aboutsummaryrefslogtreecommitdiffstats
path: root/module/zfs/dsl_pool.c
blob: 1bb49c13ae15cced8c3b625235ee5002c8f8c926 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
 * Copyright (c) 2013 Steven Hartland. All rights reserved.
 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
 * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
 */

#include <sys/dsl_pool.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_synctask.h>
#include <sys/dsl_scan.h>
#include <sys/dnode.h>
#include <sys/dmu_tx.h>
#include <sys/dmu_objset.h>
#include <sys/arc.h>
#include <sys/zap.h>
#include <sys/zio.h>
#include <sys/zfs_context.h>
#include <sys/fs/zfs.h>
#include <sys/zfs_znode.h>
#include <sys/spa_impl.h>
#include <sys/dsl_deadlist.h>
#include <sys/bptree.h>
#include <sys/zfeature.h>
#include <sys/zil_impl.h>
#include <sys/dsl_userhold.h>
#include <sys/trace_txg.h>
#include <sys/mmp.h>

/*
 * ZFS Write Throttle
 * ------------------
 *
 * ZFS must limit the rate of incoming writes to the rate at which it is able
 * to sync data modifications to the backend storage. Throttling by too much
 * creates an artificial limit; throttling by too little can only be sustained
 * for short periods and would lead to highly lumpy performance. On a per-pool
 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
 * of dirty data decreases. When the amount of dirty data exceeds a
 * predetermined threshold further modifications are blocked until the amount
 * of dirty data decreases (as data is synced out).
 *
 * The limit on dirty data is tunable, and should be adjusted according to
 * both the IO capacity and available memory of the system. The larger the
 * window, the more ZFS is able to aggregate and amortize metadata (and data)
 * changes. However, memory is a limited resource, and allowing for more dirty
 * data comes at the cost of keeping other useful data in memory (for example
 * ZFS data cached by the ARC).
 *
 * Implementation
 *
 * As buffers are modified dsl_pool_willuse_space() increments both the per-
 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
 * dirty space used; dsl_pool_dirty_space() decrements those values as data
 * is synced out from dsl_pool_sync(). While only the poolwide value is
 * relevant, the per-txg value is useful for debugging. The tunable
 * zfs_dirty_data_max determines the dirty space limit. Once that value is
 * exceeded, new writes are halted until space frees up.
 *
 * The zfs_dirty_data_sync tunable dictates the threshold at which we
 * ensure that there is a txg syncing (see the comment in txg.c for a full
 * description of transaction group stages).
 *
 * The IO scheduler uses both the dirty space limit and current amount of
 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
 *
 * The delay is also calculated based on the amount of dirty data.  See the
 * comment above dmu_tx_delay() for details.
 */

/*
 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
 * capped at zfs_dirty_data_max_max.  It can also be overridden with a module
 * parameter.
 */
unsigned long zfs_dirty_data_max = 0;
unsigned long zfs_dirty_data_max_max = 0;
int zfs_dirty_data_max_percent = 10;
int zfs_dirty_data_max_max_percent = 25;

/*
 * If there is at least this much dirty data, push out a txg.
 */
unsigned long zfs_dirty_data_sync = 64 * 1024 * 1024;

/*
 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
 * and delay each transaction.
 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
 */
int zfs_delay_min_dirty_percent = 60;

/*
 * This controls how quickly the delay approaches infinity.
 * Larger values cause it to delay more for a given amount of dirty data.
 * Therefore larger values will cause there to be less dirty data for a
 * given throughput.
 *
 * For the smoothest delay, this value should be about 1 billion divided
 * by the maximum number of operations per second.  This will smoothly
 * handle between 10x and 1/10th this number.
 *
 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
 * multiply in dmu_tx_delay().
 */
unsigned long zfs_delay_scale = 1000 * 1000 * 1000 / 2000;

/*
 * This determines the number of threads used by the dp_sync_taskq.
 */
int zfs_sync_taskq_batch_pct = 75;

