < 0);
		return;
	}

	mgprev = mg->mg_prev;
	mgnext = mg->mg_next;

	if (mg == mgnext) {
		mc->mc_rotor = NULL;
	} else {
		mc->mc_rotor = mgnext;
		mgprev->mg_next = mgnext;
		mgnext->mg_prev = mgprev;
	}

	mg->mg_prev = NULL;
	mg->mg_next = NULL;
}

static void
metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
{
	mutex_enter(&mg->mg_lock);
	ASSERT(msp->ms_group == NULL);
	msp->ms_group = mg;
	msp->ms_weight = 0;
	avl_add(&mg->mg_metaslab_tree, msp);
	mutex_exit(&mg->mg_lock);
}

static void
metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
{
	mutex_enter(&mg->mg_lock);
	ASSERT(msp->ms_group == mg);
	avl_remove(&mg->mg_metaslab_tree, msp);
	msp->ms_group = NULL;
	mutex_exit(&mg->mg_lock);
}

static void
metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
{
	/*
	 * Although in principle the weight can be any value, in
	 * practice we do not use values in the range [1, 510].
	 */
	ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0);
	ASSERT(MUTEX_HELD(&msp->ms_lock));

	mutex_enter(&mg->mg_lock);
	ASSERT(msp->ms_group == mg);
	avl_remove(&mg->mg_metaslab_tree, msp);
	msp->ms_weight = weight;
	avl_add(&mg->mg_metaslab_tree, msp);
	mutex_exit(&mg->mg_lock);
}

/*
 * ==========================================================================
 * Common allocator routines
 * ==========================================================================
 */
static int
metaslab_segsize_compare(const void *x1, const void *x2)
{
	const space_seg_t *s1 = x1;
	const space_seg_t *s2 = x2;
	uint64_t ss_size1 = s1->ss_end - s1->ss_start;
	uint64_t ss_size2 = s2->ss_end - s2->ss_start;

	if (ss_size1 < ss_size2)
		return (-1);
	if (ss_size1 > ss_size2)
		return (1);

	if (s1->ss_start < s2->ss_start)
		return (-1);
	if (s1->ss_start > s2->ss_start)
		return (1);

	return (0);
}

#if defined(WITH_FF_BLOCK_ALLOCATOR) || \
    defined(WITH_DF_BLOCK_ALLOCATOR) || \
    defined(WITH_CDF_BLOCK_ALLOCATOR)
/*
 * This is a helper function that can be used by the allocator to find
 * a suitable block to allocate. This will search the specified AVL
 * tree looking for a block that matches the specified criteria.
 */
static uint64_t
metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
    uint64_t align)
{
	space_seg_t *ss, ssearch;
	avl_index_t where;

	ssearch.ss_start = *cursor;
	ssearch.ss_end = *cursor + size;

	ss = avl_find(t, &ssearch, &where);
	if (ss == NULL)
		ss = avl_nearest(t, where, AVL_AFTER);

	while (ss != NULL) {
		uint64_t offset = P2ROUNDUP(ss->ss_start, align);

		if (offset + size <= ss->ss_end) {
			*cursor = offset + size;
			return (offset);
		}
		ss = AVL_NEXT(t, ss);
	}

	/*
	 * If we know we've searched the whole map (*cursor == 0), give up.
	 * Otherwise, reset the cursor to the beginning and try again.
	 */
	if (*cursor == 0)
		return (-1ULL);

	*cursor = 0;
	return (metaslab_block_picker(t, cursor, size, align));
}
#endif /* WITH_FF/DF/CDF_BLOCK_ALLOCATOR */

static void
metaslab_pp_load(space_map_t *sm)
{
	space_seg_t *ss;

	ASSERT(sm->sm_ppd == NULL);
	sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_PUSHPAGE);

	sm->sm_pp_root = kmem_alloc(sizeof (avl_tree_t), KM_PUSHPAGE);
	avl_create(sm->sm_pp_root, metaslab_segsize_compare,
	    sizeof (space_seg_t), offsetof(struct space_seg, ss_pp_node));

	for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
		avl_add(sm->sm_pp_root, ss);
}

static void
metaslab_pp_unload(space_map_t *sm)
{
	void *cookie = NULL;

	kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t));
	sm->sm_ppd = NULL;

	while (avl_destroy_nodes(sm->sm_pp_root, &cookie) != NULL) {
		/* tear down the tree */
	}

	avl_destroy(sm->sm_pp_root);
	kmem_free(sm->sm_pp_root, sizeof (avl_tree_t));
	sm->sm_pp_root = NULL;
}

/* ARGSUSED */
static void
metaslab_pp_claim(space_map_t *sm, uint64_t start, uint64_t size)
{
	/* No need to update cursor */
}

/* ARGSUSED */
static void
metaslab_pp_free(space_map_t *sm, uint64_t start, uint64_t size)
{
	/* No need to update cursor */
}

/*
 * Return the maximum contiguous segment within the metaslab.
 */
uint64_t
metaslab_pp_maxsize(space_map_t *sm)
{
	avl_tree_t *t = sm->sm_pp_root;
	space_seg_t *ss;

	if (t == NULL || (ss = avl_last(t)) == NULL)
		return (0ULL);

	return (ss->ss_end - ss->ss_start);
}

#if defined(WITH_FF_BLOCK_ALLOCATOR)
/*
 * ==========================================================================
 * The first-fit block allocator
 * ==========================================================================
 */
static uint64_t
metaslab_ff_alloc(space_map_t *sm, uint64_t size)
{
	avl_tree_t *t = &sm->sm_root;
	uint64_t align = size & -size;
	uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;

	return (metaslab_block_picker(t, cursor, size, align));
}

/* ARGSUSED */
boolean_t
metaslab_ff_fragmented(space_map_t *sm)
{
	return (B_TRUE);
}

static space_map_ops_t metaslab_ff_ops = {
	metaslab_pp_load,
	metaslab_pp_unload,
	metaslab_ff_alloc,
	metaslab_pp_claim,
	metaslab_pp_free,
	metaslab_pp_maxsize,
	metaslab_ff_fragmented
};

space_map_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
#endif /* WITH_FF_BLOCK_ALLOCATOR */

