summaryrefslogtreecommitdiffstats
path: root/module/zfs/dsl_scan.c
blob: 4704781bfa4541b2e303805afa63f73623363dd6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
 * Copyright 2016 Gary Mills
 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
 * Copyright 2019 Joyent, Inc.
 */

#include <sys/dsl_scan.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_synctask.h>
#include <sys/dnode.h>
#include <sys/dmu_tx.h>
#include <sys/dmu_objset.h>
#include <sys/arc.h>
#include <sys/zap.h>
#include <sys/zio.h>
#include <sys/zfs_context.h>
#include <sys/fs/zfs.h>
#include <sys/zfs_znode.h>
#include <sys/spa_impl.h>
#include <sys/vdev_impl.h>
#include <sys/zil_impl.h>
#include <sys/zio_checksum.h>
#include <sys/ddt.h>
#include <sys/sa.h>
#include <sys/sa_impl.h>
#include <sys/zfeature.h>
#include <sys/abd.h>
#include <sys/range_tree.h>
#ifdef _KERNEL
#include <sys/zfs_vfsops.h>
#endif

/*
 * Grand theory statement on scan queue sorting
 *
 * Scanning is implemented by recursively traversing all indirection levels
 * in an object and reading all blocks referenced from said objects. This
 * results in us approximately traversing the object from lowest logical
 * offset to the highest. For best performance, we would want the logical
 * blocks to be physically contiguous. However, this is frequently not the
 * case with pools given the allocation patterns of copy-on-write filesystems.
 * So instead, we put the I/Os into a reordering queue and issue them in a
 * way that will most benefit physical disks (LBA-order).
 *
 * Queue management:
 *
 * Ideally, we would want to scan all metadata and queue up all block I/O
 * prior to starting to issue it, because that allows us to do an optimal
 * sorting job. This can however consume large amounts of memory. Therefore
 * we continuously monitor the size of the queues and constrain them to 5%
 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
 * limit, we clear out a few of the largest extents at the head of the queues
 * to make room for more scanning. Hopefully, these extents will be fairly
 * large and contiguous, allowing us to approach sequential I/O throughput
 * even without a fully sorted tree.
 *
 * Metadata scanning takes place in dsl_scan_visit(), which is called from
 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
 * metadata on the pool, or we need to make room in memory because our
 * queues are too large, dsl_scan_visit() is postponed and
 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
 * that metadata scanning and queued I/O issuing are mutually exclusive. This
 * allows us to provide maximum sequential I/O throughput for the majority of
 * I/O's issued since sequential I/O performance is significantly negatively
 * impacted if it is interleaved with random I/O.
 *
 * Implementation Notes
 *
 * One side effect of the queued scanning algorithm is that the scanning code
 * needs to be notified whenever a block is freed. This is needed to allow
 * the scanning code to remove these I/Os from the issuing queue. Additionally,
 * we do not attempt to queue gang blocks to be issued sequentially since this
 * is very hard to do and would have an extremely limited performance benefit.
 * Instead, we simply issue gang I/Os as soon as we find them using the legacy
 * algorithm.
 *
 * Backwards compatibility
 *
 * This new algorithm is backwards compatible with the legacy on-disk data
 * structures (and therefore does not require a new feature flag).
 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
 * will stop scanning metadata (in logical order) and wait for all outstanding
 * sorted I/O to complete. Once this is done, we write out a checkpoint
 * bookmark, indicating that we have scanned everything logically before it.
 * If the pool is imported on a machine without the new sorting algorithm,
 * the scan simply resumes from the last checkpoint using the legacy algorithm.
 */

typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
    const zbookmark_phys_t *);

static scan_cb_t dsl_scan_scrub_cb;

static int scan_ds_queue_compare(const void *a, const void *b);
static int scan_prefetch_queue_compare(const void *a, const void *b);
static void scan_ds_queue_clear(dsl_scan_t *scn);
static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
    uint64_t *txg);
static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
static uint64_t dsl_scan_count_leaves(vdev_t *vd);

extern int zfs_vdev_async_write_active_min_dirty_percent;

/*
 * By default zfs will check to ensure it is not over the hard memory
 * limit before each txg. If finer-grained control of this is needed
 * this value can be set to 1 to enable checking before scanning each
 * block.
 */
int zfs_scan_strict_mem_lim = B_FALSE;

/*
 * Maximum number of parallelly executed bytes per leaf vdev. We attempt
 * to strike a balance here between keeping the vdev queues full of I/Os
 * at all times and not overflowing the queues to cause long latency,
 * which would cause long txg sync times. No matter what, we will not
 * overload the drives with I/O, since that is protected by
 * zfs_vdev_scrub_max_active.
 */
unsigned long zfs_scan_vdev_limit = 4 << 20;

int zfs_scan_issue_strategy = 0;
int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */
unsigned long zfs_scan_max_ext_gap = 2 << 20; /* in bytes */

/*
 * fill_weight is non-tunable at runtime, so we copy it at module init from
 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
 * break queue sorting.
 */
int zfs_scan_fill_weight = 3;
static uint64_t fill_weight;

/* See dsl_scan_should_clear() for details on the memory limit tunables */
uint64_t zfs_scan_mem_lim_min = 16 << 20;	/* bytes */
uint64_t zfs_scan_mem_lim_soft_max = 128 << 20;	/* bytes */
int zfs_scan_mem_lim_fact = 20;		/* fraction of physmem */
int zfs_scan_mem_lim_soft_fact = 20;	/* fraction of mem lim above */

int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */
int zfs_obsolete_min_time_ms = 500; /* min millisecs to obsolete per txg */
int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */
int zfs_resilver_min_time_ms = 3000; /* min millisecs to resilver per txg */
int zfs_scan_checkpoint_intval = 7200; /* in seconds */
int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
/* max number of blocks to free in a single TXG */
unsigned long zfs_async_block_max_blocks = ULONG_MAX;
/* max number of dedup blocks to free in a single TXG */
unsigned long zfs_max_async_dedup_frees = 100000;

int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */

/*
 * We wait a few txgs after importing a pool to begin scanning so that
 * the import / mounting code isn't held up by scrub / resilver IO.
 * Unfortunately, it is a bit difficult to determine exactly how long
 * this will take since userspace will trigger fs mounts asynchronously
 * and the kernel will create zvol minors asynchronously. As a result,
 * the value provided here is a bit arbitrary, but represents a
 * reasonable estimate of how many txgs it will take to finish fully
 * importing a pool
 */
#define	SCAN_IMPORT_WAIT_TXGS 		5

#define	DSL_SCAN_IS_SCRUB_RESILVER(scn) \
	((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
	(scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)

/*
 * Enable/disable the processing of the free_bpobj object.
 */
int zfs_free_bpobj_enabled = 1;

/* the order has to match pool_scan_type */
static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
	NULL,
	dsl_scan_scrub_cb,	/* POOL_SCAN_SCRUB */
	dsl_scan_scrub_cb,	/* POOL_SCAN_RESILVER */
};

/* In core node for the scn->scn_queue. Represents a dataset to be scanned */
typedef struct {
	uint64_t	sds_dsobj;
	uint64_t	sds_txg;
	avl_node_t	sds_node;
} scan_ds_t;

/*
 * This controls what conditions are placed on dsl_scan_sync_state():
 * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0
 * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0.
 * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise
 *	write out the scn_phys_cached version.
 * See dsl_scan_sync_state for details.
 */
typedef enum {
	SYNC_OPTIONAL,
	SYNC_MANDATORY,
	SYNC_CACHED
} state_sync_type_t;

/*
 * This struct represents the minimum information needed to reconstruct a
 * zio for sequential scanning. This is useful because many of these will
 * accumulate in the sequential IO queues before being issued, so saving
 * memory matters here.
 */
typedef struct scan_io {
	/* fields from blkptr_t */
	uint64_t		sio_blk_prop;
	uint64_t		sio_phys_birth;
	uint64_t		sio_birth;
	zio_cksum_t		sio_cksum;
	uint32_t		sio_nr_dvas;

	/* fields from zio_t */
	uint32_t		sio_flags;
	zbookmark_phys_t	sio_zb;

	/* members for queue sorting */
	union {
		avl_node_t	sio_addr_node; /* link into issuing queue */
		list_node_t	sio_list_node; /* link for issuing to disk */
	} sio_nodes;

	/*
	 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
	 * depending on how many were in the original bp. Only the
	 * first DVA is really used for sorting and issuing purposes.
	 * The other DVAs (if provided) simply exist so that the zio
	 * layer can find additional copies to repair from in the
	 * event of an error. This array must go at the end of the
	 * struct to allow this for the variable number of elements.
	 */
	dva_t			sio_dva[0];
} scan_io_t;

#define	SIO_SET_OFFSET(sio, x)		DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
#define	SIO_SET_ASIZE(sio, x)		DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
#define	SIO_GET_OFFSET(sio)		DVA_GET_OFFSET(&(sio)->sio_dva[0])
#define	SIO_GET_ASIZE(sio)		DVA_GET_ASIZE(&(sio)->sio_dva[0])
#define	SIO_GET_END_OFFSET(sio)		\
	(SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
#define	SIO_GET_MUSED(sio)		\
	(sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))

struct dsl_scan_io_queue {
	dsl_scan_t	*q_scn; /* associated dsl_scan_t */
	vdev_t		*q_vd; /* top-level vdev that this queue represents */

	/* trees used for sorting I/Os and extents of I/Os */
	range_tree_t	*q_exts_by_addr;
	zfs_btree_t		q_exts_by_size;
	avl_tree_t	q_sios_by_addr;
	uint64_t	q_sio_memused;

	/* members for zio rate limiting */
	uint64_t	q_maxinflight_bytes;
	uint64_t	q_inflight_bytes;
	kcondvar_t	q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */

	/* per txg statistics */
	uint64_t	q_total_seg_size_this_txg;
	uint64_t	q_segs_this_txg;
	uint64_t	q_total_zio_size_this_txg;
	uint64_t	q_zios_this_txg;
};

/* private data for dsl_scan_prefetch_cb() */
typedef struct scan_prefetch_ctx {
	zfs_refcount_t spc_refcnt;	/* refcount for memory management */
	dsl_scan_t *spc_scn;		/* dsl_scan_t for the pool */
	boolean_t spc_root;		/* is this prefetch for an objset? */
	uint8_t spc_indblkshift;	/* dn_indblkshift of current dnode */
	uint16_t spc_datablkszsec;	/* dn_idatablkszsec of current dnode */
} scan_prefetch_ctx_t;

/* private data for dsl_scan_prefetch() */
typedef struct scan_prefetch_issue_ctx {
	avl_node_t spic_avl_node;	/* link into scn->scn_prefetch_queue */
	scan_prefetch_ctx_t *spic_spc;	/* spc for the callback */
	blkptr_t spic_bp;		/* bp to prefetch */
	zbookmark_phys_t spic_zb;	/* bookmark to prefetch */
} scan_prefetch_issue_ctx_t;

static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
    const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
    scan_io_t *sio);

static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
static void scan_io_queues_destroy(dsl_scan_t *scn);

static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];

/* sio->sio_nr_dvas must be set so we know which cache to free from */
static void
sio_free(scan_io_t *sio)
{
	ASSERT3U(sio->sio_nr_dvas, >, 0);
	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);

	kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
}

/* It is up to the caller to set sio->sio_nr_dvas for freeing */
static scan_io_t *
sio_alloc(unsigned short nr_dvas)
{
	ASSERT3U(nr_dvas, >, 0);
	ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);

	return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
}

void
scan_init(void)
{
	/*
	 * This is used in ext_size_compare() to weight segments
	 * based on how sparse they are. This cannot be changed
	 * mid-scan and the tree comparison functions don't currently
	 * have a mechanism for passing additional context to the
	 * compare functions. Thus we store this value globally and
	 * we only allow it to be set at module initialization time
	 */
	fill_weight = zfs_scan_fill_weight;

	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
		char name[36];

		(void) snprintf(name, sizeof (name), "sio_cache_%d", i);
		sio_cache[i] = kmem_cache_create(name,
		    (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
		    0, NULL, NULL, NULL, NULL, NULL, 0);
	}
}

void
scan_fini(void)
{
	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
		kmem_cache_destroy(sio_cache[i]);
	}
}

static inline boolean_t
dsl_scan_is_running(const dsl_scan_t *scn)
{
	return (scn->scn_phys.scn_state == DSS_SCANNING);
}

boolean_t
dsl_scan_resilvering(dsl_pool_t *dp)
{
	return (dsl_scan_is_running(dp->dp_scan) &&
	    dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
}

static inline void
sio2bp(const scan_io_t *sio, blkptr_t *bp)
{
	bzero(bp, sizeof (*bp));
	bp->blk_prop = sio->sio_blk_prop;
	bp->blk_phys_birth = sio->sio_phys_birth;
	bp->blk_birth = sio->sio_birth;
	bp->blk_fill = 1;	/* we always only work with data pointers */
	bp->blk_cksum = sio->sio_cksum;

	ASSERT3U(sio->sio_nr_dvas, >, 0);
	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);

	bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t));
}

static inline void
bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
{
	sio->sio_blk_prop = bp->blk_prop;
	sio->sio_phys_birth = bp->blk_phys_birth;
	sio->sio_birth = bp->blk_birth;
	sio->sio_cksum = bp->blk_cksum;
	sio->sio_nr_dvas = BP_GET_NDVAS(bp);

	/*
	 * Copy the DVAs to the sio. We need all copies of the block so
	 * that the self healing code can use the alternate copies if the
	 * first is corrupted. We want the DVA at index dva_i to be first
	 * in the sio since this is the primary one that we want to issue.
	 */
	for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
		sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
	}
}

int
dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
{
	int err;
	dsl_scan_t *scn;
	spa_t *spa = dp->dp_spa;
	uint64_t f;

	scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
	scn->scn_dp = dp;

	/*
	 * It's possible that we're resuming a scan after a reboot so
	 * make sure that the scan_async_destroying flag is initialized
	 * appropriately.
	 */
	ASSERT(!scn->scn_async_destroying);
	scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
	    SPA_FEATURE_ASYNC_DESTROY);

	/*
	 * Calculate the max number of in-flight bytes for pool-wide
	 * scanning operations (minimum 1MB). Limits for the issuing
	 * phase are done per top-level vdev and are handled separately.
	 */
	scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit *
	    dsl_scan_count_leaves(spa->spa_root_vdev), 1ULL << 20);

	avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
	    offsetof(scan_ds_t, sds_node));
	avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
	    sizeof (scan_prefetch_issue_ctx_t),
	    offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));

	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
	    "scrub_func", sizeof (uint64_t), 1, &f);
	if (err == 0) {
		/*
		 * There was an old-style scrub in progress.  Restart a
		 * new-style scrub from the beginning.
		 */
		scn->scn_restart_txg = txg;
		zfs_dbgmsg("old-style scrub was in progress; "
		    "restarting new-style scrub in txg %llu",
		    (longlong_t)scn->scn_restart_txg);

		/*
		 * Load the queue obj from the old location so that it
		 * can be freed by dsl_scan_done().
		 */
		(void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
		    "scrub_queue", sizeof (uint64_t), 1,
		    &scn->scn_phys.scn_queue_obj);
	} else {
		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
		    &scn->scn_phys);
		/*
		 * Detect if the pool contains the signature of #2094.  If it
		 * does properly update the scn->scn_phys structure and notify
		 * the administrator by setting an errata for the pool.
		 */
		if (err == EOVERFLOW) {
			uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
			VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
			VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
			    (23 * sizeof (uint64_t)));

			err = zap_lookup(dp->dp_meta_objset,
			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
			    sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
			if (err == 0) {
				uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];

				if (overflow & ~DSL_SCAN_FLAGS_MASK ||
				    scn->scn_async_destroying) {
					spa->spa_errata =
					    ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
					return (EOVERFLOW);
				}

				bcopy(zaptmp, &scn->scn_phys,
				    SCAN_PHYS_NUMINTS * sizeof (uint64_t));
				scn->scn_phys.scn_flags = overflow;