/*
 * These tunables determine the behavior of how zil_itxg_clean() is
 * called via zil_clean() in the context of spa_sync(). When an itxg
 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
 * If the dispatch fails, the call to zil_itxg_clean() will occur
 * synchronously in the context of spa_sync(), which can negatively
 * impact the performance of spa_sync() (e.g. in the case of the itxg
 * list having a large number of itxs that needs to be cleaned).
 *
 * Thus, these tunables can be used to manipulate the behavior of the
 * taskq used by zil_clean(); they determine the number of taskq entries
 * that are pre-populated when the taskq is first created (via the
 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
 * taskq entries that are cached after an on-demand allocation (via the
 * "zfs_zil_clean_taskq_maxalloc").
 *
 * The idea being, we want to try reasonably hard to ensure there will
 * already be a taskq entry pre-allocated by the time that it is needed
 * by zil_clean(). This way, we can avoid the possibility of an
 * on-demand allocation of a new taskq entry from failing, which would
 * result in zil_itxg_clean() being called synchronously from zil_clean()
 * (which can adversely affect performance of spa_sync()).
 *
 * Additionally, the number of threads used by the taskq can be
 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
 */
int zfs_zil_clean_taskq_nthr_pct = 100;
int zfs_zil_clean_taskq_minalloc = 1024;
int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;

int
dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
{
	uint64_t obj;
	int err;

	err = zap_lookup(dp->dp_meta_objset,
	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
	    name, sizeof (obj), 1, &obj);
	if (err)
		return (err);

	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
}

static dsl_pool_t *
dsl_pool_open_impl(spa_t *spa, uint64_t txg)
{
	dsl_pool_t *dp;
	blkptr_t *bp = spa_get_rootblkptr(spa);

	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
	dp->dp_spa = spa;
	dp->dp_meta_rootbp = *bp;
	rrw_init(&dp->dp_config_rwlock, B_TRUE);
	txg_init(dp, txg);
	mmp_init(spa);

	txg_list_create(&dp->dp_dirty_datasets, spa,
	    offsetof(dsl_dataset_t, ds_dirty_link));
	txg_list_create(&dp->dp_dirty_zilogs, spa,
	    offsetof(zilog_t, zl_dirty_link));
	txg_list_create(&dp->dp_dirty_dirs, spa,
	    offsetof(dsl_dir_t, dd_dirty_link));
	txg_list_create(&dp->dp_sync_tasks, spa,
	    offsetof(dsl_sync_task_t, dst_node));

	dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
	    zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
	    TASKQ_THREADS_CPU_PCT);

	dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
	    zfs_zil_clean_taskq_nthr_pct, minclsyspri,
	    zfs_zil_clean_taskq_minalloc,
	    zfs_zil_clean_taskq_maxalloc,
	    TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);

	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);

	dp->dp_iput_taskq = taskq_create("z_iput", max_ncpus, defclsyspri,
	    max_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);

	return (dp);
}

int
dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
{
	int err;
	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);

	/*
	 * Initialize the caller's dsl_pool_t structure before we actually open
	 * the meta objset.  This is done because a self-healing write zio may
	 * be issued as part of dmu_objset_open_impl() and the spa needs its
	 * dsl_pool_t initialized in order to handle the write.
	 */
	*dpp = dp;

	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
	    &dp->dp_meta_objset);
	if (err != 0) {
		dsl_pool_close(dp);
		*dpp = NULL;
	}

	return (err);
}

int
dsl_pool_open(dsl_pool_t *dp)
{
	int err;
	dsl_dir_t *dd;
	dsl_dataset_t *ds;
	uint64_t obj;

	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
	    &dp->dp_root_dir_obj);
	if (err)
		goto out;

	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
	    NULL, dp, &dp->dp_root_dir);
	if (err)
		goto out;

	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
	if (err)
		goto out;

	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
		if (err)
			goto out;
		err = dsl_dataset_hold_obj(dp,
		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
		if (err == 0) {
			err = dsl_dataset_hold_obj(dp,
			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
			    &dp->dp_origin_snap);
			dsl_dataset_rele(ds, FTAG);
		}
		dsl_dir_rele(dd, dp);
		if (err)
			goto out;
	}

	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
		    &dp->dp_free_dir);
		if (err)
			goto out;

		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
		if (err)
			goto out;
		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
		    dp->dp_meta_objset, obj));
	}

	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
		    DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
		if (err == 0) {
			VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
			    dp->dp_meta_objset, obj));
		} else if (err == ENOENT) {
			/*
			 * We might not have created the remap bpobj yet.
			 */
			err = 0;
		} else {
			goto out;
		}
	}

	/*
	 * Note: errors ignored, because the these special dirs, used for
	 * space accounting, are only created on demand.
	 */
	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
	    &dp->dp_leak_dir);