#if defined(WITH_DF_BLOCK_ALLOCATOR)
/*
 * ==========================================================================
 * Dynamic block allocator -
 * Uses the first fit allocation scheme until space get low and then
 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
 * ==========================================================================
 */
static uint64_t
metaslab_df_alloc(space_map_t *sm, uint64_t size)
{
	avl_tree_t *t = &sm->sm_root;
	uint64_t align = size & -size;
	uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
	uint64_t max_size = metaslab_pp_maxsize(sm);
	int free_pct = sm->sm_space * 100 / sm->sm_size;

	ASSERT(MUTEX_HELD(sm->sm_lock));
	ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));

	if (max_size < size)
		return (-1ULL);

	/*
	 * If we're running low on space switch to using the size
	 * sorted AVL tree (best-fit).
	 */
	if (max_size < metaslab_df_alloc_threshold ||
	    free_pct < metaslab_df_free_pct) {
		t = sm->sm_pp_root;
		*cursor = 0;
	}

	return (metaslab_block_picker(t, cursor, size, 1ULL));
}

static boolean_t
metaslab_df_fragmented(space_map_t *sm)
{
	uint64_t max_size = metaslab_pp_maxsize(sm);
	int free_pct = sm->sm_space * 100 / sm->sm_size;

	if (max_size >= metaslab_df_alloc_threshold &&
	    free_pct >= metaslab_df_free_pct)
		return (B_FALSE);

	return (B_TRUE);
}

static space_map_ops_t metaslab_df_ops = {
	metaslab_pp_load,
	metaslab_pp_unload,
	metaslab_df_alloc,
	metaslab_pp_claim,
	metaslab_pp_free,
	metaslab_pp_maxsize,
	metaslab_df_fragmented
};

space_map_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
#endif /* WITH_DF_BLOCK_ALLOCATOR */

/*
 * ==========================================================================
 * Other experimental allocators
 * ==========================================================================
 */
#if defined(WITH_CDF_BLOCK_ALLOCATOR)
static uint64_t
metaslab_cdf_alloc(space_map_t *sm, uint64_t size)
{
	avl_tree_t *t = &sm->sm_root;
	uint64_t *cursor = (uint64_t *)sm->sm_ppd;
	uint64_t *extent_end = (uint64_t *)sm->sm_ppd + 1;
	uint64_t max_size = metaslab_pp_maxsize(sm);
	uint64_t rsize = size;
	uint64_t offset = 0;

	ASSERT(MUTEX_HELD(sm->sm_lock));
	ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));

	if (max_size < size)
		return (-1ULL);

	ASSERT3U(*extent_end, >=, *cursor);

	/*
	 * If we're running low on space switch to using the size
	 * sorted AVL tree (best-fit).
	 */
	if ((*cursor + size) > *extent_end) {

		t = sm->sm_pp_root;
		*cursor = *extent_end = 0;

		if (max_size > 2 * SPA_MAXBLOCKSIZE)
			rsize = MIN(metaslab_min_alloc_size, max_size);
		offset = metaslab_block_picker(t, extent_end, rsize, 1ULL);
		if (offset != -1)
			*cursor = offset + size;
	} else {
		offset = metaslab_block_picker(t, cursor, rsize, 1ULL);
	}
	ASSERT3U(*cursor, <=, *extent_end);
	return (offset);
}

static boolean_t
metaslab_cdf_fragmented(space_map_t *sm)
{
	uint64_t max_size = metaslab_pp_maxsize(sm);

	if (max_size > (metaslab_min_alloc_size * 10))
		return (B_FALSE);
	return (B_TRUE);
}

static space_map_ops_t metaslab_cdf_ops = {
	metaslab_pp_load,
	metaslab_pp_unload,
	metaslab_cdf_alloc,
	metaslab_pp_claim,
	metaslab_pp_free,
	metaslab_pp_maxsize,
	metaslab_cdf_fragmented
};

space_map_ops_t *zfs_metaslab_ops = &metaslab_cdf_ops;
#endif /* WITH_CDF_BLOCK_ALLOCATOR */

#if defined(WITH_NDF_BLOCK_ALLOCATOR)
uint64_t metaslab_ndf_clump_shift = 4;

static uint64_t
metaslab_ndf_alloc(space_map_t *sm, uint64_t size)
{
	avl_tree_t *t = &sm->sm_root;
	avl_index_t where;
	space_seg_t *ss, ssearch;
	uint64_t hbit = highbit(size);
	uint64_t *cursor = (uint64_t *)sm->sm_ppd + hbit - 1;
	uint64_t max_size = metaslab_pp_maxsize(sm);

	ASSERT(MUTEX_HELD(sm->sm_lock));
	ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));

	if (max_size < size)
		return (-1ULL);

	ssearch.ss_start = *cursor;
	ssearch.ss_end = *cursor + size;

	ss = avl_find(t, &ssearch, &where);
	if (ss == NULL || (ss->ss_start + size > ss->ss_end)) {
		t = sm->sm_pp_root;

		ssearch.ss_start = 0;
		ssearch.ss_end = MIN(max_size,
		    1ULL << (hbit + metaslab_ndf_clump_shift));
		ss = avl_find(t, &ssearch, &where);
		if (ss == NULL)
			ss = avl_nearest(t, where, AVL_AFTER);
		ASSERT(ss != NULL);
	}

	if (ss != NULL) {
		if (ss->ss_start + size <= ss->ss_end) {
			*cursor = ss->ss_start + size;
			return (ss->ss_start);
		}
	}
	return (-1ULL);
}

static boolean_t
metaslab_ndf_fragmented(space_map_t *sm)
{
	uint64_t max_size = metaslab_pp_maxsize(sm);

	if (max_size > (metaslab_min_alloc_size << metaslab_ndf_clump_shift))
		return (B_FALSE);
	return (B_TRUE);
}


static space_map_ops_t metaslab_ndf_ops = {
	metaslab_pp_load,
	metaslab_pp_unload,
	metaslab_ndf_alloc,
	metaslab_pp_claim,
	metaslab_pp_free,
	metaslab_pp_maxsize,
	metaslab_ndf_fragmented
};

space_map_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
#endif /* WITH_NDF_BLOCK_ALLOCATOR */

/*
 * ==========================================================================
 * Metaslabs
 * ==========================================================================
 */
metaslab_t *
metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo,
	uint64_t start, uint64_t size, uint64_t txg)
{
	vdev_t *vd = mg->mg_vd;
	metaslab_t *msp;

	msp = kmem_zalloc(sizeof (metaslab_t), KM_PUSHPAGE);
	mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);

	msp->ms_smo_syncing = *smo;