				/* Required scrub already in progress. */
				if (scn->scn_phys.scn_state == DSS_FINISHED ||
				    scn->scn_phys.scn_state == DSS_CANCELED)
					spa->spa_errata =
					    ZPOOL_ERRATA_ZOL_2094_SCRUB;
			}
		}

		if (err == ENOENT)
			return (0);
		else if (err)
			return (err);

		/*
		 * We might be restarting after a reboot, so jump the issued
		 * counter to how far we've scanned. We know we're consistent
		 * up to here.
		 */
		scn->scn_issued_before_pass = scn->scn_phys.scn_examined;

		if (dsl_scan_is_running(scn) &&
		    spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
			/*
			 * A new-type scrub was in progress on an old
			 * pool, and the pool was accessed by old
			 * software.  Restart from the beginning, since
			 * the old software may have changed the pool in
			 * the meantime.
			 */
			scn->scn_restart_txg = txg;
			zfs_dbgmsg("new-style scrub was modified "
			    "by old software; restarting in txg %llu",
			    (longlong_t)scn->scn_restart_txg);
		} else if (dsl_scan_resilvering(dp)) {
			/*
			 * If a resilver is in progress and there are already
			 * errors, restart it instead of finishing this scan and
			 * then restarting it. If there haven't been any errors
			 * then remember that the incore DTL is valid.
			 */
			if (scn->scn_phys.scn_errors > 0) {
				scn->scn_restart_txg = txg;
				zfs_dbgmsg("resilver can't excise DTL_MISSING "
				    "when finished; restarting in txg %llu",
				    (u_longlong_t)scn->scn_restart_txg);
			} else {
				/* it's safe to excise DTL when finished */
				spa->spa_scrub_started = B_TRUE;
			}
		}
	}

	bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));

	/* reload the queue into the in-core state */
	if (scn->scn_phys.scn_queue_obj != 0) {
		zap_cursor_t zc;
		zap_attribute_t za;

		for (zap_cursor_init(&zc, dp->dp_meta_objset,
		    scn->scn_phys.scn_queue_obj);
		    zap_cursor_retrieve(&zc, &za) == 0;
		    (void) zap_cursor_advance(&zc)) {
			scan_ds_queue_insert(scn,
			    zfs_strtonum(za.za_name, NULL),
			    za.za_first_integer);
		}
		zap_cursor_fini(&zc);
	}

	spa_scan_stat_init(spa);
	return (0);
}

void
dsl_scan_fini(dsl_pool_t *dp)
{
	if (dp->dp_scan != NULL) {
		dsl_scan_t *scn = dp->dp_scan;

		if (scn->scn_taskq != NULL)
			taskq_destroy(scn->scn_taskq);

		scan_ds_queue_clear(scn);
		avl_destroy(&scn->scn_queue);
		scan_ds_prefetch_queue_clear(scn);
		avl_destroy(&scn->scn_prefetch_queue);

		kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
		dp->dp_scan = NULL;
	}
}

static boolean_t
dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
{
	return (scn->scn_restart_txg != 0 &&
	    scn->scn_restart_txg <= tx->tx_txg);
}

boolean_t
dsl_scan_resilver_scheduled(dsl_pool_t *dp)
{
	return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
	    (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
}

boolean_t
dsl_scan_scrubbing(const dsl_pool_t *dp)
{
	dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;

	return (scn_phys->scn_state == DSS_SCANNING &&
	    scn_phys->scn_func == POOL_SCAN_SCRUB);
}

boolean_t
dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
{
	return (dsl_scan_scrubbing(scn->scn_dp) &&
	    scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
}

/*
 * Writes out a persistent dsl_scan_phys_t record to the pool directory.
 * Because we can be running in the block sorting algorithm, we do not always
 * want to write out the record, only when it is "safe" to do so. This safety
 * condition is achieved by making sure that the sorting queues are empty
 * (scn_bytes_pending == 0). When this condition is not true, the sync'd state
 * is inconsistent with how much actual scanning progress has been made. The
 * kind of sync to be performed is specified by the sync_type argument. If the
 * sync is optional, we only sync if the queues are empty. If the sync is
 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
 * third possible state is a "cached" sync. This is done in response to:
 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
 *	destroyed, so we wouldn't be able to restart scanning from it.
 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
 *	superseded by a newer snapshot.
 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
 *	swapped with its clone.
 * In all cases, a cached sync simply rewrites the last record we've written,
 * just slightly modified. For the modifications that are performed to the
 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
 */
static void
dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
{
	int i;
	spa_t *spa = scn->scn_dp->dp_spa;

	ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0);
	if (scn->scn_bytes_pending == 0) {
		for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
			vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
			dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;

			if (q == NULL)
				continue;

			mutex_enter(&vd->vdev_scan_io_queue_lock);
			ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
			ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
			    NULL);
			ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
			mutex_exit(&vd->vdev_scan_io_queue_lock);
		}

		if (scn->scn_phys.scn_queue_obj != 0)
			scan_ds_queue_sync(scn, tx);
		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
		    DMU_POOL_DIRECTORY_OBJECT,
		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
		    &scn->scn_phys, tx));
		bcopy(&scn->scn_phys, &scn->scn_phys_cached,
		    sizeof (scn->scn_phys));

		if (scn->scn_checkpointing)
			zfs_dbgmsg("finish scan checkpoint");

		scn->scn_checkpointing = B_FALSE;
		scn->scn_last_checkpoint = ddi_get_lbolt();
	} else if (sync_type == SYNC_CACHED) {
		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
		    DMU_POOL_DIRECTORY_OBJECT,
		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
		    &scn->scn_phys_cached, tx));
	}
}

/* ARGSUSED */
static int
dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
{
	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;

	if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd))
		return (SET_ERROR(EBUSY));

	return (0);
}

static void
dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
{
	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
	pool_scan_func_t *funcp = arg;
	dmu_object_type_t ot = 0;
	dsl_pool_t *dp = scn->scn_dp;
	spa_t *spa = dp->dp_spa;

	ASSERT(!dsl_scan_is_running(scn));
	ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
	bzero(&scn->scn_phys, sizeof (scn->scn_phys));
	scn->scn_phys.scn_func = *funcp;
	scn->scn_phys.scn_state = DSS_SCANNING;
	scn->scn_phys.scn_min_txg = 0;
	scn->scn_phys.scn_max_txg = tx->tx_txg;
	scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
	scn->scn_phys.scn_start_time = gethrestime_sec();
	scn->scn_phys.scn_errors = 0;
	scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
	scn->scn_issued_before_pass = 0;
	scn->scn_restart_txg = 0;
	scn->scn_done_txg = 0;
	scn->scn_last_checkpoint = 0;
	scn->scn_checkpointing = B_FALSE;
	spa_scan_stat_init(spa);

	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
		scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;

		/* rewrite all disk labels */
		vdev_config_dirty(spa->spa_root_vdev);

		if (vdev_resilver_needed(spa->spa_root_vdev,
		    &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
			nvlist_t *aux = fnvlist_alloc();
			fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
			    "healing");
			spa_event_notify(spa, NULL, aux,
			    ESC_ZFS_RESILVER_START);
			nvlist_free(aux);
		} else {
			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
		}

		spa->spa_scrub_started = B_TRUE;
		/*
		 * If this is an incremental scrub, limit the DDT scrub phase
		 * to just the auto-ditto class (for correctness); the rest
		 * of the scrub should go faster using top-down pruning.
		 */
		if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
			scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;

		/*
		 * When starting a resilver clear any existing rebuild state.
		 * This is required to prevent stale rebuild status from
		 * being reported when a rebuild is run, then a resilver and
		 * finally a scrub.  In which case only the scrub status
		 * should be reported by 'zpool status'.
		 */
		if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
			vdev_t *rvd = spa->spa_root_vdev;
			for (uint64_t i = 0; i < rvd->vdev_children; i++) {
				vdev_t *vd = rvd->vdev_child[i];
				vdev_rebuild_clear_sync(
				    (void *)(uintptr_t)vd->vdev_id, tx);
			}
		}
	}

	/* back to the generic stuff */

	if (dp->dp_blkstats == NULL) {
		dp->dp_blkstats =
		    vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
		mutex_init(&dp->dp_blkstats->zab_lock, NULL,
		    MUTEX_DEFAULT, NULL);
	}
	bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type));

	if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
		ot = DMU_OT_ZAP_OTHER;

	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
	    ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);

	bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));

	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);

	spa_history_log_internal(spa, "scan setup", tx,
	    "func=%u mintxg=%llu maxtxg=%llu",
	    *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg,
	    (u_longlong_t)scn->scn_phys.scn_max_txg);
}

/*
 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver.
 * Can also be called to resume a paused scrub.
 */
int
dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
{
	spa_t *spa = dp->dp_spa;
	dsl_scan_t *scn = dp->dp_scan;

	/*
	 * Purge all vdev caches and probe all devices.  We do this here
	 * rather than in sync context because this requires a writer lock
	 * on the spa_config lock, which we can't do from sync context.  The
	 * spa_scrub_reopen flag indicates that vdev_open() should not
	 * attempt to start another scrub.
	 */
	spa_vdev_state_enter(spa, SCL_NONE);
	spa->spa_scrub_reopen = B_TRUE;
	vdev_reopen(spa->spa_root_vdev);
	spa->spa_scrub_reopen = B_FALSE;
	(void) spa_vdev_state_exit(spa, NULL, 0);

	if (func == POOL_SCAN_RESILVER) {
		dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
		return (0);
	}

	if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
		/* got scrub start cmd, resume paused scrub */
		int err = dsl_scrub_set_pause_resume(scn->scn_dp,
		    POOL_SCRUB_NORMAL);
		if (err == 0) {
			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
			return (SET_ERROR(ECANCELED));
		}

		return (SET_ERROR(err));
	}

	return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
	    dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
}

/* ARGSUSED */
static void
dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
{
	static const char *old_names[] = {
		"scrub_bookmark",
		"scrub_ddt_bookmark",
		"scrub_ddt_class_max",
		"scrub_queue",
		"scrub_min_txg",
		"scrub_max_txg",
		"scrub_func",
		"scrub_errors",
		NULL
	};

	dsl_pool_t *dp = scn->scn_dp;
	spa_t *spa = dp->dp_spa;
	int i;

	/* Remove any remnants of an old-style scrub. */
	for (i = 0; old_names[i]; i++) {
		(void) zap_remove(dp->dp_meta_objset,
		    DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
	}

	if (scn->scn_phys.scn_queue_obj != 0) {
		VERIFY0(dmu_object_free(dp->dp_meta_objset,
		    scn->scn_phys.scn_queue_obj, tx));
		scn->scn_phys.scn_queue_obj = 0;
	}
	scan_ds_queue_clear(scn);
	scan_ds_prefetch_queue_clear(scn);

	scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;

	/*
	 * If we were "restarted" from a stopped state, don't bother
	 * with anything else.
	 */
	if (!dsl_scan_is_running(scn)) {
		ASSERT(!scn->scn_is_sorted);
		return;
	}

	if (scn->scn_is_sorted) {
		scan_io_queues_destroy(scn);
		scn->scn_is_sorted = B_FALSE;

		if (scn->scn_taskq != NULL) {
			taskq_destroy(scn->scn_taskq);
			scn->scn_taskq = NULL;
		}
	}

	scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;

	spa_notify_waiters(spa);

	if (dsl_scan_restarting(scn, tx))
		spa_history_log_internal(spa, "scan aborted, restarting", tx,
		    "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa));
	else if (!complete)
		spa_history_log_internal(spa, "scan cancelled", tx,
		    "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa));
	else
		spa_history_log_internal(spa, "scan done", tx,
		    "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa));

	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
		spa->spa_scrub_active = B_FALSE;

		/*
		 * If the scrub/resilver completed, update all DTLs to
		 * reflect this.  Whether it succeeded or not, vacate
		 * all temporary scrub DTLs.
		 *
		 * As the scrub does not currently support traversing
		 * data that have been freed but are part of a checkpoint,
		 * we don't mark the scrub as done in the DTLs as faults
		 * may still exist in those vdevs.
		 */
		if (complete &&
		    !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
			    scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);

			if (scn->scn_phys.scn_min_txg) {
				nvlist_t *aux = fnvlist_alloc();
				fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
				    "healing");
				spa_event_notify(spa, NULL, aux,
				    ESC_ZFS_RESILVER_FINISH);
				nvlist_free(aux);
			} else {
				spa_event_notify(spa, NULL, NULL,
				    ESC_ZFS_SCRUB_FINISH);
			}
		} else {
			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
			    0, B_TRUE, B_FALSE);
		}
		spa_errlog_rotate(spa);

		/*
		 * Don't clear flag until after vdev_dtl_reassess to ensure that
		 * DTL_MISSING will get updated when possible.
		 */
		spa->spa_scrub_started = B_FALSE;

		/*
		 * We may have finished replacing a device.
		 * Let the async thread assess this and handle the detach.
		 */
		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);

		/*
		 * Clear any resilver_deferred flags in the config.
		 * If there are drives that need resilvering, kick
		 * off an asynchronous request to start resilver.
		 * vdev_clear_resilver_deferred() may update the config
		 * before the resilver can restart. In the event of
		 * a crash during this period, the spa loading code
		 * will find the drives that need to be resilvered
		 * and start the resilver then.
		 */
		if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
		    vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
			spa_history_log_internal(spa,
			    "starting deferred resilver", tx, "errors=%llu",
			    (u_longlong_t)spa_get_errlog_size(spa));
			spa_async_request(spa, SPA_ASYNC_RESILVER);
		}
	}

	scn->scn_phys.scn_end_time = gethrestime_sec();

	if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
		spa->spa_errata = 0;

	ASSERT(!dsl_scan_is_running(scn));
}

/* ARGSUSED */
static int
dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
{
	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;

	if (!dsl_scan_is_running(scn))
		return (SET_ERROR(ENOENT));
	return (0);
}

/* ARGSUSED */
static void
dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
{
	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;

	dsl_scan_done(scn, B_FALSE, tx);
	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
	spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
}

int
dsl_scan_cancel(dsl_pool_t *dp)
{
	return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
	    dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
}

static int
dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
{
	pool_scrub_cmd_t *cmd = arg;
	dsl_pool_t *dp = dmu_tx_pool(tx);
	dsl_scan_t *scn = dp->dp_scan;

	if (*cmd == POOL_SCRUB_PAUSE) {
		/* can't pause a scrub when there is no in-progress scrub */
		if (!dsl_scan_scrubbing(dp))
			return (SET_ERROR(ENOENT));

		/* can't pause a paused scrub */
		if (dsl_scan_is_paused_scrub(scn))
			return (SET_ERROR(EBUSY));
	} else if (*cmd != POOL_SCRUB_NORMAL) {
		return (SET_ERROR(ENOTSUP));
	}

	return (0);
}

static void
dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
{
	pool_scrub_cmd_t *cmd = arg;
	dsl_pool_t *dp = dmu_tx_pool(tx);
	spa_t *spa = dp->dp_spa;
	dsl_scan_t *scn = dp->dp_scan;

	if (*cmd == POOL_SCRUB_PAUSE) {
		/* can't pause a scrub when there is no in-progress scrub */
		spa->spa_scan_pass_scrub_pause = gethrestime_sec();
		scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
		scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
		dsl_scan_sync_state(scn, tx, SYNC_CACHED);
		spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
		spa_notify_waiters(spa);
	} else {
		ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
		if (dsl_scan_is_paused_scrub(scn)) {
			/*
			 * We need to keep track of how much time we spend
			 * paused per pass so that we can adjust the scrub rate
			 * shown in the output of 'zpool status'
			 */
			spa->spa_scan_pass_scrub_spent_paused +=
			    gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
			spa->spa_scan_pass_scrub_pause = 0;
			scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
			scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
			dsl_scan_sync_state(scn, tx, SYNC_CACHED);
		}
	}
}

/*
 * Set scrub pause/resume state if it makes sense to do so
 */
int
dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
{
	return (dsl_sync_task(spa_name(dp->dp_spa),
	    dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
	    ZFS_SPACE_CHECK_RESERVED));
}