	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
		    &dp->dp_bptree_obj);
		if (err != 0)
			goto out;
	}

	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
		    &dp->dp_empty_bpobj);
		if (err != 0)
			goto out;
	}

	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
	    &dp->dp_tmp_userrefs_obj);
	if (err == ENOENT)
		err = 0;
	if (err)
		goto out;

	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);

out:
	rrw_exit(&dp->dp_config_rwlock, FTAG);
	return (err);
}

void
dsl_pool_close(dsl_pool_t *dp)
{
	/*
	 * Drop our references from dsl_pool_open().
	 *
	 * Since we held the origin_snap from "syncing" context (which
	 * includes pool-opening context), it actually only got a "ref"
	 * and not a hold, so just drop that here.
	 */
	if (dp->dp_origin_snap != NULL)
		dsl_dataset_rele(dp->dp_origin_snap, dp);
	if (dp->dp_mos_dir != NULL)
		dsl_dir_rele(dp->dp_mos_dir, dp);
	if (dp->dp_free_dir != NULL)
		dsl_dir_rele(dp->dp_free_dir, dp);
	if (dp->dp_leak_dir != NULL)
		dsl_dir_rele(dp->dp_leak_dir, dp);
	if (dp->dp_root_dir != NULL)
		dsl_dir_rele(dp->dp_root_dir, dp);

	bpobj_close(&dp->dp_free_bpobj);
	bpobj_close(&dp->dp_obsolete_bpobj);

	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
	if (dp->dp_meta_objset != NULL)
		dmu_objset_evict(dp->dp_meta_objset);

	txg_list_destroy(&dp->dp_dirty_datasets);
	txg_list_destroy(&dp->dp_dirty_zilogs);
	txg_list_destroy(&dp->dp_sync_tasks);
	txg_list_destroy(&dp->dp_dirty_dirs);

	taskq_destroy(dp->dp_zil_clean_taskq);
	taskq_destroy(dp->dp_sync_taskq);

	/*
	 * We can't set retry to TRUE since we're explicitly specifying
	 * a spa to flush. This is good enough; any missed buffers for
	 * this spa won't cause trouble, and they'll eventually fall
	 * out of the ARC just like any other unused buffer.
	 */
	arc_flush(dp->dp_spa, FALSE);

	mmp_fini(dp->dp_spa);
	txg_fini(dp);
	dsl_scan_fini(dp);
	dmu_buf_user_evict_wait();

	rrw_destroy(&dp->dp_config_rwlock);
	mutex_destroy(&dp->dp_lock);
	cv_destroy(&dp->dp_spaceavail_cv);
	taskq_destroy(dp->dp_iput_taskq);
	if (dp->dp_blkstats != NULL) {
		mutex_destroy(&dp->dp_blkstats->zab_lock);
		vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
	}
	kmem_free(dp, sizeof (dsl_pool_t));
}

void
dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
{
	uint64_t obj;
	/*
	 * Currently, we only create the obsolete_bpobj where there are
	 * indirect vdevs with referenced mappings.
	 */
	ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
	/* create and open the obsolete_bpobj */
	obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
	VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
	    DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
	spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
}

void
dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
{
	spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
	VERIFY0(zap_remove(dp->dp_meta_objset,
	    DMU_POOL_DIRECTORY_OBJECT,
	    DMU_POOL_OBSOLETE_BPOBJ, tx));
	bpobj_free(dp->dp_meta_objset,
	    dp->dp_obsolete_bpobj.bpo_object, tx);
	bpobj_close(&dp->dp_obsolete_bpobj);
}

dsl_pool_t *
dsl_pool_create(spa_t *spa, nvlist_t *zplprops, dsl_crypto_params_t *dcp,
    uint64_t txg)
{
	int err;
	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
	dsl_dataset_t *ds;
	uint64_t obj;

	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);

	/* create and open the MOS (meta-objset) */
	dp->dp_meta_objset = dmu_objset_create_impl(spa,
	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
	spa->spa_meta_objset = dp->dp_meta_objset;

	/* create the pool directory */
	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
	ASSERT0(err);

	/* Initialize scan structures */
	VERIFY0(dsl_scan_init(dp, txg));

	/* create and open the root dir */
	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
	    NULL, dp, &dp->dp_root_dir));