	/*
	 * We create the main space map here, but we don't create the
	 * allocmaps and freemaps until metaslab_sync_done().  This serves
	 * two purposes: it allows metaslab_sync_done() to detect the
	 * addition of new space; and for debugging, it ensures that we'd
	 * data fault on any attempt to use this metaslab before it's ready.
	 */
	msp->ms_map = kmem_zalloc(sizeof (space_map_t), KM_PUSHPAGE);
	space_map_create(msp->ms_map, start, size,
	    vd->vdev_ashift, &msp->ms_lock);

	metaslab_group_add(mg, msp);

	if (metaslab_debug && smo->smo_object != 0) {
		mutex_enter(&msp->ms_lock);
		VERIFY(space_map_load(msp->ms_map, mg->mg_class->mc_ops,
		    SM_FREE, smo, spa_meta_objset(vd->vdev_spa)) == 0);
		mutex_exit(&msp->ms_lock);
	}

	/*
	 * If we're opening an existing pool (txg == 0) or creating
	 * a new one (txg == TXG_INITIAL), all space is available now.
	 * If we're adding space to an existing pool, the new space
	 * does not become available until after this txg has synced.
	 */
	if (txg <= TXG_INITIAL)
		metaslab_sync_done(msp, 0);

	if (txg != 0) {
		vdev_dirty(vd, 0, NULL, txg);
		vdev_dirty(vd, VDD_METASLAB, msp, txg);
	}

	return (msp);
}

void
metaslab_fini(metaslab_t *msp)
{
	metaslab_group_t *mg = msp->ms_group;
	int t;

	vdev_space_update(mg->mg_vd,
	    -msp->ms_smo.smo_alloc, 0, -msp->ms_map->sm_size);

	metaslab_group_remove(mg, msp);

	mutex_enter(&msp->ms_lock);

	space_map_unload(msp->ms_map);
	space_map_destroy(msp->ms_map);
	kmem_free(msp->ms_map, sizeof (*msp->ms_map));

	for (t = 0; t < TXG_SIZE; t++) {
		space_map_destroy(msp->ms_allocmap[t]);
		space_map_destroy(msp->ms_freemap[t]);
		kmem_free(msp->ms_allocmap[t], sizeof (*msp->ms_allocmap[t]));
		kmem_free(msp->ms_freemap[t], sizeof (*msp->ms_freemap[t]));
	}

	for (t = 0; t < TXG_DEFER_SIZE; t++) {
		space_map_destroy(msp->ms_defermap[t]);
		kmem_free(msp->ms_defermap[t], sizeof (*msp->ms_defermap[t]));
	}

	ASSERT0(msp->ms_deferspace);

	mutex_exit(&msp->ms_lock);
	mutex_destroy(&msp->ms_lock);

	kmem_free(msp, sizeof (metaslab_t));
}

#define	METASLAB_WEIGHT_PRIMARY		(1ULL << 63)
#define	METASLAB_WEIGHT_SECONDARY	(1ULL << 62)
#define	METASLAB_ACTIVE_MASK		\
	(METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)

static uint64_t
metaslab_weight(metaslab_t *msp)
{
	metaslab_group_t *mg = msp->ms_group;
	space_map_t *sm = msp->ms_map;
	space_map_obj_t *smo = &msp->ms_smo;
	vdev_t *vd = mg->mg_vd;
	uint64_t weight, space;

	ASSERT(MUTEX_HELD(&msp->ms_lock));

	/*
	 * The baseline weight is the metaslab's free space.
	 */
	space = sm->sm_size - smo->smo_alloc;
	weight = space;

	/*
	 * Modern disks have uniform bit density and constant angular velocity.
	 * Therefore, the outer recording zones are faster (higher bandwidth)
	 * than the inner zones by the ratio of outer to inner track diameter,
	 * which is typically around 2:1.  We account for this by assigning
	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
	 * In effect, this means that we'll select the metaslab with the most
	 * free bandwidth rather than simply the one with the most free space.
	 */
	weight = 2 * weight -
	    ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count;
	ASSERT(weight >= space && weight <= 2 * space);

	/*
	 * For locality, assign higher weight to metaslabs which have
	 * a lower offset than what we've already activated.
	 */
	if (sm->sm_start <= mg->mg_bonus_area)
		weight *= (metaslab_smo_bonus_pct / 100);
	ASSERT(weight >= space &&
	    weight <= 2 * (metaslab_smo_bonus_pct / 100) * space);

	if (sm->sm_loaded && !sm->sm_ops->smop_fragmented(sm)) {
		/*
		 * If this metaslab is one we're actively using, adjust its
		 * weight to make it preferable to any inactive metaslab so
		 * we'll polish it off.
		 */
		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
	}
	return (weight);
}

static void
metaslab_prefetch(metaslab_group_t *mg)
{
	spa_t *spa = mg->mg_vd->vdev_spa;
	metaslab_t *msp;
	avl_tree_t *t = &mg->mg_metaslab_tree;
	int m;

	mutex_enter(&mg->mg_lock);

	/*
	 * Prefetch the next potential metaslabs
	 */
	for (msp = avl_first(t), m = 0; msp; msp = AVL_NEXT(t, msp), m++) {
		space_map_t *sm = msp->ms_map;
		space_map_obj_t *smo = &msp->ms_smo;

		/* If we have reached our prefetch limit then we're done */
		if (m >= metaslab_prefetch_limit)
			break;

		if (!sm->sm_loaded && smo->smo_object != 0) {
			mutex_exit(&mg->mg_lock);
			dmu_prefetch(spa_meta_objset(spa), smo->smo_object,
			    0ULL, smo->smo_objsize);
			mutex_enter(&mg->mg_lock);
		}
	}
	mutex_exit(&mg->mg_lock);
}

static int
metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
{
	metaslab_group_t *mg = msp->ms_group;
	space_map_t *sm = msp->ms_map;
	space_map_ops_t *sm_ops = msp->ms_group->mg_class->mc_ops;
	int t;

	ASSERT(MUTEX_HELD(&msp->ms_lock));