/* start a new scan, or restart an existing one. */
void
dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
{
	if (txg == 0) {
		dmu_tx_t *tx;
		tx = dmu_tx_create_dd(dp->dp_mos_dir);
		VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));

		txg = dmu_tx_get_txg(tx);
		dp->dp_scan->scn_restart_txg = txg;
		dmu_tx_commit(tx);
	} else {
		dp->dp_scan->scn_restart_txg = txg;
	}
	zfs_dbgmsg("restarting resilver txg=%llu", (longlong_t)txg);
}

void
dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
{
	zio_free(dp->dp_spa, txg, bp);
}

void
dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
{
	ASSERT(dsl_pool_sync_context(dp));
	zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
}

static int
scan_ds_queue_compare(const void *a, const void *b)
{
	const scan_ds_t *sds_a = a, *sds_b = b;

	if (sds_a->sds_dsobj < sds_b->sds_dsobj)
		return (-1);
	if (sds_a->sds_dsobj == sds_b->sds_dsobj)
		return (0);
	return (1);
}

static void
scan_ds_queue_clear(dsl_scan_t *scn)
{
	void *cookie = NULL;
	scan_ds_t *sds;
	while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
		kmem_free(sds, sizeof (*sds));
	}
}

static boolean_t
scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
{
	scan_ds_t srch, *sds;

	srch.sds_dsobj = dsobj;
	sds = avl_find(&scn->scn_queue, &srch, NULL);
	if (sds != NULL && txg != NULL)
		*txg = sds->sds_txg;
	return (sds != NULL);
}

static void
scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
{
	scan_ds_t *sds;
	avl_index_t where;

	sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
	sds->sds_dsobj = dsobj;
	sds->sds_txg = txg;

	VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
	avl_insert(&scn->scn_queue, sds, where);
}

static void
scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
{
	scan_ds_t srch, *sds;

	srch.sds_dsobj = dsobj;

	sds = avl_find(&scn->scn_queue, &srch, NULL);
	VERIFY(sds != NULL);
	avl_remove(&scn->scn_queue, sds);
	kmem_free(sds, sizeof (*sds));
}

static void
scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
{
	dsl_pool_t *dp = scn->scn_dp;
	spa_t *spa = dp->dp_spa;
	dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
	    DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;

	ASSERT0(scn->scn_bytes_pending);
	ASSERT(scn->scn_phys.scn_queue_obj != 0);

	VERIFY0(dmu_object_free(dp->dp_meta_objset,
	    scn->scn_phys.scn_queue_obj, tx));
	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
	    DMU_OT_NONE, 0, tx);
	for (scan_ds_t *sds = avl_first(&scn->scn_queue);
	    sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
		VERIFY0(zap_add_int_key(dp->dp_meta_objset,
		    scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
		    sds->sds_txg, tx));
	}
}

/*
 * Computes the memory limit state that we're currently in. A sorted scan
 * needs quite a bit of memory to hold the sorting queue, so we need to
 * reasonably constrain the size so it doesn't impact overall system
 * performance. We compute two limits:
 * 1) Hard memory limit: if the amount of memory used by the sorting
 *	queues on a pool gets above this value, we stop the metadata
 *	scanning portion and start issuing the queued up and sorted
 *	I/Os to reduce memory usage.
 *	This limit is calculated as a fraction of physmem (by default 5%).
 *	We constrain the lower bound of the hard limit to an absolute
 *	minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
 *	the upper bound to 5% of the total pool size - no chance we'll
 *	ever need that much memory, but just to keep the value in check.
 * 2) Soft memory limit: once we hit the hard memory limit, we start
 *	issuing I/O to reduce queue memory usage, but we don't want to
 *	completely empty out the queues, since we might be able to find I/Os
 *	that will fill in the gaps of our non-sequential IOs at some point
 *	in the future. So we stop the issuing of I/Os once the amount of
 *	memory used drops below the soft limit (at which point we stop issuing
 *	I/O and start scanning metadata again).
 *
 *	This limit is calculated by subtracting a fraction of the hard
 *	limit from the hard limit. By default this fraction is 5%, so
 *	the soft limit is 95% of the hard limit. We cap the size of the
 *	difference between the hard and soft limits at an absolute
 *	maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
 *	sufficient to not cause too frequent switching between the
 *	metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
 *	worth of queues is about 1.2 GiB of on-pool data, so scanning
 *	that should take at least a decent fraction of a second).
 */
static boolean_t
dsl_scan_should_clear(dsl_scan_t *scn)
{
	spa_t *spa = scn->scn_dp->dp_spa;
	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
	uint64_t alloc, mlim_hard, mlim_soft, mused;

	alloc = metaslab_class_get_alloc(spa_normal_class(spa));
	alloc += metaslab_class_get_alloc(spa_special_class(spa));
	alloc += metaslab_class_get_alloc(spa_dedup_class(spa));

	mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
	    zfs_scan_mem_lim_min);
	mlim_hard = MIN(mlim_hard, alloc / 20);
	mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
	    zfs_scan_mem_lim_soft_max);
	mused = 0;
	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
		vdev_t *tvd = rvd->vdev_child[i];
		dsl_scan_io_queue_t *queue;

		mutex_enter(&tvd->vdev_scan_io_queue_lock);
		queue = tvd->vdev_scan_io_queue;
		if (queue != NULL) {
			/* # extents in exts_by_size = # in exts_by_addr */
			mused += zfs_btree_numnodes(&queue->q_exts_by_size) *
			    sizeof (range_seg_gap_t) + queue->q_sio_memused;
		}
		mutex_exit(&tvd->vdev_scan_io_queue_lock);
	}

	dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);

	if (mused == 0)
		ASSERT0(scn->scn_bytes_pending);

	/*
	 * If we are above our hard limit, we need to clear out memory.
	 * If we are below our soft limit, we need to accumulate sequential IOs.
	 * Otherwise, we should keep doing whatever we are currently doing.
	 */
	if (mused >= mlim_hard)
		return (B_TRUE);
	else if (mused < mlim_soft)
		return (B_FALSE);
	else
		return (scn->scn_clearing);
}

static boolean_t
dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
{
	/* we never skip user/group accounting objects */
	if (zb && (int64_t)zb->zb_object < 0)
		return (B_FALSE);

	if (scn->scn_suspending)
		return (B_TRUE); /* we're already suspending */

	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
		return (B_FALSE); /* we're resuming */

	/* We only know how to resume from level-0 and objset blocks. */
	if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
		return (B_FALSE);

	/*
	 * We suspend if:
	 *  - we have scanned for at least the minimum time (default 1 sec
	 *    for scrub, 3 sec for resilver), and either we have sufficient
	 *    dirty data that we are starting to write more quickly
	 *    (default 30%), someone is explicitly waiting for this txg
	 *    to complete, or we have used up all of the time in the txg
	 *    timeout (default 5 sec).
	 *  or
	 *  - the spa is shutting down because this pool is being exported
	 *    or the machine is rebooting.
	 *  or
	 *  - the scan queue has reached its memory use limit
	 */
	uint64_t curr_time_ns = gethrtime();
	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
	uint64_t sync_time_ns = curr_time_ns -
	    scn->scn_dp->dp_spa->spa_sync_starttime;
	int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
	int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;

	if ((NSEC2MSEC(scan_time_ns) > mintime &&
	    (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
	    txg_sync_waiting(scn->scn_dp) ||
	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
	    spa_shutting_down(scn->scn_dp->dp_spa) ||
	    (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
		if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
			dprintf("suspending at first available bookmark "
			    "%llx/%llx/%llx/%llx\n",
			    (longlong_t)zb->zb_objset,
			    (longlong_t)zb->zb_object,
			    (longlong_t)zb->zb_level,
			    (longlong_t)zb->zb_blkid);
			SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
			    zb->zb_objset, 0, 0, 0);
		} else if (zb != NULL) {
			dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
			    (longlong_t)zb->zb_objset,
			    (longlong_t)zb->zb_object,
			    (longlong_t)zb->zb_level,
			    (longlong_t)zb->zb_blkid);
			scn->scn_phys.scn_bookmark = *zb;
		} else {
#ifdef ZFS_DEBUG
			dsl_scan_phys_t *scnp = &scn->scn_phys;
			dprintf("suspending at at DDT bookmark "
			    "%llx/%llx/%llx/%llx\n",
			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
#endif
		}
		scn->scn_suspending = B_TRUE;
		return (B_TRUE);
	}
	return (B_FALSE);
}

typedef struct zil_scan_arg {
	dsl_pool_t	*zsa_dp;
	zil_header_t	*zsa_zh;
} zil_scan_arg_t;

/* ARGSUSED */
static int
dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
    uint64_t claim_txg)
{
	zil_scan_arg_t *zsa = arg;
	dsl_pool_t *dp = zsa->zsa_dp;
	dsl_scan_t *scn = dp->dp_scan;
	zil_header_t *zh = zsa->zsa_zh;
	zbookmark_phys_t zb;

	ASSERT(!BP_IS_REDACTED(bp));
	if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
		return (0);

	/*
	 * One block ("stubby") can be allocated a long time ago; we
	 * want to visit that one because it has been allocated
	 * (on-disk) even if it hasn't been claimed (even though for
	 * scrub there's nothing to do to it).
	 */
	if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa))
		return (0);

	SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);

	VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
	return (0);
}

/* ARGSUSED */
static int
dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
    uint64_t claim_txg)
{
	if (lrc->lrc_txtype == TX_WRITE) {
		zil_scan_arg_t *zsa = arg;
		dsl_pool_t *dp = zsa->zsa_dp;
		dsl_scan_t *scn = dp->dp_scan;
		zil_header_t *zh = zsa->zsa_zh;
		const lr_write_t *lr = (const lr_write_t *)lrc;
		const blkptr_t *bp = &lr->lr_blkptr;
		zbookmark_phys_t zb;

		ASSERT(!BP_IS_REDACTED(bp));
		if (BP_IS_HOLE(bp) ||
		    bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
			return (0);

		/*
		 * birth can be < claim_txg if this record's txg is
		 * already txg sync'ed (but this log block contains
		 * other records that are not synced)
		 */
		if (claim_txg == 0 || bp->blk_birth < claim_txg)
			return (0);

		SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
		    lr->lr_foid, ZB_ZIL_LEVEL,
		    lr->lr_offset / BP_GET_LSIZE(bp));

		VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
	}
	return (0);
}

static void
dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
{
	uint64_t claim_txg = zh->zh_claim_txg;
	zil_scan_arg_t zsa = { dp, zh };
	zilog_t *zilog;

	ASSERT(spa_writeable(dp->dp_spa));

	/*
	 * We only want to visit blocks that have been claimed but not yet
	 * replayed (or, in read-only mode, blocks that *would* be claimed).
	 */
	if (claim_txg == 0)
		return;

	zilog = zil_alloc(dp->dp_meta_objset, zh);

	(void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
	    claim_txg, B_FALSE);

	zil_free(zilog);
}

/*
 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
 * here is to sort the AVL tree by the order each block will be needed.
 */
static int
scan_prefetch_queue_compare(const void *a, const void *b)
{
	const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
	const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
	const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;

	return (zbookmark_compare(spc_a->spc_datablkszsec,
	    spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
	    spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
}

static void
scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag)
{
	if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
		zfs_refcount_destroy(&spc->spc_refcnt);
		kmem_free(spc, sizeof (scan_prefetch_ctx_t));
	}
}

static scan_prefetch_ctx_t *
scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag)
{
	scan_prefetch_ctx_t *spc;

	spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
	zfs_refcount_create(&spc->spc_refcnt);
	zfs_refcount_add(&spc->spc_refcnt, tag);
	spc->spc_scn = scn;
	if (dnp != NULL) {
		spc->spc_datablkszsec = dnp->dn_datablkszsec;
		spc->spc_indblkshift = dnp->dn_indblkshift;
		spc->spc_root = B_FALSE;
	} else {
		spc->spc_datablkszsec = 0;
		spc->spc_indblkshift = 0;
		spc->spc_root = B_TRUE;
	}

	return (spc);
}

static void
scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag)
{
	zfs_refcount_add(&spc->spc_refcnt, tag);
}

static void
scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
{
	spa_t *spa = scn->scn_dp->dp_spa;
	void *cookie = NULL;
	scan_prefetch_issue_ctx_t *spic = NULL;

	mutex_enter(&spa->spa_scrub_lock);
	while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
	    &cookie)) != NULL) {
		scan_prefetch_ctx_rele(spic->spic_spc, scn);
		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
	}
	mutex_exit(&spa->spa_scrub_lock);
}

static boolean_t
dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
    const zbookmark_phys_t *zb)
{
	zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
	dnode_phys_t tmp_dnp;
	dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;

	if (zb->zb_objset != last_zb->zb_objset)
		return (B_TRUE);
	if ((int64_t)zb->zb_object < 0)
		return (B_FALSE);

	tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
	tmp_dnp.dn_indblkshift = spc->spc_indblkshift;

	if (zbookmark_subtree_completed(dnp, zb, last_zb))
		return (B_TRUE);

	return (B_FALSE);
}

static void
dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
{
	avl_index_t idx;
	dsl_scan_t *scn = spc->spc_scn;
	spa_t *spa = scn->scn_dp->dp_spa;
	scan_prefetch_issue_ctx_t *spic;

	if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
		return;

	if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg ||
	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
	    BP_GET_TYPE(bp) != DMU_OT_OBJSET))
		return;

	if (dsl_scan_check_prefetch_resume(spc, zb))
		return;

	scan_prefetch_ctx_add_ref(spc, scn);
	spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
	spic->spic_spc = spc;
	spic->spic_bp = *bp;
	spic->spic_zb = *zb;

	/*
	 * Add the IO to the queue of blocks to prefetch. This allows us to
	 * prioritize blocks that we will need first for the main traversal
	 * thread.
	 */
	mutex_enter(&spa->spa_scrub_lock);
	if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
		/* this block is already queued for prefetch */
		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
		scan_prefetch_ctx_rele(spc, scn);
		mutex_exit(&spa->spa_scrub_lock);
		return;
	}

	avl_insert(&scn->scn_prefetch_queue, spic, idx);
	cv_broadcast(&spa->spa_scrub_io_cv);
	mutex_exit(&spa->spa_scrub_lock);
}

static void
dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
    uint64_t objset, uint64_t object)
{
	int i;
	zbookmark_phys_t zb;
	scan_prefetch_ctx_t *spc;

	if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
		return;

	SET_BOOKMARK(&zb, objset, object, 0, 0);

	spc = scan_prefetch_ctx_create(scn, dnp, FTAG);

	for (i = 0; i < dnp->dn_nblkptr; i++) {
		zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
		zb.zb_blkid = i;
		dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
	}

	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
		zb.zb_level = 0;
		zb.zb_blkid = DMU_SPILL_BLKID;
		dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
	}

	scan_prefetch_ctx_rele(spc, FTAG);
}

static void
dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
    arc_buf_t *buf, void *private)
{
	scan_prefetch_ctx_t *spc = private;
	dsl_scan_t *scn = spc->spc_scn;
	spa_t *spa = scn->scn_dp->dp_spa;

	/* broadcast that the IO has completed for rate limiting purposes */
	mutex_enter(&spa->spa_scrub_lock);
	ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
	spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
	cv_broadcast(&spa->spa_scrub_io_cv);
	mutex_exit(&spa->spa_scrub_lock);

	/* if there was an error or we are done prefetching, just cleanup */
	if (buf == NULL || scn->scn_prefetch_stop)
		goto out;

	if (BP_GET_LEVEL(bp) > 0) {
		int i;
		blkptr_t *cbp;
		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
		zbookmark_phys_t czb;