	/* create and open the meta-objset dir */
	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
	VERIFY0(dsl_pool_open_special_dir(dp,
	    MOS_DIR_NAME, &dp->dp_mos_dir));

	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
		/* create and open the free dir */
		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
		    FREE_DIR_NAME, tx);
		VERIFY0(dsl_pool_open_special_dir(dp,
		    FREE_DIR_NAME, &dp->dp_free_dir));

		/* create and open the free_bplist */
		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
		    dp->dp_meta_objset, obj));
	}

	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
		dsl_pool_create_origin(dp, tx);

	/*
	 * Some features may be needed when creating the root dataset, so we
	 * create the feature objects here.
	 */
	if (spa_version(spa) >= SPA_VERSION_FEATURES)
		spa_feature_create_zap_objects(spa, tx);

	if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF &&
	    dcp->cp_crypt != ZIO_CRYPT_INHERIT)
		spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx);

	/* create the root dataset */
	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx);

	/* create the root objset */
	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
#ifdef _KERNEL
	{
		objset_t *os;
		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
		os = dmu_objset_create_impl(dp->dp_spa, ds,
		    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
		rrw_exit(&ds->ds_bp_rwlock, FTAG);
		zfs_create_fs(os, kcred, zplprops, tx);
	}
#endif
	dsl_dataset_rele(ds, FTAG);

	dmu_tx_commit(tx);

	rrw_exit(&dp->dp_config_rwlock, FTAG);

	return (dp);
}

/*
 * Account for the meta-objset space in its placeholder dsl_dir.
 */
void
dsl_pool_mos_diduse_space(dsl_pool_t *dp,
    int64_t used, int64_t comp, int64_t uncomp)
{
	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
	mutex_enter(&dp->dp_lock);
	dp->dp_mos_used_delta += used;
	dp->dp_mos_compressed_delta += comp;
	dp->dp_mos_uncompressed_delta += uncomp;
	mutex_exit(&dp->dp_lock);
}

static void
dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
{
	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
	VERIFY0(zio_wait(zio));
	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
}

static void
dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
{
	ASSERT(MUTEX_HELD(&dp->dp_lock));

	if (delta < 0)
		ASSERT3U(-delta, <=, dp->dp_dirty_total);

	dp->dp_dirty_total += delta;

	/*
	 * Note: we signal even when increasing dp_dirty_total.
	 * This ensures forward progress -- each thread wakes the next waiter.
	 */
	if (dp->dp_dirty_total < zfs_dirty_data_max)
		cv_signal(&dp->dp_spaceavail_cv);
}

void
dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
{
	zio_t *zio;
	dmu_tx_t *tx;
	dsl_dir_t *dd;
	dsl_dataset_t *ds;
	objset_t *mos = dp->dp_meta_objset;
	list_t synced_datasets;

	list_create(&synced_datasets, sizeof (dsl_dataset_t),
	    offsetof(dsl_dataset_t, ds_synced_link));

	tx = dmu_tx_create_assigned(dp, txg);

	/*
	 * Write out all dirty blocks of dirty datasets.
	 */
	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
		/*
		 * We must not sync any non-MOS datasets twice, because
		 * we may have taken a snapshot of them.  However, we
		 * may sync newly-created datasets on pass 2.
		 */
		ASSERT(!list_link_active(&ds->ds_synced_link));
		list_insert_tail(&synced_datasets, ds);
		dsl_dataset_sync(ds, zio, tx);
	}
	VERIFY0(zio_wait(zio));

	/*
	 * We have written all of the accounted dirty data, so our
	 * dp_space_towrite should now be zero.  However, some seldom-used
	 * code paths do not adhere to this (e.g. dbuf_undirty(), also
	 * rounding error in dbuf_write_physdone).
	 * Shore up the accounting of any dirtied space now.
	 */
	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);

	/*
	 * Update the long range free counter after
	 * we're done syncing user data
	 */
	mutex_enter(&dp->dp_lock);
	ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
	    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
	dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
	mutex_exit(&dp->dp_lock);

	/*
	 * After the data blocks have been written (ensured by the zio_wait()
	 * above), update the user/group/project space accounting.  This happens
	 * in tasks dispatched to dp_sync_taskq, so wait for them before
	 * continuing.
	 */
	for (ds = list_head(&synced_datasets); ds != NULL;
	    ds = list_next(&synced_datasets, ds)) {
		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
	}
	taskq_wait(dp->dp_sync_taskq);