	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
		space_map_load_wait(sm);
		if (!sm->sm_loaded) {
			space_map_obj_t *smo = &msp->ms_smo;

			int error = space_map_load(sm, sm_ops, SM_FREE, smo,
			    spa_meta_objset(msp->ms_group->mg_vd->vdev_spa));
			if (error)  {
				metaslab_group_sort(msp->ms_group, msp, 0);
				return (error);
			}
			for (t = 0; t < TXG_DEFER_SIZE; t++)
				space_map_walk(msp->ms_defermap[t],
				    space_map_claim, sm);

		}

		/*
		 * Track the bonus area as we activate new metaslabs.
		 */
		if (sm->sm_start > mg->mg_bonus_area) {
			mutex_enter(&mg->mg_lock);
			mg->mg_bonus_area = sm->sm_start;
			mutex_exit(&mg->mg_lock);
		}

		metaslab_group_sort(msp->ms_group, msp,
		    msp->ms_weight | activation_weight);
	}
	ASSERT(sm->sm_loaded);
	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);

	return (0);
}

static void
metaslab_passivate(metaslab_t *msp, uint64_t size)
{
	/*
	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
	 * this metaslab again.  In that case, it had better be empty,
	 * or we would be leaving space on the table.
	 */
	ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map->sm_space == 0);
	metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
	ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
}

/*
 * Determine if the in-core space map representation can be condensed on-disk.
 * We would like to use the following criteria to make our decision:
 *
 * 1. The size of the space map object should not dramatically increase as a
 * result of writing out our in-core free map.
 *
 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
 * times the size than the in-core representation (i.e. zfs_condense_pct = 110
 * and in-core = 1MB, minimal = 1.1.MB).
 *
 * Checking the first condition is tricky since we don't want to walk
 * the entire AVL tree calculating the estimated on-disk size. Instead we
 * use the size-ordered AVL tree in the space map and calculate the
 * size required for the largest segment in our in-core free map. If the
 * size required to represent that segment on disk is larger than the space
 * map object then we avoid condensing this map.
 *
 * To determine the second criterion we use a best-case estimate and assume
 * each segment can be represented on-disk as a single 64-bit entry. We refer
 * to this best-case estimate as the space map's minimal form.
 */
static boolean_t
metaslab_should_condense(metaslab_t *msp)
{
	space_map_t *sm = msp->ms_map;
	space_map_obj_t *smo = &msp->ms_smo_syncing;
	space_seg_t *ss;
	uint64_t size, entries, segsz;

	ASSERT(MUTEX_HELD(&msp->ms_lock));
	ASSERT(sm->sm_loaded);

	/*
	 * Use the sm_pp_root AVL tree, which is ordered by size, to obtain
	 * the largest segment in the in-core free map. If the tree is
	 * empty then we should condense the map.
	 */
	ss = avl_last(sm->sm_pp_root);
	if (ss == NULL)
		return (B_TRUE);

	/*
	 * Calculate the number of 64-bit entries this segment would
	 * require when written to disk. If this single segment would be
	 * larger on-disk than the entire current on-disk structure, then
	 * clearly condensing will increase the on-disk structure size.
	 */
	size = (ss->ss_end - ss->ss_start) >> sm->sm_shift;
	entries = size / (MIN(size, SM_RUN_MAX));
	segsz = entries * sizeof (uint64_t);

	return (segsz <= smo->smo_objsize &&
	    smo->smo_objsize >= (zfs_condense_pct *
	    sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) / 100);
}

/*
 * Condense the on-disk space map representation to its minimized form.
 * The minimized form consists of a small number of allocations followed by
 * the in-core free map.
 */
static void
metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
{
	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
	space_map_t *freemap = msp->ms_freemap[txg & TXG_MASK];
	space_map_t condense_map;
	space_map_t *sm = msp->ms_map;
	objset_t *mos = spa_meta_objset(spa);
	space_map_obj_t *smo = &msp->ms_smo_syncing;
	int t;

	ASSERT(MUTEX_HELD(&msp->ms_lock));
	ASSERT3U(spa_sync_pass(spa), ==, 1);
	ASSERT(sm->sm_loaded);

	spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, "
	    "smo size %llu, segments %lu", txg,
	    (msp->ms_map->sm_start / msp->ms_map->sm_size), msp,
	    smo->smo_objsize, avl_numnodes(&sm->sm_root));

	/*
	 * Create an map that is a 100% allocated map. We remove segments
	 * that have been freed in this txg, any deferred frees that exist,
	 * and any allocation in the future. Removing segments should be
	 * a relatively inexpensive operation since we expect these maps to
	 * a small number of nodes.
	 */
	space_map_create(&condense_map, sm->sm_start, sm->sm_size,
	    sm->sm_shift, sm->sm_lock);
	space_map_add(&condense_map, condense_map.sm_start,
	    condense_map.sm_size);

	/*
	 * Remove what's been freed in this txg from the condense_map.
	 * Since we're in sync_pass 1, we know that all the frees from
	 * this txg are in the freemap.
	 */
	space_map_walk(freemap, space_map_remove, &condense_map);

	for (t = 0; t < TXG_DEFER_SIZE; t++)
		space_map_walk(msp->ms_defermap[t],
		    space_map_remove, &condense_map);

	for (t = 1; t < TXG_CONCURRENT_STATES; t++)
		space_map_walk(msp->ms_allocmap[(txg + t) & TXG_MASK],
		    space_map_remove, &condense_map);

	/*
	 * We're about to drop the metaslab's lock thus allowing
	 * other consumers to change it's content. Set the
	 * space_map's sm_condensing flag to ensure that
	 * allocations on this metaslab do not occur while we're
	 * in the middle of committing it to disk. This is only critical
	 * for the ms_map as all other space_maps use per txg
	 * views of their content.
	 */
	sm->sm_condensing = B_TRUE;

	mutex_exit(&msp->ms_lock);
	space_map_truncate(smo, mos, tx);
	mutex_enter(&msp->ms_lock);

	/*
	 * While we would ideally like to create a space_map representation
	 * that consists only of allocation records, doing so can be
	 * prohibitively expensive because the in-core free map can be
	 * large, and therefore computationally expensive to subtract
	 * from the condense_map. Instead we sync out two maps, a cheap
	 * allocation only map followed by the in-core free map. While not
	 * optimal, this is typically close to optimal, and much cheaper to
	 * compute.
	 */
	space_map_sync(&condense_map, SM_ALLOC, smo, mos, tx);
	space_map_vacate(&condense_map, NULL, NULL);
	space_map_destroy(&condense_map);

	space_map_sync(sm, SM_FREE, smo, mos, tx);
	sm->sm_condensing = B_FALSE;

	spa_dbgmsg(spa, "condensed: txg %llu, msp[%llu] %p, "
	    "smo size %llu", txg,
	    (msp->ms_map->sm_start / msp->ms_map->sm_size), msp,
	    smo->smo_objsize);
}