		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
			    zb->zb_level - 1, zb->zb_blkid * epb + i);
			dsl_scan_prefetch(spc, cbp, &czb);
		}
	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
		dnode_phys_t *cdnp;
		int i;
		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;

		for (i = 0, cdnp = buf->b_data; i < epb;
		    i += cdnp->dn_extra_slots + 1,
		    cdnp += cdnp->dn_extra_slots + 1) {
			dsl_scan_prefetch_dnode(scn, cdnp,
			    zb->zb_objset, zb->zb_blkid * epb + i);
		}
	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
		objset_phys_t *osp = buf->b_data;

		dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
		    zb->zb_objset, DMU_META_DNODE_OBJECT);

		if (OBJSET_BUF_HAS_USERUSED(buf)) {
			dsl_scan_prefetch_dnode(scn,
			    &osp->os_groupused_dnode, zb->zb_objset,
			    DMU_GROUPUSED_OBJECT);
			dsl_scan_prefetch_dnode(scn,
			    &osp->os_userused_dnode, zb->zb_objset,
			    DMU_USERUSED_OBJECT);
		}
	}

out:
	if (buf != NULL)
		arc_buf_destroy(buf, private);
	scan_prefetch_ctx_rele(spc, scn);
}

/* ARGSUSED */
static void
dsl_scan_prefetch_thread(void *arg)
{
	dsl_scan_t *scn = arg;
	spa_t *spa = scn->scn_dp->dp_spa;
	scan_prefetch_issue_ctx_t *spic;

	/* loop until we are told to stop */
	while (!scn->scn_prefetch_stop) {
		arc_flags_t flags = ARC_FLAG_NOWAIT |
		    ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
		int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;

		mutex_enter(&spa->spa_scrub_lock);

		/*
		 * Wait until we have an IO to issue and are not above our
		 * maximum in flight limit.
		 */
		while (!scn->scn_prefetch_stop &&
		    (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
		    spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
		}

		/* recheck if we should stop since we waited for the cv */
		if (scn->scn_prefetch_stop) {
			mutex_exit(&spa->spa_scrub_lock);
			break;
		}

		/* remove the prefetch IO from the tree */
		spic = avl_first(&scn->scn_prefetch_queue);
		spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
		avl_remove(&scn->scn_prefetch_queue, spic);

		mutex_exit(&spa->spa_scrub_lock);

		if (BP_IS_PROTECTED(&spic->spic_bp)) {
			ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
			    BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
			ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
			zio_flags |= ZIO_FLAG_RAW;
		}

		/* issue the prefetch asynchronously */
		(void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa,
		    &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc,
		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb);

		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
	}

	ASSERT(scn->scn_prefetch_stop);

	/* free any prefetches we didn't get to complete */
	mutex_enter(&spa->spa_scrub_lock);
	while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
		avl_remove(&scn->scn_prefetch_queue, spic);
		scan_prefetch_ctx_rele(spic->spic_spc, scn);
		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
	}
	ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
	mutex_exit(&spa->spa_scrub_lock);
}

static boolean_t
dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
    const zbookmark_phys_t *zb)
{
	/*
	 * We never skip over user/group accounting objects (obj<0)
	 */
	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
	    (int64_t)zb->zb_object >= 0) {
		/*
		 * If we already visited this bp & everything below (in
		 * a prior txg sync), don't bother doing it again.
		 */
		if (zbookmark_subtree_completed(dnp, zb,
		    &scn->scn_phys.scn_bookmark))
			return (B_TRUE);

		/*
		 * If we found the block we're trying to resume from, or
		 * we went past it to a different object, zero it out to
		 * indicate that it's OK to start checking for suspending
		 * again.
		 */
		if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 ||
		    zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) {
			dprintf("resuming at %llx/%llx/%llx/%llx\n",
			    (longlong_t)zb->zb_objset,
			    (longlong_t)zb->zb_object,
			    (longlong_t)zb->zb_level,
			    (longlong_t)zb->zb_blkid);
			bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb));
		}
	}
	return (B_FALSE);
}

static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
    dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
    dmu_objset_type_t ostype, dmu_tx_t *tx);
inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
    dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
    dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);

/*
 * Return nonzero on i/o error.
 * Return new buf to write out in *bufp.
 */
inline __attribute__((always_inline)) static int
dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
    dnode_phys_t *dnp, const blkptr_t *bp,
    const zbookmark_phys_t *zb, dmu_tx_t *tx)
{
	dsl_pool_t *dp = scn->scn_dp;
	int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
	int err;

	ASSERT(!BP_IS_REDACTED(bp));

	if (BP_GET_LEVEL(bp) > 0) {
		arc_flags_t flags = ARC_FLAG_WAIT;
		int i;
		blkptr_t *cbp;
		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
		arc_buf_t *buf;

		err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
		if (err) {
			scn->scn_phys.scn_errors++;
			return (err);
		}
		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
			zbookmark_phys_t czb;

			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
			    zb->zb_level - 1,
			    zb->zb_blkid * epb + i);
			dsl_scan_visitbp(cbp, &czb, dnp,
			    ds, scn, ostype, tx);
		}
		arc_buf_destroy(buf, &buf);
	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
		arc_flags_t flags = ARC_FLAG_WAIT;
		dnode_phys_t *cdnp;
		int i;
		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
		arc_buf_t *buf;

		if (BP_IS_PROTECTED(bp)) {
			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
			zio_flags |= ZIO_FLAG_RAW;
		}

		err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
		if (err) {
			scn->scn_phys.scn_errors++;
			return (err);
		}
		for (i = 0, cdnp = buf->b_data; i < epb;
		    i += cdnp->dn_extra_slots + 1,
		    cdnp += cdnp->dn_extra_slots + 1) {
			dsl_scan_visitdnode(scn, ds, ostype,
			    cdnp, zb->zb_blkid * epb + i, tx);
		}

		arc_buf_destroy(buf, &buf);
	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
		arc_flags_t flags = ARC_FLAG_WAIT;
		objset_phys_t *osp;
		arc_buf_t *buf;

		err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
		if (err) {
			scn->scn_phys.scn_errors++;
			return (err);
		}

		osp = buf->b_data;

		dsl_scan_visitdnode(scn, ds, osp->os_type,
		    &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);

		if (OBJSET_BUF_HAS_USERUSED(buf)) {
			/*
			 * We also always visit user/group/project accounting
			 * objects, and never skip them, even if we are
			 * suspending. This is necessary so that the
			 * space deltas from this txg get integrated.
			 */
			if (OBJSET_BUF_HAS_PROJECTUSED(buf))
				dsl_scan_visitdnode(scn, ds, osp->os_type,
				    &osp->os_projectused_dnode,
				    DMU_PROJECTUSED_OBJECT, tx);
			dsl_scan_visitdnode(scn, ds, osp->os_type,
			    &osp->os_groupused_dnode,
			    DMU_GROUPUSED_OBJECT, tx);
			dsl_scan_visitdnode(scn, ds, osp->os_type,
			    &osp->os_userused_dnode,
			    DMU_USERUSED_OBJECT, tx);
		}
		arc_buf_destroy(buf, &buf);
	}

	return (0);
}

inline __attribute__((always_inline)) static void
dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
    dmu_objset_type_t ostype, dnode_phys_t *dnp,
    uint64_t object, dmu_tx_t *tx)
{
	int j;

	for (j = 0; j < dnp->dn_nblkptr; j++) {
		zbookmark_phys_t czb;

		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
		    dnp->dn_nlevels - 1, j);
		dsl_scan_visitbp(&dnp->dn_blkptr[j],
		    &czb, dnp, ds, scn, ostype, tx);
	}

	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
		zbookmark_phys_t czb;
		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
		    0, DMU_SPILL_BLKID);
		dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
		    &czb, dnp, ds, scn, ostype, tx);
	}
}

/*
 * The arguments are in this order because mdb can only print the
 * first 5; we want them to be useful.
 */
static void
dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
    dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
    dmu_objset_type_t ostype, dmu_tx_t *tx)
{
	dsl_pool_t *dp = scn->scn_dp;
	blkptr_t *bp_toread = NULL;

	if (dsl_scan_check_suspend(scn, zb))
		return;

	if (dsl_scan_check_resume(scn, dnp, zb))
		return;

	scn->scn_visited_this_txg++;

	/*
	 * This debugging is commented out to conserve stack space.  This
	 * function is called recursively and the debugging adds several
	 * bytes to the stack for each call.  It can be commented back in
	 * if required to debug an issue in dsl_scan_visitbp().
	 *
	 * dprintf_bp(bp,
	 *     "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p",
	 *     ds, ds ? ds->ds_object : 0,
	 *     zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
	 *     bp);
	 */

	if (BP_IS_HOLE(bp)) {
		scn->scn_holes_this_txg++;
		return;
	}

	if (BP_IS_REDACTED(bp)) {
		ASSERT(dsl_dataset_feature_is_active(ds,
		    SPA_FEATURE_REDACTED_DATASETS));
		return;
	}

	if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) {
		scn->scn_lt_min_this_txg++;
		return;
	}

	bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
	*bp_toread = *bp;

	if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0)
		goto out;

	/*
	 * If dsl_scan_ddt() has already visited this block, it will have
	 * already done any translations or scrubbing, so don't call the
	 * callback again.
	 */
	if (ddt_class_contains(dp->dp_spa,
	    scn->scn_phys.scn_ddt_class_max, bp)) {
		scn->scn_ddt_contained_this_txg++;
		goto out;
	}

	/*
	 * If this block is from the future (after cur_max_txg), then we
	 * are doing this on behalf of a deleted snapshot, and we will
	 * revisit the future block on the next pass of this dataset.
	 * Don't scan it now unless we need to because something
	 * under it was modified.
	 */
	if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
		scn->scn_gt_max_this_txg++;
		goto out;
	}

	scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);

out:
	kmem_free(bp_toread, sizeof (blkptr_t));
}

static void
dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
    dmu_tx_t *tx)
{
	zbookmark_phys_t zb;
	scan_prefetch_ctx_t *spc;

	SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
	    ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);

	if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
		SET_BOOKMARK(&scn->scn_prefetch_bookmark,
		    zb.zb_objset, 0, 0, 0);
	} else {
		scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
	}

	scn->scn_objsets_visited_this_txg++;

	spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
	dsl_scan_prefetch(spc, bp, &zb);
	scan_prefetch_ctx_rele(spc, FTAG);

	dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);

	dprintf_ds(ds, "finished scan%s", "");
}

static void
ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
{
	if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
		if (ds->ds_is_snapshot) {
			/*
			 * Note:
			 *  - scn_cur_{min,max}_txg stays the same.
			 *  - Setting the flag is not really necessary if
			 *    scn_cur_max_txg == scn_max_txg, because there
			 *    is nothing after this snapshot that we care
			 *    about.  However, we set it anyway and then
			 *    ignore it when we retraverse it in
			 *    dsl_scan_visitds().
			 */
			scn_phys->scn_bookmark.zb_objset =
			    dsl_dataset_phys(ds)->ds_next_snap_obj;
			zfs_dbgmsg("destroying ds %llu; currently traversing; "
			    "reset zb_objset to %llu",
			    (u_longlong_t)ds->ds_object,
			    (u_longlong_t)dsl_dataset_phys(ds)->
			    ds_next_snap_obj);
			scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
		} else {
			SET_BOOKMARK(&scn_phys->scn_bookmark,
			    ZB_DESTROYED_OBJSET, 0, 0, 0);
			zfs_dbgmsg("destroying ds %llu; currently traversing; "
			    "reset bookmark to -1,0,0,0",
			    (u_longlong_t)ds->ds_object);
		}
	}
}

/*
 * Invoked when a dataset is destroyed. We need to make sure that:
 *
 * 1) If it is the dataset that was currently being scanned, we write
 *	a new dsl_scan_phys_t and marking the objset reference in it
 *	as destroyed.
 * 2) Remove it from the work queue, if it was present.
 *
 * If the dataset was actually a snapshot, instead of marking the dataset
 * as destroyed, we instead substitute the next snapshot in line.
 */
void
dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
{
	dsl_pool_t *dp = ds->ds_dir->dd_pool;
	dsl_scan_t *scn = dp->dp_scan;
	uint64_t mintxg;

	if (!dsl_scan_is_running(scn))
		return;

	ds_destroyed_scn_phys(ds, &scn->scn_phys);
	ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);

	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
		scan_ds_queue_remove(scn, ds->ds_object);
		if (ds->ds_is_snapshot)
			scan_ds_queue_insert(scn,
			    dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
	}

	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
	    ds->ds_object, &mintxg) == 0) {
		ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
		if (ds->ds_is_snapshot) {
			/*
			 * We keep the same mintxg; it could be >
			 * ds_creation_txg if the previous snapshot was
			 * deleted too.
			 */
			VERIFY(zap_add_int_key(dp->dp_meta_objset,
			    scn->scn_phys.scn_queue_obj,
			    dsl_dataset_phys(ds)->ds_next_snap_obj,
			    mintxg, tx) == 0);
			zfs_dbgmsg("destroying ds %llu; in queue; "
			    "replacing with %llu",
			    (u_longlong_t)ds->ds_object,
			    (u_longlong_t)dsl_dataset_phys(ds)->
			    ds_next_snap_obj);
		} else {
			zfs_dbgmsg("destroying ds %llu; in queue; removing",
			    (u_longlong_t)ds->ds_object);
		}
	}

	/*
	 * dsl_scan_sync() should be called after this, and should sync
	 * out our changed state, but just to be safe, do it here.
	 */
	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
}

static void
ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
{
	if (scn_bookmark->zb_objset == ds->ds_object) {
		scn_bookmark->zb_objset =
		    dsl_dataset_phys(ds)->ds_prev_snap_obj;
		zfs_dbgmsg("snapshotting ds %llu; currently traversing; "
		    "reset zb_objset to %llu",
		    (u_longlong_t)ds->ds_object,
		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
	}
}

/*
 * Called when a dataset is snapshotted. If we were currently traversing
 * this snapshot, we reset our bookmark to point at the newly created
 * snapshot. We also modify our work queue to remove the old snapshot and
 * replace with the new one.
 */
void
dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
{
	dsl_pool_t *dp = ds->ds_dir->dd_pool;
	dsl_scan_t *scn = dp->dp_scan;
	uint64_t mintxg;

	if (!dsl_scan_is_running(scn))
		return;

	ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);

	ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
	ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);

	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
		scan_ds_queue_remove(scn, ds->ds_object);
		scan_ds_queue_insert(scn,
		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
	}

	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
	    ds->ds_object, &mintxg) == 0) {
		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
		VERIFY(zap_add_int_key(dp->dp_meta_objset,
		    scn->scn_phys.scn_queue_obj,
		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
		zfs_dbgmsg("snapshotting ds %llu; in queue; "
		    "replacing with %llu",
		    (u_longlong_t)ds->ds_object,
		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
	}

	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
}

static void
ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
    zbookmark_phys_t *scn_bookmark)
{
	if (scn_bookmark->zb_objset == ds1->ds_object) {
		scn_bookmark->zb_objset = ds2->ds_object;
		zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
		    "reset zb_objset to %llu",
		    (u_longlong_t)ds1->ds_object,
		    (u_longlong_t)ds2->ds_object);
	} else if (scn_bookmark->zb_objset == ds2->ds_object) {
		scn_bookmark->zb_objset = ds1->ds_object;
		zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
		    "reset zb_objset to %llu",
		    (u_longlong_t)ds2->ds_object,
		    (u_longlong_t)ds1->ds_object);
	}
}

/*
 * Called when an origin dataset and its clone are swapped.  If we were
 * currently traversing the dataset, we need to switch to traversing the
 * newly promoted clone.
 */
void
dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
{
	dsl_pool_t *dp = ds1->ds_dir->dd_pool;
	dsl_scan_t *scn = dp->dp_scan;
	uint64_t mintxg1, mintxg2;
	boolean_t ds1_queued, ds2_queued;

	if (!dsl_scan_is_running(scn))
		return;

	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);

	/*
	 * Handle the in-memory scan queue.
	 */
	ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
	ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);

	/* Sanity checking. */
	if (ds1_queued) {
		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
	}
	if (ds2_queued) {
		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
	}

	if (ds1_queued && ds2_queued) {
		/*
		 * If both are queued, we don't need to do anything.
		 * The swapping code below would not handle this case correctly,
		 * since we can't insert ds2 if it is already there. That's
		 * because scan_ds_queue_insert() prohibits a duplicate insert
		 * and panics.
		 */
	} else if (ds1_queued) {
		scan_ds_queue_remove(scn, ds1->ds_object);
		scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
	} else if (ds2_queued) {
		scan_ds_queue_remove(scn, ds2->ds_object);
		scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
	}

	/*
	 * Handle the on-disk scan queue.
	 * The on-disk state is an out-of-date version of the in-memory state,
	 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
	 * be different. Therefore we need to apply the swap logic to the
	 * on-disk state independently of the in-memory state.
	 */
	ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
	    scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
	ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
	    scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;

	/* Sanity checking. */
	if (ds1_queued) {
		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
	}
	if (ds2_queued) {
		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
	}

	if (ds1_queued && ds2_queued) {
		/*
		 * If both are queued, we don't need to do anything.
		 * Alternatively, we could check for EEXIST from
		 * zap_add_int_key() and back out to the original state, but
		 * that would be more work than checking for this case upfront.
		 */
	} else if (ds1_queued) {
		VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
		    scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
		VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
		    scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
		zfs_dbgmsg("clone_swap ds %llu; in queue; "
		    "replacing with %llu",
		    (u_longlong_t)ds1->ds_object,
		    (u_longlong_t)ds2->ds_object);
	} else if (ds2_queued) {
		VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
		    scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
		VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
		    scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
		zfs_dbgmsg("clone_swap ds %llu; in queue; "
		    "replacing with %llu",
		    (u_longlong_t)ds2->ds_object,
		    (u_longlong_t)ds1->ds_object);
	}

	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
}

/* ARGSUSED */
static int
enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
{
	uint64_t originobj = *(uint64_t *)arg;
	dsl_dataset_t *ds;
	int err;
	dsl_scan_t *scn = dp->dp_scan;

	if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
		return (0);

	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
	if (err)
		return (err);

	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
		dsl_dataset_t *prev;
		err = dsl_dataset_hold_obj(dp,
		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);

		dsl_dataset_rele(ds, FTAG);
		if (err)
			return (err);
		ds = prev;
	}
	scan_ds_queue_insert(scn, ds->ds_object,
	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
	dsl_dataset_rele(ds, FTAG);
	return (0);
}

static void
dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
{
	dsl_pool_t *dp = scn->scn_dp;
	dsl_dataset_t *ds;

	VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));

	if (scn->scn_phys.scn_cur_min_txg >=
	    scn->scn_phys.scn_max_txg) {
		/*
		 * This can happen if this snapshot was created after the
		 * scan started, and we already completed a previous snapshot
		 * that was created after the scan started.  This snapshot
		 * only references blocks with:
		 *
		 *	birth < our ds_creation_txg
		 *	cur_min_txg is no less than ds_creation_txg.
		 *	We have already visited these blocks.
		 * or
		 *	birth > scn_max_txg
		 *	The scan requested not to visit these blocks.
		 *
		 * Subsequent snapshots (and clones) can reference our
		 * blocks, or blocks with even higher birth times.
		 * Therefore we do not need to visit them either,
		 * so we do not add them to the work queue.
		 *
		 * Note that checking for cur_min_txg >= cur_max_txg
		 * is not sufficient, because in that case we may need to
		 * visit subsequent snapshots.  This happens when min_txg > 0,
		 * which raises cur_min_txg.  In this case we will visit
		 * this dataset but skip all of its blocks, because the
		 * rootbp's birth time is < cur_min_txg.  Then we will
		 * add the next snapshots/clones to the work queue.
		 */
		char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
		dsl_dataset_name(ds, dsname);
		zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
		    "cur_min_txg (%llu) >= max_txg (%llu)",
		    (longlong_t)dsobj, dsname,
		    (longlong_t)scn->scn_phys.scn_cur_min_txg,
		    (longlong_t)scn->scn_phys.scn_max_txg);
		kmem_free(dsname, MAXNAMELEN);

		goto out;
	}

	/*
	 * Only the ZIL in the head (non-snapshot) is valid. Even though
	 * snapshots can have ZIL block pointers (which may be the same
	 * BP as in the head), they must be ignored. In addition, $ORIGIN
	 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
	 * need to look for a ZIL in it either. So we traverse the ZIL here,
	 * rather than in scan_recurse(), because the regular snapshot
	 * block-sharing rules don't apply to it.
	 */
	if (!dsl_dataset_is_snapshot(ds) &&
	    (dp->dp_origin_snap == NULL ||
	    ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
		objset_t *os;
		if (dmu_objset_from_ds(ds, &os) != 0) {
			goto out;
		}
		dsl_scan_zil(dp, &os->os_zil_header);
	}

	/*
	 * Iterate over the bps in this ds.
	 */
	dmu_buf_will_dirty(ds->ds_dbuf, tx);
	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
	dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
	rrw_exit(&ds->ds_bp_rwlock, FTAG);

	char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
	dsl_dataset_name(ds, dsname);
	zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
	    "suspending=%u",
	    (longlong_t)dsobj, dsname,
	    (longlong_t)scn->scn_phys.scn_cur_min_txg,
	    (longlong_t)scn->scn_phys.scn_cur_max_txg,
	    (int)scn->scn_suspending);
	kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);

	if (scn->scn_suspending)
		goto out;

	/*
	 * We've finished this pass over this dataset.
	 */

	/*
	 * If we did not completely visit this dataset, do another pass.
	 */
	if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
		zfs_dbgmsg("incomplete pass; visiting again");
		scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
		scan_ds_queue_insert(scn, ds->ds_object,
		    scn->scn_phys.scn_cur_max_txg);
		goto out;
	}

	/*
	 * Add descendant datasets to work queue.
	 */
	if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
		scan_ds_queue_insert(scn,
		    dsl_dataset_phys(ds)->ds_next_snap_obj,
		    dsl_dataset_phys(ds)->ds_creation_txg);
	}
	if (dsl_dataset_phys(ds)->ds_num_children > 1) {
		boolean_t usenext = B_FALSE;
		if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
			uint64_t count;
			/*
			 * A bug in a previous version of the code could
			 * cause upgrade_clones_cb() to not set
			 * ds_next_snap_obj when it should, leading to a
			 * missing entry.  Therefore we can only use the
			 * next_clones_obj when its count is correct.
			 */
			int err = zap_count(dp->dp_meta_objset,
			    dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
			if (err == 0 &&
			    count == dsl_dataset_phys(ds)->ds_num_children - 1)
				usenext = B_TRUE;
		}

		if (usenext) {
			zap_cursor_t zc;
			zap_attribute_t za;
			for (zap_cursor_init(&zc, dp->dp_meta_objset,
			    dsl_dataset_phys(ds)->ds_next_clones_obj);
			    zap_cursor_retrieve(&zc, &za) == 0;
			    (void) zap_cursor_advance(&zc)) {
				scan_ds_queue_insert(scn,
				    zfs_strtonum(za.za_name, NULL),
				    dsl_dataset_phys(ds)->ds_creation_txg);
			}
			zap_cursor_fini(&zc);
		} else {
			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
			    enqueue_clones_cb, &ds->ds_object,
			    DS_FIND_CHILDREN));
		}
	}

out:
	dsl_dataset_rele(ds, FTAG);
}

/* ARGSUSED */
static int
enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
{
	dsl_dataset_t *ds;
	int err;
	dsl_scan_t *scn = dp->dp_scan;

	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
	if (err)
		return (err);

	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
		dsl_dataset_t *prev;
		err = dsl_dataset_hold_obj(dp,
		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
		if (err) {
			dsl_dataset_rele(ds, FTAG);
			return (err);
		}

		/*
		 * If this is a clone, we don't need to worry about it for now.
		 */
		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
			dsl_dataset_rele(ds, FTAG);
			dsl_dataset_rele(prev, FTAG);
			return (0);
		}
		dsl_dataset_rele(ds, FTAG);
		ds = prev;
	}

	scan_ds_queue_insert(scn, ds->ds_object,
	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
	dsl_dataset_rele(ds, FTAG);
	return (0);
}

/* ARGSUSED */
void
dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
    ddt_entry_t *dde, dmu_tx_t *tx)
{
	const ddt_key_t *ddk = &dde->dde_key;
	ddt_phys_t *ddp = dde->dde_phys;
	blkptr_t bp;
	zbookmark_phys_t zb = { 0 };
	int p;

	if (!dsl_scan_is_running(scn))
		return;

	/*
	 * This function is special because it is the only thing
	 * that can add scan_io_t's to the vdev scan queues from
	 * outside dsl_scan_sync(). For the most part this is ok
	 * as long as it is called from within syncing context.
	 * However, dsl_scan_sync() expects that no new sio's will
	 * be added between when all the work for a scan is done
	 * and the next txg when the scan is actually marked as
	 * completed. This check ensures we do not issue new sio's
	 * during this period.
	 */
	if (scn->scn_done_txg != 0)
		return;

	for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
		if (ddp->ddp_phys_birth == 0 ||
		    ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
			continue;
		ddt_bp_create(checksum, ddk, ddp, &bp);

		scn->scn_visited_this_txg++;
		scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
	}
}

/*
 * Scrub/dedup interaction.
 *
 * If there are N references to a deduped block, we don't want to scrub it
 * N times -- ideally, we should scrub it exactly once.
 *
 * We leverage the fact that the dde's replication class (enum ddt_class)
 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
 *
 * To prevent excess scrubbing, the scrub begins by walking the DDT
 * to find all blocks with refcnt > 1, and scrubs each of these once.
 * Since there are two replication classes which contain blocks with
 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
 *
 * There would be nothing more to say if a block's refcnt couldn't change
 * during a scrub, but of course it can so we must account for changes
 * in a block's replication class.
 *
 * Here's an example of what can occur:
 *
 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
 * when visited during the top-down scrub phase, it will be scrubbed twice.
 * This negates our scrub optimization, but is otherwise harmless.
 *
 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
 * on each visit during the top-down scrub phase, it will never be scrubbed.
 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
 * while a scrub is in progress, it scrubs the block right then.
 */
static void
dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
{
	ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
	ddt_entry_t dde;
	int error;
	uint64_t n = 0;

	bzero(&dde, sizeof (ddt_entry_t));

	while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
		ddt_t *ddt;

		if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
			break;
		dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
		    (longlong_t)ddb->ddb_class,
		    (longlong_t)ddb->ddb_type,
		    (longlong_t)ddb->ddb_checksum,
		    (longlong_t)ddb->ddb_cursor);

		/* There should be no pending changes to the dedup table */
		ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
		ASSERT(avl_first(&ddt->ddt_tree) == NULL);

		dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
		n++;

		if (dsl_scan_check_suspend(scn, NULL))
			break;
	}

	zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; "
	    "suspending=%u", (longlong_t)n,
	    (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);

	ASSERT(error == 0 || error == ENOENT);
	ASSERT(error != ENOENT ||
	    ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
}

static uint64_t
dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
{
	uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
	if (ds->ds_is_snapshot)
		return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
	return (smt);
}

static void
dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
{
	scan_ds_t *sds;
	dsl_pool_t *dp = scn->scn_dp;

	if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
	    scn->scn_phys.scn_ddt_class_max) {
		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
		dsl_scan_ddt(scn, tx);
		if (scn->scn_suspending)
			return;
	}

	if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
		/* First do the MOS & ORIGIN */

		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
		dsl_scan_visit_rootbp(scn, NULL,
		    &dp->dp_meta_rootbp, tx);
		spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
		if (scn->scn_suspending)
			return;

		if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
			    enqueue_cb, NULL, DS_FIND_CHILDREN));
		} else {
			dsl_scan_visitds(scn,
			    dp->dp_origin_snap->ds_object, tx);
		}
		ASSERT(!scn->scn_suspending);
	} else if (scn->scn_phys.scn_bookmark.zb_objset !=
	    ZB_DESTROYED_OBJSET) {
		uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
		/*
		 * If we were suspended, continue from here. Note if the
		 * ds we were suspended on was deleted, the zb_objset may
		 * be -1, so we will skip this and find a new objset
		 * below.
		 */
		dsl_scan_visitds(scn, dsobj, tx);
		if (scn->scn_suspending)
			return;
	}

	/*
	 * In case we suspended right at the end of the ds, zero the
	 * bookmark so we don't think that we're still trying to resume.
	 */
	bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t));

	/*
	 * Keep pulling things out of the dataset avl queue. Updates to the
	 * persistent zap-object-as-queue happen only at checkpoints.
	 */
	while ((sds = avl_first(&scn->scn_queue)) != NULL) {
		dsl_dataset_t *ds;
		uint64_t dsobj = sds->sds_dsobj;
		uint64_t txg = sds->sds_txg;

		/* dequeue and free the ds from the queue */
		scan_ds_queue_remove(scn, dsobj);
		sds = NULL;

		/* set up min / max txg */
		VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
		if (txg != 0) {
			scn->scn_phys.scn_cur_min_txg =
			    MAX(scn->scn_phys.scn_min_txg, txg);
		} else {
			scn->scn_phys.scn_cur_min_txg =
			    MAX(scn->scn_phys.scn_min_txg,
			    dsl_dataset_phys(ds)->ds_prev_snap_txg);
		}
		scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
		dsl_dataset_rele(ds, FTAG);

		dsl_scan_visitds(scn, dsobj, tx);
		if (scn->scn_suspending)
			return;
	}

	/* No more objsets to fetch, we're done */
	scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
	ASSERT0(scn->scn_suspending);
}

static uint64_t
dsl_scan_count_leaves(vdev_t *vd)
{
	uint64_t i, leaves = 0;

	/* we only count leaves that belong to the main pool and are readable */
	if (vd->vdev_islog || vd->vdev_isspare ||
	    vd->vdev_isl2cache || !vdev_readable(vd))
		return (0);

	if (vd->vdev_ops->vdev_op_leaf)
		return (1);

	for (i = 0; i < vd->vdev_children; i++) {
		leaves += dsl_scan_count_leaves(vd->vdev_child[i]);
	}

	return (leaves);
}

static void
scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
{
	int i;
	uint64_t cur_size = 0;

	for (i = 0; i < BP_GET_NDVAS(bp); i++) {
		cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
	}

	q->q_total_zio_size_this_txg += cur_size;
	q->q_zios_this_txg++;
}

static void
scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
    uint64_t end)
{
	q->q_total_seg_size_this_txg += end - start;
	q->q_segs_this_txg++;
}

static boolean_t
scan_io_queue_check_suspend(dsl_scan_t *scn)
{
	/* See comment in dsl_scan_check_suspend() */
	uint64_t curr_time_ns = gethrtime();
	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
	uint64_t sync_time_ns = curr_time_ns -
	    scn->scn_dp->dp_spa->spa_sync_starttime;
	int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
	int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;

	return ((NSEC2MSEC(scan_time_ns) > mintime &&
	    (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
	    txg_sync_waiting(scn->scn_dp) ||
	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
	    spa_shutting_down(scn->scn_dp->dp_spa));
}

/*
 * Given a list of scan_io_t's in io_list, this issues the I/Os out to
 * disk. This consumes the io_list and frees the scan_io_t's. This is
 * called when emptying queues, either when we're up against the memory
 * limit or when we have finished scanning. Returns B_TRUE if we stopped
 * processing the list before we finished. Any sios that were not issued
 * will remain in the io_list.
 */
static boolean_t
scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
{
	dsl_scan_t *scn = queue->q_scn;
	scan_io_t *sio;
	int64_t bytes_issued = 0;
	boolean_t suspended = B_FALSE;

	while ((sio = list_head(io_list)) != NULL) {
		blkptr_t bp;

		if (scan_io_queue_check_suspend(scn)) {
			suspended = B_TRUE;
			break;
		}

		sio2bp(sio, &bp);
		bytes_issued += SIO_GET_ASIZE(sio);
		scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
		    &sio->sio_zb, queue);
		(void) list_remove_head(io_list);
		scan_io_queues_update_zio_stats(queue, &bp);
		sio_free(sio);
	}

	atomic_add_64(&scn->scn_bytes_pending, -bytes_issued);

	return (suspended);
}

/*
 * This function removes sios from an IO queue which reside within a given
 * range_seg_t and inserts them (in offset order) into a list. Note that
 * we only ever return a maximum of 32 sios at once. If there are more sios
 * to process within this segment that did not make it onto the list we
 * return B_TRUE and otherwise B_FALSE.
 */
static boolean_t
scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
{
	scan_io_t *srch_sio, *sio, *next_sio;
	avl_index_t idx;
	uint_t num_sios = 0;
	int64_t bytes_issued = 0;