/*
 * Write a metaslab to disk in the context of the specified transaction group.
 */
void
metaslab_sync(metaslab_t *msp, uint64_t txg)
{
	vdev_t *vd = msp->ms_group->mg_vd;
	spa_t *spa = vd->vdev_spa;
	objset_t *mos = spa_meta_objset(spa);
	space_map_t *allocmap = msp->ms_allocmap[txg & TXG_MASK];
	space_map_t **freemap = &msp->ms_freemap[txg & TXG_MASK];
	space_map_t **freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
	space_map_t *sm = msp->ms_map;
	space_map_obj_t *smo = &msp->ms_smo_syncing;
	dmu_buf_t *db;
	dmu_tx_t *tx;

	ASSERT(!vd->vdev_ishole);

	/*
	 * This metaslab has just been added so there's no work to do now.
	 */
	if (*freemap == NULL) {
		ASSERT3P(allocmap, ==, NULL);
		return;
	}

	ASSERT3P(allocmap, !=, NULL);
	ASSERT3P(*freemap, !=, NULL);
	ASSERT3P(*freed_map, !=, NULL);

	if (allocmap->sm_space == 0 && (*freemap)->sm_space == 0)
		return;

	/*
	 * The only state that can actually be changing concurrently with
	 * metaslab_sync() is the metaslab's ms_map.  No other thread can
	 * be modifying this txg's allocmap, freemap, freed_map, or smo.
	 * Therefore, we only hold ms_lock to satify space_map ASSERTs.
	 * We drop it whenever we call into the DMU, because the DMU
	 * can call down to us (e.g. via zio_free()) at any time.
	 */

	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);

	if (smo->smo_object == 0) {
		ASSERT(smo->smo_objsize == 0);
		ASSERT(smo->smo_alloc == 0);
		smo->smo_object = dmu_object_alloc(mos,
		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
		ASSERT(smo->smo_object != 0);
		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
		    (sm->sm_start >> vd->vdev_ms_shift),
		    sizeof (uint64_t), &smo->smo_object, tx);
	}

	mutex_enter(&msp->ms_lock);

	if (sm->sm_loaded && spa_sync_pass(spa) == 1 &&
	    metaslab_should_condense(msp)) {
		metaslab_condense(msp, txg, tx);
	} else {
		space_map_sync(allocmap, SM_ALLOC, smo, mos, tx);
		space_map_sync(*freemap, SM_FREE, smo, mos, tx);
	}

	space_map_vacate(allocmap, NULL, NULL);

	/*
	 * For sync pass 1, we avoid walking the entire space map and
	 * instead will just swap the pointers for freemap and
	 * freed_map. We can safely do this since the freed_map is
	 * guaranteed to be empty on the initial pass.
	 */
	if (spa_sync_pass(spa) == 1) {
		ASSERT0((*freed_map)->sm_space);
		ASSERT0(avl_numnodes(&(*freed_map)->sm_root));
		space_map_swap(freemap, freed_map);
	} else {
		space_map_vacate(*freemap, space_map_add, *freed_map);
	}

	ASSERT0(msp->ms_allocmap[txg & TXG_MASK]->sm_space);
	ASSERT0(msp->ms_freemap[txg & TXG_MASK]->sm_space);

	mutex_exit(&msp->ms_lock);

	VERIFY0(dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
	dmu_buf_will_dirty(db, tx);
	ASSERT3U(db->db_size, >=, sizeof (*smo));
	bcopy(smo, db->db_data, sizeof (*smo));
	dmu_buf_rele(db, FTAG);

	dmu_tx_commit(tx);
}

/*
 * Called after a transaction group has completely synced to mark
 * all of the metaslab's free space as usable.
 */
void
metaslab_sync_done(metaslab_t *msp, uint64_t txg)
{
	space_map_obj_t *smo = &msp->ms_smo;
	space_map_obj_t *smosync = &msp->ms_smo_syncing;
	space_map_t *sm = msp->ms_map;
	space_map_t *freed_map = msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
	space_map_t *defer_map = msp->ms_defermap[txg % TXG_DEFER_SIZE];
	metaslab_group_t *mg = msp->ms_group;
	vdev_t *vd = mg->mg_vd;
	int64_t alloc_delta, defer_delta;
	int t;

	ASSERT(!vd->vdev_ishole);

	mutex_enter(&msp->ms_lock);

	/*
	 * If this metaslab is just becoming available, initialize its
	 * allocmaps, freemaps, and defermap and add its capacity to the vdev.
	 */
	if (freed_map == NULL) {
		ASSERT(defer_map == NULL);
		for (t = 0; t < TXG_SIZE; t++) {
			msp->ms_allocmap[t] = kmem_zalloc(sizeof (space_map_t),
			    KM_PUSHPAGE);
			space_map_create(msp->ms_allocmap[t], sm->sm_start,
			    sm->sm_size, sm->sm_shift, sm->sm_lock);
			msp->ms_freemap[t] = kmem_zalloc(sizeof (space_map_t),
			    KM_PUSHPAGE);
			space_map_create(msp->ms_freemap[t], sm->sm_start,
			    sm->sm_size, sm->sm_shift, sm->sm_lock);
		}

		for (t = 0; t < TXG_DEFER_SIZE; t++) {
			msp->ms_defermap[t] = kmem_zalloc(sizeof (space_map_t),
			    KM_PUSHPAGE);
			space_map_create(msp->ms_defermap[t], sm->sm_start,
			    sm->sm_size, sm->sm_shift, sm->sm_lock);
		}

		freed_map = msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
		defer_map = msp->ms_defermap[txg % TXG_DEFER_SIZE];

		vdev_space_update(vd, 0, 0, sm->sm_size);
	}

	alloc_delta = smosync->smo_alloc - smo->smo_alloc;
	defer_delta = freed_map->sm_space - defer_map->sm_space;

	vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);

	ASSERT(msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0);
	ASSERT(msp->ms_freemap[txg & TXG_MASK]->sm_space == 0);