	ASSERT(rs != NULL);
	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));

	srch_sio = sio_alloc(1);
	srch_sio->sio_nr_dvas = 1;
	SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr));

	/*
	 * The exact start of the extent might not contain any matching zios,
	 * so if that's the case, examine the next one in the tree.
	 */
	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
	sio_free(srch_sio);

	if (sio == NULL)
		sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);

	while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
	    queue->q_exts_by_addr) && num_sios <= 32) {
		ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs,
		    queue->q_exts_by_addr));
		ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs,
		    queue->q_exts_by_addr));

		next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
		avl_remove(&queue->q_sios_by_addr, sio);
		queue->q_sio_memused -= SIO_GET_MUSED(sio);

		bytes_issued += SIO_GET_ASIZE(sio);
		num_sios++;
		list_insert_tail(list, sio);
		sio = next_sio;
	}

	/*
	 * We limit the number of sios we process at once to 32 to avoid
	 * biting off more than we can chew. If we didn't take everything
	 * in the segment we update it to reflect the work we were able to
	 * complete. Otherwise, we remove it from the range tree entirely.
	 */
	if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
	    queue->q_exts_by_addr)) {
		range_tree_adjust_fill(queue->q_exts_by_addr, rs,
		    -bytes_issued);
		range_tree_resize_segment(queue->q_exts_by_addr, rs,
		    SIO_GET_OFFSET(sio), rs_get_end(rs,
		    queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));

		return (B_TRUE);
	} else {
		uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr);
		uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr);
		range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart);
		return (B_FALSE);
	}
}

/*
 * This is called from the queue emptying thread and selects the next
 * extent from which we are to issue I/Os. The behavior of this function
 * depends on the state of the scan, the current memory consumption and
 * whether or not we are performing a scan shutdown.
 * 1) We select extents in an elevator algorithm (LBA-order) if the scan
 * 	needs to perform a checkpoint
 * 2) We select the largest available extent if we are up against the
 * 	memory limit.
 * 3) Otherwise we don't select any extents.
 */
static range_seg_t *
scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
{
	dsl_scan_t *scn = queue->q_scn;
	range_tree_t *rt = queue->q_exts_by_addr;

	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
	ASSERT(scn->scn_is_sorted);

	/* handle tunable overrides */
	if (scn->scn_checkpointing || scn->scn_clearing) {
		if (zfs_scan_issue_strategy == 1) {
			return (range_tree_first(rt));
		} else if (zfs_scan_issue_strategy == 2) {
			/*
			 * We need to get the original entry in the by_addr
			 * tree so we can modify it.
			 */
			range_seg_t *size_rs =
			    zfs_btree_first(&queue->q_exts_by_size, NULL);
			if (size_rs == NULL)
				return (NULL);
			uint64_t start = rs_get_start(size_rs, rt);
			uint64_t size = rs_get_end(size_rs, rt) - start;
			range_seg_t *addr_rs = range_tree_find(rt, start,
			    size);
			ASSERT3P(addr_rs, !=, NULL);
			ASSERT3U(rs_get_start(size_rs, rt), ==,
			    rs_get_start(addr_rs, rt));
			ASSERT3U(rs_get_end(size_rs, rt), ==,
			    rs_get_end(addr_rs, rt));
			return (addr_rs);
		}
	}

	/*
	 * During normal clearing, we want to issue our largest segments
	 * first, keeping IO as sequential as possible, and leaving the
	 * smaller extents for later with the hope that they might eventually
	 * grow to larger sequential segments. However, when the scan is
	 * checkpointing, no new extents will be added to the sorting queue,
	 * so the way we are sorted now is as good as it will ever get.
	 * In this case, we instead switch to issuing extents in LBA order.
	 */
	if (scn->scn_checkpointing) {
		return (range_tree_first(rt));
	} else if (scn->scn_clearing) {
		/*
		 * We need to get the original entry in the by_addr
		 * tree so we can modify it.
		 */
		range_seg_t *size_rs = zfs_btree_first(&queue->q_exts_by_size,
		    NULL);
		if (size_rs == NULL)
			return (NULL);
		uint64_t start = rs_get_start(size_rs, rt);
		uint64_t size = rs_get_end(size_rs, rt) - start;
		range_seg_t *addr_rs = range_tree_find(rt, start, size);
		ASSERT3P(addr_rs, !=, NULL);
		ASSERT3U(rs_get_start(size_rs, rt), ==, rs_get_start(addr_rs,
		    rt));
		ASSERT3U(rs_get_end(size_rs, rt), ==, rs_get_end(addr_rs, rt));
		return (addr_rs);
	} else {
		return (NULL);
	}
}

static void
scan_io_queues_run_one(void *arg)
{
	dsl_scan_io_queue_t *queue = arg;
	kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
	boolean_t suspended = B_FALSE;
	range_seg_t *rs = NULL;
	scan_io_t *sio = NULL;
	list_t sio_list;
	uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
	uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd);

	ASSERT(queue->q_scn->scn_is_sorted);

	list_create(&sio_list, sizeof (scan_io_t),
	    offsetof(scan_io_t, sio_nodes.sio_list_node));
	mutex_enter(q_lock);

	/* calculate maximum in-flight bytes for this txg (min 1MB) */
	queue->q_maxinflight_bytes =
	    MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);

	/* reset per-queue scan statistics for this txg */
	queue->q_total_seg_size_this_txg = 0;
	queue->q_segs_this_txg = 0;
	queue->q_total_zio_size_this_txg = 0;
	queue->q_zios_this_txg = 0;

	/* loop until we run out of time or sios */
	while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
		uint64_t seg_start = 0, seg_end = 0;
		boolean_t more_left = B_TRUE;

		ASSERT(list_is_empty(&sio_list));

		/* loop while we still have sios left to process in this rs */
		while (more_left) {
			scan_io_t *first_sio, *last_sio;

			/*
			 * We have selected which extent needs to be
			 * processed next. Gather up the corresponding sios.
			 */
			more_left = scan_io_queue_gather(queue, rs, &sio_list);
			ASSERT(!list_is_empty(&sio_list));
			first_sio = list_head(&sio_list);
			last_sio = list_tail(&sio_list);

			seg_end = SIO_GET_END_OFFSET(last_sio);
			if (seg_start == 0)
				seg_start = SIO_GET_OFFSET(first_sio);

			/*
			 * Issuing sios can take a long time so drop the
			 * queue lock. The sio queue won't be updated by
			 * other threads since we're in syncing context so
			 * we can be sure that our trees will remain exactly
			 * as we left them.
			 */
			mutex_exit(q_lock);
			suspended = scan_io_queue_issue(queue, &sio_list);
			mutex_enter(q_lock);

			if (suspended)
				break;
		}

		/* update statistics for debugging purposes */
		scan_io_queues_update_seg_stats(queue, seg_start, seg_end);

		if (suspended)
			break;
	}

	/*
	 * If we were suspended in the middle of processing,
	 * requeue any unfinished sios and exit.
	 */
	while ((sio = list_head(&sio_list)) != NULL) {
		list_remove(&sio_list, sio);
		scan_io_queue_insert_impl(queue, sio);
	}

	mutex_exit(q_lock);
	list_destroy(&sio_list);
}

/*
 * Performs an emptying run on all scan queues in the pool. This just
 * punches out one thread per top-level vdev, each of which processes
 * only that vdev's scan queue. We can parallelize the I/O here because
 * we know that each queue's I/Os only affect its own top-level vdev.
 *
 * This function waits for the queue runs to complete, and must be
 * called from dsl_scan_sync (or in general, syncing context).
 */
static void
scan_io_queues_run(dsl_scan_t *scn)
{
	spa_t *spa = scn->scn_dp->dp_spa;

	ASSERT(scn->scn_is_sorted);
	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));

	if (scn->scn_bytes_pending == 0)
		return;

	if (scn->scn_taskq == NULL) {
		int nthreads = spa->spa_root_vdev->vdev_children;

		/*
		 * We need to make this taskq *always* execute as many
		 * threads in parallel as we have top-level vdevs and no
		 * less, otherwise strange serialization of the calls to
		 * scan_io_queues_run_one can occur during spa_sync runs
		 * and that significantly impacts performance.
		 */
		scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
		    minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
	}

	for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];

		mutex_enter(&vd->vdev_scan_io_queue_lock);
		if (vd->vdev_scan_io_queue != NULL) {
			VERIFY(taskq_dispatch(scn->scn_taskq,
			    scan_io_queues_run_one, vd->vdev_scan_io_queue,
			    TQ_SLEEP) != TASKQID_INVALID);
		}
		mutex_exit(&vd->vdev_scan_io_queue_lock);
	}

	/*
	 * Wait for the queues to finish issuing their IOs for this run
	 * before we return. There may still be IOs in flight at this
	 * point.
	 */
	taskq_wait(scn->scn_taskq);
}

static boolean_t
dsl_scan_async_block_should_pause(dsl_scan_t *scn)
{
	uint64_t elapsed_nanosecs;

	if (zfs_recover)
		return (B_FALSE);

	if (zfs_async_block_max_blocks != 0 &&
	    scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
		return (B_TRUE);
	}

	if (zfs_max_async_dedup_frees != 0 &&
	    scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
		return (B_TRUE);
	}

	elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
	return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
	    (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
	    txg_sync_waiting(scn->scn_dp)) ||
	    spa_shutting_down(scn->scn_dp->dp_spa));
}

static int
dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
{
	dsl_scan_t *scn = arg;

	if (!scn->scn_is_bptree ||
	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
		if (dsl_scan_async_block_should_pause(scn))
			return (SET_ERROR(ERESTART));
	}

	zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
	    dmu_tx_get_txg(tx), bp, 0));
	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
	    -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
	scn->scn_visited_this_txg++;
	if (BP_GET_DEDUP(bp))
		scn->scn_dedup_frees_this_txg++;
	return (0);
}

static void
dsl_scan_update_stats(dsl_scan_t *scn)
{
	spa_t *spa = scn->scn_dp->dp_spa;
	uint64_t i;
	uint64_t seg_size_total = 0, zio_size_total = 0;
	uint64_t seg_count_total = 0, zio_count_total = 0;

	for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
		dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;

		if (queue == NULL)
			continue;

		seg_size_total += queue->q_total_seg_size_this_txg;
		zio_size_total += queue->q_total_zio_size_this_txg;
		seg_count_total += queue->q_segs_this_txg;
		zio_count_total += queue->q_zios_this_txg;
	}

	if (seg_count_total == 0 || zio_count_total == 0) {
		scn->scn_avg_seg_size_this_txg = 0;
		scn->scn_avg_zio_size_this_txg = 0;
		scn->scn_segs_this_txg = 0;
		scn->scn_zios_this_txg = 0;
		return;
	}

	scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
	scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
	scn->scn_segs_this_txg = seg_count_total;
	scn->scn_zios_this_txg = zio_count_total;
}

static int
bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
    dmu_tx_t *tx)
{
	ASSERT(!bp_freed);
	return (dsl_scan_free_block_cb(arg, bp, tx));
}

static int
dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
    dmu_tx_t *tx)
{
	ASSERT(!bp_freed);
	dsl_scan_t *scn = arg;
	const dva_t *dva = &bp->blk_dva[0];

	if (dsl_scan_async_block_should_pause(scn))
		return (SET_ERROR(ERESTART));

	spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
	    DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
	    DVA_GET_ASIZE(dva), tx);
	scn->scn_visited_this_txg++;
	return (0);
}

boolean_t
dsl_scan_active(dsl_scan_t *scn)
{
	spa_t *spa = scn->scn_dp->dp_spa;
	uint64_t used = 0, comp, uncomp;
	boolean_t clones_left;

	if (spa->spa_load_state != SPA_LOAD_NONE)
		return (B_FALSE);
	if (spa_shutting_down(spa))
		return (B_FALSE);
	if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
	    (scn->scn_async_destroying && !scn->scn_async_stalled))
		return (B_TRUE);

	if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
		(void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
		    &used, &comp, &uncomp);
	}
	clones_left = spa_livelist_delete_check(spa);
	return ((used != 0) || (clones_left));
}

static boolean_t
dsl_scan_check_deferred(vdev_t *vd)
{
	boolean_t need_resilver = B_FALSE;

	for (int c = 0; c < vd->vdev_children; c++) {
		need_resilver |=
		    dsl_scan_check_deferred(vd->vdev_child[c]);
	}

	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
	    !vd->vdev_ops->vdev_op_leaf)
		return (need_resilver);

	if (!vd->vdev_resilver_deferred)
		need_resilver = B_TRUE;

	return (need_resilver);
}

static boolean_t
dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
    uint64_t phys_birth)
{
	vdev_t *vd;

	vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));

	if (vd->vdev_ops == &vdev_indirect_ops) {
		/*
		 * The indirect vdev can point to multiple
		 * vdevs.  For simplicity, always create
		 * the resilver zio_t. zio_vdev_io_start()
		 * will bypass the child resilver i/o's if
		 * they are on vdevs that don't have DTL's.
		 */
		return (B_TRUE);
	}

	if (DVA_GET_GANG(dva)) {
		/*
		 * Gang members may be spread across multiple
		 * vdevs, so the best estimate we have is the
		 * scrub range, which has already been checked.
		 * XXX -- it would be better to change our
		 * allocation policy to ensure that all
		 * gang members reside on the same vdev.
		 */
		return (B_TRUE);
	}

	/*
	 * Check if the txg falls within the range which must be
	 * resilvered.  DVAs outside this range can always be skipped.
	 */
	if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
		return (B_FALSE);

	/*
	 * Check if the top-level vdev must resilver this offset.
	 * When the offset does not intersect with a dirty leaf DTL
	 * then it may be possible to skip the resilver IO.  The psize
	 * is provided instead of asize to simplify the check for RAIDZ.
	 */
	if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize))
		return (B_FALSE);

	/*
	 * Check that this top-level vdev has a device under it which
	 * is resilvering and is not deferred.
	 */
	if (!dsl_scan_check_deferred(vd))
		return (B_FALSE);

	return (B_TRUE);
}

static int
dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
{
	dsl_scan_t *scn = dp->dp_scan;
	spa_t *spa = dp->dp_spa;
	int err = 0;

	if (spa_suspend_async_destroy(spa))
		return (0);

	if (zfs_free_bpobj_enabled &&
	    spa_version(spa) >= SPA_VERSION_DEADLISTS) {
		scn->scn_is_bptree = B_FALSE;
		scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
		scn->scn_zio_root = zio_root(spa, NULL,
		    NULL, ZIO_FLAG_MUSTSUCCEED);
		err = bpobj_iterate(&dp->dp_free_bpobj,
		    bpobj_dsl_scan_free_block_cb, scn, tx);
		VERIFY0(zio_wait(scn->scn_zio_root));
		scn->scn_zio_root = NULL;

		if (err != 0 && err != ERESTART)
			zfs_panic_recover("error %u from bpobj_iterate()", err);
	}

	if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
		ASSERT(scn->scn_async_destroying);
		scn->scn_is_bptree = B_TRUE;
		scn->scn_zio_root = zio_root(spa, NULL,
		    NULL, ZIO_FLAG_MUSTSUCCEED);
		err = bptree_iterate(dp->dp_meta_objset,
		    dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
		VERIFY0(zio_wait(scn->scn_zio_root));
		scn->scn_zio_root = NULL;

		if (err == EIO || err == ECKSUM) {
			err = 0;
		} else if (err != 0 && err != ERESTART) {
			zfs_panic_recover("error %u from "
			    "traverse_dataset_destroyed()", err);
		}

		if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
			/* finished; deactivate async destroy feature */
			spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
			ASSERT(!spa_feature_is_active(spa,
			    SPA_FEATURE_ASYNC_DESTROY));
			VERIFY0(zap_remove(dp->dp_meta_objset,
			    DMU_POOL_DIRECTORY_OBJECT,
			    DMU_POOL_BPTREE_OBJ, tx));
			VERIFY0(bptree_free(dp->dp_meta_objset,
			    dp->dp_bptree_obj, tx));
			dp->dp_bptree_obj = 0;
			scn->scn_async_destroying = B_FALSE;
			scn->scn_async_stalled = B_FALSE;
		} else {
			/*
			 * If we didn't make progress, mark the async
			 * destroy as stalled, so that we will not initiate
			 * a spa_sync() on its behalf.  Note that we only
			 * check this if we are not finished, because if the
			 * bptree had no blocks for us to visit, we can
			 * finish without "making progress".
			 */
			scn->scn_async_stalled =
			    (scn->scn_visited_this_txg == 0);
		}
	}
	if (scn->scn_visited_this_txg) {
		zfs_dbgmsg("freed %llu blocks in %llums from "
		    "free_bpobj/bptree txg %llu; err=%u",
		    (longlong_t)scn->scn_visited_this_txg,
		    (longlong_t)
		    NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
		    (longlong_t)tx->tx_txg, err);
		scn->scn_visited_this_txg = 0;
		scn->scn_dedup_frees_this_txg = 0;

		/*
		 * Write out changes to the DDT that may be required as a
		 * result of the blocks freed.  This ensures that the DDT
		 * is clean when a scrub/resilver runs.
		 */
		ddt_sync(spa, tx->tx_txg);
	}
	if (err != 0)
		return (err);
	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
	    zfs_free_leak_on_eio &&
	    (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
	    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
	    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
		/*
		 * We have finished background destroying, but there is still
		 * some space left in the dp_free_dir. Transfer this leaked
		 * space to the dp_leak_dir.
		 */
		if (dp->dp_leak_dir == NULL) {
			rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
			(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
			    LEAK_DIR_NAME, tx);
			VERIFY0(dsl_pool_open_special_dir(dp,
			    LEAK_DIR_NAME, &dp->dp_leak_dir));
			rrw_exit(&dp->dp_config_rwlock, FTAG);
		}
		dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
		    dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
		    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
		    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
		dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
		    -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
		    -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
		    -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
	}

	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
	    !spa_livelist_delete_check(spa)) {
		/* finished; verify that space accounting went to zero */
		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
	}

	spa_notify_waiters(spa);

	EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
	    0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
	    DMU_POOL_OBSOLETE_BPOBJ));
	if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
		ASSERT(spa_feature_is_active(dp->dp_spa,
		    SPA_FEATURE_OBSOLETE_COUNTS));

		scn->scn_is_bptree = B_FALSE;
		scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
		err = bpobj_iterate(&dp->dp_obsolete_bpobj,
		    dsl_scan_obsolete_block_cb, scn, tx);
		if (err != 0 && err != ERESTART)
			zfs_panic_recover("error %u from bpobj_iterate()", err);

		if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
			dsl_pool_destroy_obsolete_bpobj(dp, tx);
	}
	return (0);
}

/*
 * This is the primary entry point for scans that is called from syncing
 * context. Scans must happen entirely during syncing context so that we
 * can guarantee that blocks we are currently scanning will not change out
 * from under us. While a scan is active, this function controls how quickly
 * transaction groups proceed, instead of the normal handling provided by
 * txg_sync_thread().
 */
void
dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
{
	int err = 0;
	dsl_scan_t *scn = dp->dp_scan;
	spa_t *spa = dp->dp_spa;
	state_sync_type_t sync_type = SYNC_OPTIONAL;

	if (spa->spa_resilver_deferred &&
	    !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
		spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);

	/*
	 * Check for scn_restart_txg before checking spa_load_state, so
	 * that we can restart an old-style scan while the pool is being
	 * imported (see dsl_scan_init). We also restart scans if there
	 * is a deferred resilver and the user has manually disabled
	 * deferred resilvers via the tunable.
	 */
	if (dsl_scan_restarting(scn, tx) ||
	    (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) {
		pool_scan_func_t func = POOL_SCAN_SCRUB;
		dsl_scan_done(scn, B_FALSE, tx);
		if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
			func = POOL_SCAN_RESILVER;
		zfs_dbgmsg("restarting scan func=%u txg=%llu",
		    func, (longlong_t)tx->tx_txg);
		dsl_scan_setup_sync(&func, tx);
	}

	/*
	 * Only process scans in sync pass 1.
	 */
	if (spa_sync_pass(spa) > 1)
		return;

	/*
	 * If the spa is shutting down, then stop scanning. This will
	 * ensure that the scan does not dirty any new data during the
	 * shutdown phase.
	 */
	if (spa_shutting_down(spa))
		return;

	/*
	 * If the scan is inactive due to a stalled async destroy, try again.
	 */
	if (!scn->scn_async_stalled && !dsl_scan_active(scn))
		return;

	/* reset scan statistics */
	scn->scn_visited_this_txg = 0;
	scn->scn_dedup_frees_this_txg = 0;
	scn->scn_holes_this_txg = 0;
	scn->scn_lt_min_this_txg = 0;
	scn->scn_gt_max_this_txg = 0;
	scn->scn_ddt_contained_this_txg = 0;
	scn->scn_objsets_visited_this_txg = 0;
	scn->scn_avg_seg_size_this_txg = 0;
	scn->scn_segs_this_txg = 0;
	scn->scn_avg_zio_size_this_txg = 0;
	scn->scn_zios_this_txg = 0;
	scn->scn_suspending = B_FALSE;
	scn->scn_sync_start_time = gethrtime();
	spa->spa_scrub_active = B_TRUE;

	/*
	 * First process the async destroys.  If we suspend, don't do
	 * any scrubbing or resilvering.  This ensures that there are no
	 * async destroys while we are scanning, so the scan code doesn't
	 * have to worry about traversing it.  It is also faster to free the
	 * blocks than to scrub them.
	 */
	err = dsl_process_async_destroys(dp, tx);
	if (err != 0)
		return;

	if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
		return;

	/*
	 * Wait a few txgs after importing to begin scanning so that
	 * we can get the pool imported quickly.
	 */
	if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
		return;

	/*
	 * zfs_scan_suspend_progress can be set to disable scan progress.
	 * We don't want to spin the txg_sync thread, so we add a delay
	 * here to simulate the time spent doing a scan. This is mostly
	 * useful for testing and debugging.
	 */
	if (zfs_scan_suspend_progress) {
		uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
		int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
		    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;

		while (zfs_scan_suspend_progress &&
		    !txg_sync_waiting(scn->scn_dp) &&
		    !spa_shutting_down(scn->scn_dp->dp_spa) &&
		    NSEC2MSEC(scan_time_ns) < mintime) {
			delay(hz);
			scan_time_ns = gethrtime() - scn->scn_sync_start_time;
		}
		return;
	}

	/*
	 * It is possible to switch from unsorted to sorted at any time,
	 * but afterwards the scan will remain sorted unless reloaded from
	 * a checkpoint after a reboot.
	 */
	if (!zfs_scan_legacy) {
		scn->scn_is_sorted = B_TRUE;
		if (scn->scn_last_checkpoint == 0)
			scn->scn_last_checkpoint = ddi_get_lbolt();
	}

	/*
	 * For sorted scans, determine what kind of work we will be doing
	 * this txg based on our memory limitations and whether or not we
	 * need to perform a checkpoint.
	 */
	if (scn->scn_is_sorted) {
		/*
		 * If we are over our checkpoint interval, set scn_clearing
		 * so that we can begin checkpointing immediately. The
		 * checkpoint allows us to save a consistent bookmark
		 * representing how much data we have scrubbed so far.
		 * Otherwise, use the memory limit to determine if we should
		 * scan for metadata or start issue scrub IOs. We accumulate
		 * metadata until we hit our hard memory limit at which point
		 * we issue scrub IOs until we are at our soft memory limit.
		 */
		if (scn->scn_checkpointing ||
		    ddi_get_lbolt() - scn->scn_last_checkpoint >
		    SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
			if (!scn->scn_checkpointing)
				zfs_dbgmsg("begin scan checkpoint");

			scn->scn_checkpointing = B_TRUE;
			scn->scn_clearing = B_TRUE;
		} else {
			boolean_t should_clear = dsl_scan_should_clear(scn);
			if (should_clear && !scn->scn_clearing) {
				zfs_dbgmsg("begin scan clearing");
				scn->scn_clearing = B_TRUE;
			} else if (!should_clear && scn->scn_clearing) {
				zfs_dbgmsg("finish scan clearing");
				scn->scn_clearing = B_FALSE;
			}
		}
	} else {
		ASSERT0(scn->scn_checkpointing);
		ASSERT0(scn->scn_clearing);
	}

	if (!scn->scn_clearing && scn->scn_done_txg == 0) {
		/* Need to scan metadata for more blocks to scrub */
		dsl_scan_phys_t *scnp = &scn->scn_phys;
		taskqid_t prefetch_tqid;
		uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
		uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev);

		/*
		 * Recalculate the max number of in-flight bytes for pool-wide
		 * scanning operations (minimum 1MB). Limits for the issuing
		 * phase are done per top-level vdev and are handled separately.
		 */
		scn->scn_maxinflight_bytes =
		    MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);

		if (scnp->scn_ddt_bookmark.ddb_class <=
		    scnp->scn_ddt_class_max) {
			ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
			zfs_dbgmsg("doing scan sync txg %llu; "
			    "ddt bm=%llu/%llu/%llu/%llx",
			    (longlong_t)tx->tx_txg,
			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
		} else {
			zfs_dbgmsg("doing scan sync txg %llu; "
			    "bm=%llu/%llu/%llu/%llu",
			    (longlong_t)tx->tx_txg,
			    (longlong_t)scnp->scn_bookmark.zb_objset,
			    (longlong_t)scnp->scn_bookmark.zb_object,
			    (longlong_t)scnp->scn_bookmark.zb_level,
			    (longlong_t)scnp->scn_bookmark.zb_blkid);
		}

		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
		    NULL, ZIO_FLAG_CANFAIL);

		scn->scn_prefetch_stop = B_FALSE;
		prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
		    dsl_scan_prefetch_thread, scn, TQ_SLEEP);
		ASSERT(prefetch_tqid != TASKQID_INVALID);

		dsl_pool_config_enter(dp, FTAG);
		dsl_scan_visit(scn, tx);
		dsl_pool_config_exit(dp, FTAG);

		mutex_enter(&dp->dp_spa->spa_scrub_lock);
		scn->scn_prefetch_stop = B_TRUE;
		cv_broadcast(&spa->spa_scrub_io_cv);
		mutex_exit(&dp->dp_spa->spa_scrub_lock);

		taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
		(void) zio_wait(scn->scn_zio_root);
		scn->scn_zio_root = NULL;

		zfs_dbgmsg("scan visited %llu blocks in %llums "
		    "(%llu os's, %llu holes, %llu < mintxg, "
		    "%llu in ddt, %llu > maxtxg)",
		    (longlong_t)scn->scn_visited_this_txg,
		    (longlong_t)NSEC2MSEC(gethrtime() -
		    scn->scn_sync_start_time),
		    (longlong_t)scn->scn_objsets_visited_this_txg,
		    (longlong_t)scn->scn_holes_this_txg,
		    (longlong_t)scn->scn_lt_min_this_txg,
		    (longlong_t)scn->scn_ddt_contained_this_txg,
		    (longlong_t)scn->scn_gt_max_this_txg);

		if (!scn->scn_suspending) {
			ASSERT0(avl_numnodes(&scn->scn_queue));
			scn->scn_done_txg = tx->tx_txg + 1;
			if (scn->scn_is_sorted) {
				scn->scn_checkpointing = B_TRUE;
				scn->scn_clearing = B_TRUE;
			}
			zfs_dbgmsg("scan complete txg %llu",
			    (longlong_t)tx->tx_txg);
		}
	} else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) {
		ASSERT(scn->scn_clearing);

		/* need to issue scrubbing IOs from per-vdev queues */
		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
		    NULL, ZIO_FLAG_CANFAIL);
		scan_io_queues_run(scn);
		(void) zio_wait(scn->scn_zio_root);
		scn->scn_zio_root = NULL;

		/* calculate and dprintf the current memory usage */
		(void) dsl_scan_should_clear(scn);
		dsl_scan_update_stats(scn);

		zfs_dbgmsg("scan issued %llu blocks (%llu segs) in %llums "
		    "(avg_block_size = %llu, avg_seg_size = %llu)",
		    (longlong_t)scn->scn_zios_this_txg,
		    (longlong_t)scn->scn_segs_this_txg,
		    (longlong_t)NSEC2MSEC(gethrtime() -
		    scn->scn_sync_start_time),
		    (longlong_t)scn->scn_avg_zio_size_this_txg,
		    (longlong_t)scn->scn_avg_seg_size_this_txg);
	} else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
		/* Finished with everything. Mark the scrub as complete */
		zfs_dbgmsg("scan issuing complete txg %llu",
		    (longlong_t)tx->tx_txg);
		ASSERT3U(scn->scn_done_txg, !=, 0);
		ASSERT0(spa->spa_scrub_inflight);
		ASSERT0(scn->scn_bytes_pending);
		dsl_scan_done(scn, B_TRUE, tx);
		sync_type = SYNC_MANDATORY;
	}

	dsl_scan_sync_state(scn, tx, sync_type);
}

static void
count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp)
{
	int i;

	/*
	 * Don't count embedded bp's, since we already did the work of
	 * scanning these when we scanned the containing block.
	 */
	if (BP_IS_EMBEDDED(bp))
		return;

	/*
	 * Update the spa's stats on how many bytes we have issued.
	 * Sequential scrubs create a zio for each DVA of the bp. Each
	 * of these will include all DVAs for repair purposes, but the
	 * zio code will only try the first one unless there is an issue.
	 * Therefore, we should only count the first DVA for these IOs.
	 */
	if (scn->scn_is_sorted) {
		atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued,
		    DVA_GET_ASIZE(&bp->blk_dva[0]));
	} else {
		spa_t *spa = scn->scn_dp->dp_spa;

		for (i = 0; i < BP_GET_NDVAS(bp); i++) {
			atomic_add_64(&spa->spa_scan_pass_issued,
			    DVA_GET_ASIZE(&bp->blk_dva[i]));
		}
	}

	/*
	 * If we resume after a reboot, zab will be NULL; don't record
	 * incomplete stats in that case.
	 */
	if (zab == NULL)
		return;

	mutex_enter(&zab->zab_lock);

	for (i = 0; i < 4; i++) {
		int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
		int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;

		if (t & DMU_OT_NEWTYPE)
			t = DMU_OT_OTHER;
		zfs_blkstat_t *zb = &zab->zab_type[l][t];
		int equal;

		zb->zb_count++;
		zb->zb_asize += BP_GET_ASIZE(bp);
		zb->zb_lsize += BP_GET_LSIZE(bp);
		zb->zb_psize += BP_GET_PSIZE(bp);
		zb->zb_gangs += BP_COUNT_GANG(bp);

		switch (BP_GET_NDVAS(bp)) {
		case 2:
			if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
			    DVA_GET_VDEV(&bp->blk_dva[1]))
				zb->zb_ditto_2_of_2_samevdev++;
			break;
		case 3:
			equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
			    DVA_GET_VDEV(&bp->blk_dva[1])) +
			    (DVA_GET_VDEV(&bp->blk_dva[0]) ==
			    DVA_GET_VDEV(&bp->blk_dva[2])) +
			    (DVA_GET_VDEV(&bp->blk_dva[1]) ==
			    DVA_GET_VDEV(&bp->blk_dva[2]));
			if (equal == 1)
				zb->zb_ditto_2_of_3_samevdev++;
			else if (equal == 3)
				zb->zb_ditto_3_of_3_samevdev++;
			break;
		}
	}

	mutex_exit(&zab->zab_lock);
}

static void
scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
{
	avl_index_t idx;
	int64_t asize = SIO_GET_ASIZE(sio);
	dsl_scan_t *scn = queue->q_scn;