	/*
	 * If there's a space_map_load() in progress, wait for it to complete
	 * so that we have a consistent view of the in-core space map.
	 * Then, add defer_map (oldest deferred frees) to this map and
	 * transfer freed_map (this txg's frees) to defer_map.
	 */
	space_map_load_wait(sm);
	space_map_vacate(defer_map, sm->sm_loaded ? space_map_free : NULL, sm);
	space_map_vacate(freed_map, space_map_add, defer_map);

	*smo = *smosync;

	msp->ms_deferspace += defer_delta;
	ASSERT3S(msp->ms_deferspace, >=, 0);
	ASSERT3S(msp->ms_deferspace, <=, sm->sm_size);
	if (msp->ms_deferspace != 0) {
		/*
		 * Keep syncing this metaslab until all deferred frees
		 * are back in circulation.
		 */
		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
	}

	/*
	 * If the map is loaded but no longer active, evict it as soon as all
	 * future allocations have synced.  (If we unloaded it now and then
	 * loaded a moment later, the map wouldn't reflect those allocations.)
	 */
	if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
		int evictable = 1;

		for (t = 1; t < TXG_CONCURRENT_STATES; t++)
			if (msp->ms_allocmap[(txg + t) & TXG_MASK]->sm_space)
				evictable = 0;

		if (evictable && !metaslab_debug)
			space_map_unload(sm);
	}

	metaslab_group_sort(mg, msp, metaslab_weight(msp));

	mutex_exit(&msp->ms_lock);
}

void
metaslab_sync_reassess(metaslab_group_t *mg)
{
	vdev_t *vd = mg->mg_vd;
	int64_t failures = mg->mg_alloc_failures;
	int m;

	/*
	 * Re-evaluate all metaslabs which have lower offsets than the
	 * bonus area.
	 */
	for (m = 0; m < vd->vdev_ms_count; m++) {
		metaslab_t *msp = vd->vdev_ms[m];

		if (msp->ms_map->sm_start > mg->mg_bonus_area)
			break;

		mutex_enter(&msp->ms_lock);
		metaslab_group_sort(mg, msp, metaslab_weight(msp));
		mutex_exit(&msp->ms_lock);
	}

	atomic_add_64(&mg->mg_alloc_failures, -failures);

	/*
	 * Prefetch the next potential metaslabs
	 */
	metaslab_prefetch(mg);
}

static uint64_t
metaslab_distance(metaslab_t *msp, dva_t *dva)
{
	uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
	uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
	uint64_t start = msp->ms_map->sm_start >> ms_shift;

	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
		return (1ULL << 63);

	if (offset < start)
		return ((start - offset) << ms_shift);
	if (offset > start)
		return ((offset - start) << ms_shift);
	return (0);
}

static uint64_t
metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
    uint64_t txg, uint64_t min_distance, dva_t *dva, int d, int flags)
{
	spa_t *spa = mg->mg_vd->vdev_spa;
	metaslab_t *msp = NULL;
	uint64_t offset = -1ULL;
	avl_tree_t *t = &mg->mg_metaslab_tree;
	uint64_t activation_weight;
	uint64_t target_distance;
	int i;

	activation_weight = METASLAB_WEIGHT_PRIMARY;
	for (i = 0; i < d; i++) {
		if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
			activation_weight = METASLAB_WEIGHT_SECONDARY;
			break;
		}
	}

	for (;;) {
		boolean_t was_active;

		mutex_enter(&mg->mg_lock);
		for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
			if (msp->ms_weight < asize) {
				spa_dbgmsg(spa, "%s: failed to meet weight "
				    "requirement: vdev %llu, txg %llu, mg %p, "
				    "msp %p, psize %llu, asize %llu, "
				    "failures %llu, weight %llu",
				    spa_name(spa), mg->mg_vd->vdev_id, txg,
				    mg, msp, psize, asize,
				    mg->mg_alloc_failures, msp->ms_weight);
				mutex_exit(&mg->mg_lock);
				return (-1ULL);
			}
			was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
			if (activation_weight == METASLAB_WEIGHT_PRIMARY)
				break;

			target_distance = min_distance +
			    (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1);

			for (i = 0; i < d; i++)
				if (metaslab_distance(msp, &dva[i]) <
				    target_distance)
					break;
			if (i == d)
				break;
		}
		mutex_exit(&mg->mg_lock);
		if (msp == NULL)
			return (-1ULL);

		/*
		 * If we've already reached the allowable number of failed
		 * allocation attempts on this metaslab group then we
		 * consider skipping it. We skip it only if we're allowed
		 * to "fast" gang, the physical size is larger than
		 * a gang block, and we're attempting to allocate from
		 * the primary metaslab.
		 */
		if (mg->mg_alloc_failures > zfs_mg_alloc_failures &&
		    CAN_FASTGANG(flags) && psize > SPA_GANGBLOCKSIZE &&
		    activation_weight == METASLAB_WEIGHT_PRIMARY) {
			spa_dbgmsg(spa, "%s: skipping metaslab group: "
			    "vdev %llu, txg %llu, mg %p, psize %llu, "
			    "asize %llu, failures %llu", spa_name(spa),
			    mg->mg_vd->vdev_id, txg, mg, psize, asize,
			    mg->mg_alloc_failures);
			return (-1ULL);
		}

		mutex_enter(&msp->ms_lock);

		/*
		 * If this metaslab is currently condensing then pick again as
		 * we can't manipulate this metaslab until it's committed
		 * to disk.
		 */
		if (msp->ms_map->sm_condensing) {
			mutex_exit(&msp->ms_lock);
			continue;
		}