	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));

	if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
		/* block is already scheduled for reading */
		atomic_add_64(&scn->scn_bytes_pending, -asize);
		sio_free(sio);
		return;
	}
	avl_insert(&queue->q_sios_by_addr, sio, idx);
	queue->q_sio_memused += SIO_GET_MUSED(sio);
	range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize);
}

/*
 * Given all the info we got from our metadata scanning process, we
 * construct a scan_io_t and insert it into the scan sorting queue. The
 * I/O must already be suitable for us to process. This is controlled
 * by dsl_scan_enqueue().
 */
static void
scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
    int zio_flags, const zbookmark_phys_t *zb)
{
	dsl_scan_t *scn = queue->q_scn;
	scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));

	ASSERT0(BP_IS_GANG(bp));
	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));

	bp2sio(bp, sio, dva_i);
	sio->sio_flags = zio_flags;
	sio->sio_zb = *zb;

	/*
	 * Increment the bytes pending counter now so that we can't
	 * get an integer underflow in case the worker processes the
	 * zio before we get to incrementing this counter.
	 */
	atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio));

	scan_io_queue_insert_impl(queue, sio);
}

/*
 * Given a set of I/O parameters as discovered by the metadata traversal
 * process, attempts to place the I/O into the sorted queues (if allowed),
 * or immediately executes the I/O.
 */
static void
dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
    const zbookmark_phys_t *zb)
{
	spa_t *spa = dp->dp_spa;

	ASSERT(!BP_IS_EMBEDDED(bp));

	/*
	 * Gang blocks are hard to issue sequentially, so we just issue them
	 * here immediately instead of queuing them.
	 */
	if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
		scan_exec_io(dp, bp, zio_flags, zb, NULL);
		return;
	}

	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
		dva_t dva;
		vdev_t *vdev;

		dva = bp->blk_dva[i];
		vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
		ASSERT(vdev != NULL);

		mutex_enter(&vdev->vdev_scan_io_queue_lock);
		if (vdev->vdev_scan_io_queue == NULL)
			vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
		ASSERT(dp->dp_scan != NULL);
		scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
		    i, zio_flags, zb);
		mutex_exit(&vdev->vdev_scan_io_queue_lock);
	}
}

static int
dsl_scan_scrub_cb(dsl_pool_t *dp,
    const blkptr_t *bp, const zbookmark_phys_t *zb)
{
	dsl_scan_t *scn = dp->dp_scan;
	spa_t *spa = dp->dp_spa;
	uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp);
	size_t psize = BP_GET_PSIZE(bp);
	boolean_t needs_io = B_FALSE;
	int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;


	if (phys_birth <= scn->scn_phys.scn_min_txg ||
	    phys_birth >= scn->scn_phys.scn_max_txg) {
		count_block(scn, dp->dp_blkstats, bp);
		return (0);
	}

	/* Embedded BP's have phys_birth==0, so we reject them above. */
	ASSERT(!BP_IS_EMBEDDED(bp));

	ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
	if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
		zio_flags |= ZIO_FLAG_SCRUB;
		needs_io = B_TRUE;
	} else {
		ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
		zio_flags |= ZIO_FLAG_RESILVER;
		needs_io = B_FALSE;
	}

	/* If it's an intent log block, failure is expected. */
	if (zb->zb_level == ZB_ZIL_LEVEL)
		zio_flags |= ZIO_FLAG_SPECULATIVE;

	for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
		const dva_t *dva = &bp->blk_dva[d];

		/*
		 * Keep track of how much data we've examined so that
		 * zpool(1M) status can make useful progress reports.
		 */
		scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva);
		spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva);

		/* if it's a resilver, this may not be in the target range */
		if (!needs_io)
			needs_io = dsl_scan_need_resilver(spa, dva, psize,
			    phys_birth);
	}

	if (needs_io && !zfs_no_scrub_io) {
		dsl_scan_enqueue(dp, bp, zio_flags, zb);
	} else {
		count_block(scn, dp->dp_blkstats, bp);
	}

	/* do not relocate this block */
	return (0);
}

static void
dsl_scan_scrub_done(zio_t *zio)
{
	spa_t *spa = zio->io_spa;
	blkptr_t *bp = zio->io_bp;
	dsl_scan_io_queue_t *queue = zio->io_private;

	abd_free(zio->io_abd);

	if (queue == NULL) {
		mutex_enter(&spa->spa_scrub_lock);
		ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
		spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
		cv_broadcast(&spa->spa_scrub_io_cv);
		mutex_exit(&spa->spa_scrub_lock);
	} else {
		mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
		ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
		queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
		cv_broadcast(&queue->q_zio_cv);
		mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
	}

	if (zio->io_error && (zio->io_error != ECKSUM ||
	    !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
		atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors);
	}
}

/*
 * Given a scanning zio's information, executes the zio. The zio need
 * not necessarily be only sortable, this function simply executes the
 * zio, no matter what it is. The optional queue argument allows the
 * caller to specify that they want per top level vdev IO rate limiting
 * instead of the legacy global limiting.
 */
static void
scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
    const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
{
	spa_t *spa = dp->dp_spa;
	dsl_scan_t *scn = dp->dp_scan;
	size_t size = BP_GET_PSIZE(bp);
	abd_t *data = abd_alloc_for_io(size, B_FALSE);

	ASSERT3U(scn->scn_maxinflight_bytes, >, 0);

	if (queue == NULL) {
		mutex_enter(&spa->spa_scrub_lock);
		while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
		spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
		mutex_exit(&spa->spa_scrub_lock);
	} else {
		kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;

		mutex_enter(q_lock);
		while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
			cv_wait(&queue->q_zio_cv, q_lock);
		queue->q_inflight_bytes += BP_GET_PSIZE(bp);
		mutex_exit(q_lock);
	}

	count_block(scn, dp->dp_blkstats, bp);
	zio_nowait(zio_read(scn->scn_zio_root, spa, bp, data, size,
	    dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
}

/*
 * This is the primary extent sorting algorithm. We balance two parameters:
 * 1) how many bytes of I/O are in an extent
 * 2) how well the extent is filled with I/O (as a fraction of its total size)
 * Since we allow extents to have gaps between their constituent I/Os, it's
 * possible to have a fairly large extent that contains the same amount of
 * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
 * The algorithm sorts based on a score calculated from the extent's size,
 * the relative fill volume (in %) and a "fill weight" parameter that controls
 * the split between whether we prefer larger extents or more well populated
 * extents:
 *
 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
 *
 * Example:
 * 1) assume extsz = 64 MiB
 * 2) assume fill = 32 MiB (extent is half full)
 * 3) assume fill_weight = 3
 * 4)	SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
 *	SCORE = 32M + (50 * 3 * 32M) / 100
 *	SCORE = 32M + (4800M / 100)
 *	SCORE = 32M + 48M
 *	         ^     ^
 *	         |     +--- final total relative fill-based score
 *	         +--------- final total fill-based score
 *	SCORE = 80M
 *
 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
 * extents that are more completely filled (in a 3:2 ratio) vs just larger.
 * Note that as an optimization, we replace multiplication and division by
 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
 */
static int
ext_size_compare(const void *x, const void *y)
{
	const range_seg_gap_t *rsa = x, *rsb = y;

	uint64_t sa = rsa->rs_end - rsa->rs_start;
	uint64_t sb = rsb->rs_end - rsb->rs_start;
	uint64_t score_a, score_b;

	score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) *
	    fill_weight * rsa->rs_fill) >> 7);
	score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) *
	    fill_weight * rsb->rs_fill) >> 7);

	if (score_a > score_b)
		return (-1);
	if (score_a == score_b) {
		if (rsa->rs_start < rsb->rs_start)
			return (-1);
		if (rsa->rs_start == rsb->rs_start)
			return (0);
		return (1);
	}
	return (1);
}

/*
 * Comparator for the q_sios_by_addr tree. Sorting is simply performed
 * based on LBA-order (from lowest to highest).
 */
static int
sio_addr_compare(const void *x, const void *y)
{
	const scan_io_t *a = x, *b = y;

	return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
}

/* IO queues are created on demand when they are needed. */
static dsl_scan_io_queue_t *
scan_io_queue_create(vdev_t *vd)
{
	dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
	dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);

	q->q_scn = scn;
	q->q_vd = vd;
	q->q_sio_memused = 0;
	cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
	q->q_exts_by_addr = range_tree_create_impl(&rt_btree_ops, RANGE_SEG_GAP,
	    &q->q_exts_by_size, 0, 0, ext_size_compare, zfs_scan_max_ext_gap);
	avl_create(&q->q_sios_by_addr, sio_addr_compare,
	    sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));

	return (q);
}

/*
 * Destroys a scan queue and all segments and scan_io_t's contained in it.
 * No further execution of I/O occurs, anything pending in the queue is
 * simply freed without being executed.
 */
void
dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
{
	dsl_scan_t *scn = queue->q_scn;
	scan_io_t *sio;
	void *cookie = NULL;
	int64_t bytes_dequeued = 0;

	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));

	while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
	    NULL) {
		ASSERT(range_tree_contains(queue->q_exts_by_addr,
		    SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
		bytes_dequeued += SIO_GET_ASIZE(sio);
		queue->q_sio_memused -= SIO_GET_MUSED(sio);
		sio_free(sio);
	}

	ASSERT0(queue->q_sio_memused);
	atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued);
	range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
	range_tree_destroy(queue->q_exts_by_addr);
	avl_destroy(&queue->q_sios_by_addr);
	cv_destroy(&queue->q_zio_cv);

	kmem_free(queue, sizeof (*queue));
}

/*
 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
 * called on behalf of vdev_top_transfer when creating or destroying
 * a mirror vdev due to zpool attach/detach.
 */
void
dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
{
	mutex_enter(&svd->vdev_scan_io_queue_lock);
	mutex_enter(&tvd->vdev_scan_io_queue_lock);

	VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
	tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
	svd->vdev_scan_io_queue = NULL;
	if (tvd->vdev_scan_io_queue != NULL)
		tvd->vdev_scan_io_queue->q_vd = tvd;

	mutex_exit(&tvd->vdev_scan_io_queue_lock);
	mutex_exit(&svd->vdev_scan_io_queue_lock);
}

static void
scan_io_queues_destroy(dsl_scan_t *scn)
{
	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;

	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
		vdev_t *tvd = rvd->vdev_child[i];

		mutex_enter(&tvd->vdev_scan_io_queue_lock);
		if (tvd->vdev_scan_io_queue != NULL)
			dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
		tvd->vdev_scan_io_queue = NULL;
		mutex_exit(&tvd->vdev_scan_io_queue_lock);
	}
}

static void
dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
{
	dsl_pool_t *dp = spa->spa_dsl_pool;
	dsl_scan_t *scn = dp->dp_scan;
	vdev_t *vdev;
	kmutex_t *q_lock;
	dsl_scan_io_queue_t *queue;
	scan_io_t *srch_sio, *sio;
	avl_index_t idx;
	uint64_t start, size;

	vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
	ASSERT(vdev != NULL);
	q_lock = &vdev->vdev_scan_io_queue_lock;
	queue = vdev->vdev_scan_io_queue;

	mutex_enter(q_lock);
	if (queue == NULL) {
		mutex_exit(q_lock);
		return;
	}

	srch_sio = sio_alloc(BP_GET_NDVAS(bp));
	bp2sio(bp, srch_sio, dva_i);
	start = SIO_GET_OFFSET(srch_sio);
	size = SIO_GET_ASIZE(srch_sio);

	/*
	 * We can find the zio in two states:
	 * 1) Cold, just sitting in the queue of zio's to be issued at
	 *	some point in the future. In this case, all we do is
	 *	remove the zio from the q_sios_by_addr tree, decrement
	 *	its data volume from the containing range_seg_t and
	 *	resort the q_exts_by_size tree to reflect that the
	 *	range_seg_t has lost some of its 'fill'. We don't shorten
	 *	the range_seg_t - this is usually rare enough not to be
	 *	worth the extra hassle of trying keep track of precise
	 *	extent boundaries.
	 * 2) Hot, where the zio is currently in-flight in
	 *	dsl_scan_issue_ios. In this case, we can't simply
	 *	reach in and stop the in-flight zio's, so we instead
	 *	block the caller. Eventually, dsl_scan_issue_ios will
	 *	be done with issuing the zio's it gathered and will
	 *	signal us.
	 */
	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
	sio_free(srch_sio);

	if (sio != NULL) {
		int64_t asize = SIO_GET_ASIZE(sio);
		blkptr_t tmpbp;

		/* Got it while it was cold in the queue */
		ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
		ASSERT3U(size, ==, asize);
		avl_remove(&queue->q_sios_by_addr, sio);
		queue->q_sio_memused -= SIO_GET_MUSED(sio);

		ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
		range_tree_remove_fill(queue->q_exts_by_addr, start, size);

		/*
		 * We only update scn_bytes_pending in the cold path,
		 * otherwise it will already have been accounted for as
		 * part of the zio's execution.
		 */
		atomic_add_64(&scn->scn_bytes_pending, -asize);

		/* count the block as though we issued it */
		sio2bp(sio, &tmpbp);
		count_block(scn, dp->dp_blkstats, &tmpbp);

		sio_free(sio);
	}
	mutex_exit(q_lock);
}

/*
 * Callback invoked when a zio_free() zio is executing. This needs to be
 * intercepted to prevent the zio from deallocating a particular portion
 * of disk space and it then getting reallocated and written to, while we
 * still have it queued up for processing.
 */
void
dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
{
	dsl_pool_t *dp = spa->spa_dsl_pool;
	dsl_scan_t *scn = dp->dp_scan;

	ASSERT(!BP_IS_EMBEDDED(bp));
	ASSERT(scn != NULL);
	if (!dsl_scan_is_running(scn))
		return;

	for (int i = 0; i < BP_GET_NDVAS(bp); i++)
		dsl_scan_freed_dva(spa, bp, i);
}

/*
 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
 * not started, start it. Otherwise, only restart if max txg in DTL range is
 * greater than the max txg in the current scan. If the DTL max is less than
 * the scan max, then the vdev has not missed any new data since the resilver
 * started, so a restart is not needed.
 */
void
dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
{
	uint64_t min, max;

	if (!vdev_resilver_needed(vd, &min, &max))
		return;

	if (!dsl_scan_resilvering(dp)) {
		spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
		return;
	}

	if (max <= dp->dp_scan->scn_phys.scn_max_txg)
		return;

	/* restart is needed, check if it can be deferred */
	if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
		vdev_defer_resilver(vd);
	else
		spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
}

/* BEGIN CSTYLED */
ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, ULONG, ZMOD_RW,
	"Max bytes in flight per leaf vdev for scrubs and resilvers");

ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, INT, ZMOD_RW,
	"Min millisecs to scrub per txg");

ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, INT, ZMOD_RW,
	"Min millisecs to obsolete per txg");

ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, INT, ZMOD_RW,
	"Min millisecs to free per txg");

ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, INT, ZMOD_RW,
	"Min millisecs to resilver per txg");

ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
	"Set to prevent scans from progressing");

ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
	"Set to disable scrub I/O");

ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
	"Set to disable scrub prefetching");

ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, ULONG, ZMOD_RW,
	"Max number of blocks freed in one txg");

ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, ULONG, ZMOD_RW,
	"Max number of dedup blocks freed in one txg");

ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
	"Enable processing of the free_bpobj");

ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, INT, ZMOD_RW,
	"Fraction of RAM for scan hard limit");

ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, INT, ZMOD_RW,
	"IO issuing strategy during scrubbing. "
	"0 = default, 1 = LBA, 2 = size");

ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
	"Scrub using legacy non-sequential method");

ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, INT, ZMOD_RW,
	"Scan progress on-disk checkpointing interval");

ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, ULONG, ZMOD_RW,
	"Max gap in bytes between sequential scrub / resilver I/Os");

ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, INT, ZMOD_RW,
	"Fraction of hard limit used as soft limit");

ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
	"Tunable to attempt to reduce lock contention");

ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, INT, ZMOD_RW,
	"Tunable to adjust bias towards more filled segments during scans");

ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
	"Process all resilvers immediately");
/* END CSTYLED */