		/*
		 * Ensure that the metaslab we have selected is still
		 * capable of handling our request. It's possible that
		 * another thread may have changed the weight while we
		 * were blocked on the metaslab lock.
		 */
		if (msp->ms_weight < asize || (was_active &&
		    !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
		    activation_weight == METASLAB_WEIGHT_PRIMARY)) {
			mutex_exit(&msp->ms_lock);
			continue;
		}

		if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
		    activation_weight == METASLAB_WEIGHT_PRIMARY) {
			metaslab_passivate(msp,
			    msp->ms_weight & ~METASLAB_ACTIVE_MASK);
			mutex_exit(&msp->ms_lock);
			continue;
		}

		if (metaslab_activate(msp, activation_weight) != 0) {
			mutex_exit(&msp->ms_lock);
			continue;
		}

		if ((offset = space_map_alloc(msp->ms_map, asize)) != -1ULL)
			break;

		atomic_inc_64(&mg->mg_alloc_failures);

		metaslab_passivate(msp, space_map_maxsize(msp->ms_map));

		mutex_exit(&msp->ms_lock);
	}

	if (msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0)
		vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);

	space_map_add(msp->ms_allocmap[txg & TXG_MASK], offset, asize);

	mutex_exit(&msp->ms_lock);

	return (offset);
}

/*
 * Allocate a block for the specified i/o.
 */
static int
metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
    dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
{
	metaslab_group_t *mg, *fast_mg, *rotor;
	vdev_t *vd;
	int dshift = 3;
	int all_zero;
	int zio_lock = B_FALSE;
	boolean_t allocatable;
	uint64_t offset = -1ULL;
	uint64_t asize;
	uint64_t distance;

	ASSERT(!DVA_IS_VALID(&dva[d]));

	/*
	 * For testing, make some blocks above a certain size be gang blocks.
	 */
	if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
		return (ENOSPC);

	if (flags & METASLAB_FASTWRITE)
		mutex_enter(&mc->mc_fastwrite_lock);

	/*
	 * Start at the rotor and loop through all mgs until we find something.
	 * Note that there's no locking on mc_rotor or mc_aliquot because
	 * nothing actually breaks if we miss a few updates -- we just won't
	 * allocate quite as evenly.  It all balances out over time.
	 *
	 * If we are doing ditto or log blocks, try to spread them across
	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
	 * allocated all of our ditto blocks, then try and spread them out on
	 * that vdev as much as possible.  If it turns out to not be possible,
	 * gradually lower our standards until anything becomes acceptable.
	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
	 * gives us hope of containing our fault domains to something we're
	 * able to reason about.  Otherwise, any two top-level vdev failures
	 * will guarantee the loss of data.  With consecutive allocation,
	 * only two adjacent top-level vdev failures will result in data loss.
	 *
	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
	 * ourselves on the same vdev as our gang block header.  That
	 * way, we can hope for locality in vdev_cache, plus it makes our
	 * fault domains something tractable.
	 */
	if (hintdva) {
		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));

		/*
		 * It's possible the vdev we're using as the hint no
		 * longer exists (i.e. removed). Consult the rotor when
		 * all else fails.
		 */
		if (vd != NULL) {
			mg = vd->vdev_mg;

			if (flags & METASLAB_HINTBP_AVOID &&
			    mg->mg_next != NULL)
				mg = mg->mg_next;
		} else {
			mg = mc->mc_rotor;
		}
	} else if (d != 0) {
		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
		mg = vd->vdev_mg->mg_next;
	} else if (flags & METASLAB_FASTWRITE) {
		mg = fast_mg = mc->mc_rotor;

		do {
			if (fast_mg->mg_vd->vdev_pending_fastwrite <
			    mg->mg_vd->vdev_pending_fastwrite)
				mg = fast_mg;
		} while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);

	} else {
		mg = mc->mc_rotor;
	}

	/*
	 * If the hint put us into the wrong metaslab class, or into a
	 * metaslab group that has been passivated, just follow the rotor.
	 */
	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
		mg = mc->mc_rotor;

	rotor = mg;
top:
	all_zero = B_TRUE;
	do {
		ASSERT(mg->mg_activation_count == 1);

		vd = mg->mg_vd;

		/*
		 * Don't allocate from faulted devices.
		 */
		if (zio_lock) {
			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
			allocatable = vdev_allocatable(vd);
			spa_config_exit(spa, SCL_ZIO, FTAG);
		} else {
			allocatable = vdev_allocatable(vd);
		}
		if (!allocatable)
			goto next;

		/*
		 * Avoid writing single-copy data to a failing vdev
		 */
		if ((vd->vdev_stat.vs_write_errors > 0 ||
		    vd->vdev_state < VDEV_STATE_HEALTHY) &&
		    d == 0 && dshift == 3) {
			all_zero = B_FALSE;
			goto next;
		}

		ASSERT(mg->mg_class == mc);

		distance = vd->vdev_asize >> dshift;
		if (distance <= (1ULL << vd->vdev_ms_shift))
			distance = 0;
		else
			all_zero = B_FALSE;

		asize = vdev_psize_to_asize(vd, psize);
		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);

		offset = metaslab_group_alloc(mg, psize, asize, txg, distance,
		    dva, d, flags);
		if (offset != -1ULL) {
			/*
			 * If we've just selected this metaslab group,
			 * figure out whether the corresponding vdev is
			 * over- or under-used relative to the pool,
			 * and set an allocation bias to even it out.
			 */
			if (mc->mc_aliquot == 0) {
				vdev_stat_t *vs = &vd->vdev_stat;
				int64_t vu, cu;

				vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
				cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);

				/*
				 * Calculate how much more or less we should
				 * try to allocate from this device during
				 * this iteration around the rotor.
				 * For example, if a device is 80% full
				 * and the pool is 20% full then we should
				 * reduce allocations by 60% on this device.
				 *
				 * mg_bias = (20 - 80) * 512K / 100 = -307K
				 *
				 * This reduces allocations by 307K for this
				 * iteration.
				 */
				mg->mg_bias = ((cu - vu) *
				    (int64_t)mg->mg_aliquot) / 100;
			}

			if ((flags & METASLAB_FASTWRITE) ||
			    atomic_add_64_nv(&mc->mc_aliquot, asize) >=
			    mg->mg_aliquot + mg->mg_bias) {
				mc->mc_rotor = mg->mg_next;
				mc->mc_aliquot = 0;
			}

			DVA_SET_VDEV(&dva[d], vd->vdev_id);
			DVA_SET_OFFSET(&dva[d], offset);
			DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
			DVA_SET_ASIZE(&dva[d], asize);

			if (flags & METASLAB_FASTWRITE) {
				atomic_add_64(&vd->vdev_pending_fastwrite,
				    psize);
				mutex_exit(&mc->mc_fastwrite_lock);
			}

			return (0);
		}
next:
		mc->mc_rotor = mg->mg_next;
		mc->mc_aliquot = 0;
	} while ((mg = mg->mg_next) != rotor);

	if (!all_zero) {
		dshift++;
		ASSERT(dshift < 64);
		goto top;
	}

	if (!allocatable && !zio_lock) {
		dshift = 3;
		zio_lock = B_TRUE;
		goto top;
	}

	bzero(&dva[d], sizeof (dva_t));

	if (flags & METASLAB_FASTWRITE)
		mutex_exit(&mc->mc_fastwrite_lock);
	return (ENOSPC);
}

/*
 * Free the block represented by DVA in the context of the specified
 * transaction group.
 */
static void
metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
{
	uint64_t vdev = DVA_GET_VDEV(dva);
	uint64_t offset = DVA_GET_OFFSET(dva);
	uint64_t size = DVA_GET_ASIZE(dva);
	vdev_t *vd;
	metaslab_t *msp;

	ASSERT(DVA_IS_VALID(dva));

	if (txg > spa_freeze_txg(spa))
		return;

	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
		cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
		    (u_longlong_t)vdev, (u_longlong_t)offset);
		ASSERT(0);
		return;
	}

	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];

	if (DVA_GET_GANG(dva))
		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);

	mutex_enter(&msp->ms_lock);

	if (now) {
		space_map_remove(msp->ms_allocmap[txg & TXG_MASK],
		    offset, size);
		space_map_free(msp->ms_map, offset, size);
	} else {
		if (msp->ms_freemap[txg & TXG_MASK]->sm_space == 0)
			vdev_dirty(vd, VDD_METASLAB, msp, txg);
		space_map_add(msp->ms_freemap[txg & TXG_MASK], offset, size);
	}

	mutex_exit(&msp->ms_lock);
}

/*
 * Intent log support: upon opening the pool after a crash, notify the SPA
 * of blocks that the intent log has allocated for immediate write, but
 * which are still considered free by the SPA because the last transaction
 * group didn't commit yet.
 */
static int
metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
{
	uint64_t vdev = DVA_GET_VDEV(dva);
	uint64_t offset = DVA_GET_OFFSET(dva);
	uint64_t size = DVA_GET_ASIZE(dva);
	vdev_t *vd;
	metaslab_t *msp;
	int error = 0;

	ASSERT(DVA_IS_VALID(dva));

	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
		return (ENXIO);

	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];

	if (DVA_GET_GANG(dva))
		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);

	mutex_enter(&msp->ms_lock);

	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_map->sm_loaded)
		error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);

	if (error == 0 && !space_map_contains(msp->ms_map, offset, size))
		error = ENOENT;

	if (error || txg == 0) {	/* txg == 0 indicates dry run */
		mutex_exit(&msp->ms_lock);
		return (error);
	}

	space_map_claim(msp->ms_map, offset, size);

	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(1M) */
		if (msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0)
			vdev_dirty(vd, VDD_METASLAB, msp, txg);
		space_map_add(msp->ms_allocmap[txg & TXG_MASK], offset, size);
	}

	mutex_exit(&msp->ms_lock);

	return (0);
}

int
metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
    int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
{
	dva_t *dva = bp->blk_dva;
	dva_t *hintdva = hintbp->blk_dva;
	int d, error = 0;

	ASSERT(bp->blk_birth == 0);
	ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);

	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);

	if (mc->mc_rotor == NULL) {	/* no vdevs in this class */
		spa_config_exit(spa, SCL_ALLOC, FTAG);
		return (ENOSPC);
	}

	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
	ASSERT(BP_GET_NDVAS(bp) == 0);
	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));

	for (d = 0; d < ndvas; d++) {
		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
		    txg, flags);
		if (error) {
			for (d--; d >= 0; d--) {
				metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
				bzero(&dva[d], sizeof (dva_t));
			}
			spa_config_exit(spa, SCL_ALLOC, FTAG);
			return (error);
		}
	}
	ASSERT(error == 0);
	ASSERT(BP_GET_NDVAS(bp) == ndvas);

	spa_config_exit(spa, SCL_ALLOC, FTAG);

	BP_SET_BIRTH(bp, txg, txg);

	return (0);
}

void
metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
{
	const dva_t *dva = bp->blk_dva;
	int d, ndvas = BP_GET_NDVAS(bp);

	ASSERT(!BP_IS_HOLE(bp));
	ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));

	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);

	for (d = 0; d < ndvas; d++)
		metaslab_free_dva(spa, &dva[d], txg, now);

	spa_config_exit(spa, SCL_FREE, FTAG);
}

int
metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
{
	const dva_t *dva = bp->blk_dva;
	int ndvas = BP_GET_NDVAS(bp);
	int d, error = 0;

	ASSERT(!BP_IS_HOLE(bp));

	if (txg != 0) {
		/*
		 * First do a dry run to make sure all DVAs are claimable,
		 * so we don't have to unwind from partial failures below.
		 */
		if ((error = metaslab_claim(spa, bp, 0)) != 0)
			return (error);
	}

	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);

	for (d = 0; d < ndvas; d++)
		if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
			break;

	spa_config_exit(spa, SCL_ALLOC, FTAG);

	ASSERT(error == 0 || txg == 0);

	return (error);
}

void metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
{
	const dva_t *dva = bp->blk_dva;
	int ndvas = BP_GET_NDVAS(bp);
	uint64_t psize = BP_GET_PSIZE(bp);
	int d;
	vdev_t *vd;

	ASSERT(!BP_IS_HOLE(bp));
	ASSERT(psize > 0);

	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);

	for (d = 0; d < ndvas; d++) {
		if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
			continue;
		atomic_add_64(&vd->vdev_pending_fastwrite, psize);
	}

	spa_config_exit(spa, SCL_VDEV, FTAG);
}

void metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
{
	const dva_t *dva = bp->blk_dva;
	int ndvas = BP_GET_NDVAS(bp);
	uint64_t psize = BP_GET_PSIZE(bp);
	int d;
	vdev_t *vd;

	ASSERT(!BP_IS_HOLE(bp));
	ASSERT(psize > 0);

	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);

	for (d = 0; d < ndvas; d++) {
		if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
			continue;
		ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
		atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
	}

	spa_config_exit(spa, SCL_VDEV, FTAG);
}

#if defined(_KERNEL) && defined(HAVE_SPL)
module_param(metaslab_debug, int, 0644);
MODULE_PARM_DESC(metaslab_debug, "keep space maps in core to verify frees");
#endif /* _KERNEL && HAVE_SPL */