	/*
	 * Sync the datasets again to push out the changes due to
	 * userspace updates.  This must be done before we process the
	 * sync tasks, so that any snapshots will have the correct
	 * user accounting information (and we won't get confused
	 * about which blocks are part of the snapshot).
	 */
	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
		ASSERT(list_link_active(&ds->ds_synced_link));
		dmu_buf_rele(ds->ds_dbuf, ds);
		dsl_dataset_sync(ds, zio, tx);
	}
	VERIFY0(zio_wait(zio));

	/*
	 * Now that the datasets have been completely synced, we can
	 * clean up our in-memory structures accumulated while syncing:
	 *
	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
	 *  - release hold from dsl_dataset_dirty()
	 */
	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
		dsl_dataset_sync_done(ds, tx);
	}

	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
		dsl_dir_sync(dd, tx);
	}

	/*
	 * The MOS's space is accounted for in the pool/$MOS
	 * (dp_mos_dir).  We can't modify the mos while we're syncing
	 * it, so we remember the deltas and apply them here.
	 */
	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
	    dp->dp_mos_uncompressed_delta != 0) {
		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
		    dp->dp_mos_used_delta,
		    dp->dp_mos_compressed_delta,
		    dp->dp_mos_uncompressed_delta, tx);
		dp->dp_mos_used_delta = 0;
		dp->dp_mos_compressed_delta = 0;
		dp->dp_mos_uncompressed_delta = 0;
	}

	if (!multilist_is_empty(mos->os_dirty_dnodes[txg & TXG_MASK])) {
		dsl_pool_sync_mos(dp, tx);
	}

	/*
	 * If we modify a dataset in the same txg that we want to destroy it,
	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
	 * and clearing the hold on it) before we process the sync_tasks.
	 * The MOS data dirtied by the sync_tasks will be synced on the next
	 * pass.
	 */
	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
		dsl_sync_task_t *dst;
		/*
		 * No more sync tasks should have been added while we
		 * were syncing.
		 */
		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
			dsl_sync_task_sync(dst, tx);
	}

	dmu_tx_commit(tx);

	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
}

void
dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
{
	zilog_t *zilog;

	while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) {
		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
		/*
		 * We don't remove the zilog from the dp_dirty_zilogs
		 * list until after we've cleaned it. This ensures that
		 * callers of zilog_is_dirty() receive an accurate
		 * answer when they are racing with the spa sync thread.
		 */
		zil_clean(zilog, txg);
		(void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
		dmu_buf_rele(ds->ds_dbuf, zilog);
	}
	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
}

/*
 * TRUE if the current thread is the tx_sync_thread or if we
 * are being called from SPA context during pool initialization.
 */
int
dsl_pool_sync_context(dsl_pool_t *dp)
{
	return (curthread == dp->dp_tx.tx_sync_thread ||
	    spa_is_initializing(dp->dp_spa) ||
	    taskq_member(dp->dp_sync_taskq, curthread));
}

uint64_t
dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
{
	uint64_t space, resv;

	/*
	 * If we're trying to assess whether it's OK to do a free,
	 * cut the reservation in half to allow forward progress
	 * (e.g. make it possible to rm(1) files from a full pool).
	 */
	space = spa_get_dspace(dp->dp_spa);
	resv = spa_get_slop_space(dp->dp_spa);
	if (netfree)
		resv >>= 1;

	return (space - resv);
}

boolean_t
dsl_pool_need_dirty_delay(dsl_pool_t *dp)
{
	uint64_t delay_min_bytes =
	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
	boolean_t rv;

	mutex_enter(&dp->dp_lock);
	if (dp->dp_dirty_total > zfs_dirty_data_sync)
		txg_kick(dp);
	rv = (dp->dp_dirty_total > delay_min_bytes);
	mutex_exit(&dp->dp_lock);
	return (rv);
}

void
dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
{
	if (space > 0) {
		mutex_enter(&dp->dp_lock);
		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
		dsl_pool_dirty_delta(dp, space);
		mutex_exit(&dp->dp_lock);
	}
}

void
dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
{
	ASSERT3S(space, >=, 0);
	if (space == 0)
		return;

	mutex_enter(&dp->dp_lock);
	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
		/* XXX writing something we didn't dirty? */
		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
	}
	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
	ASSERT3U(dp->dp_dirty_total, >=, space);
	dsl_pool_dirty_delta(dp, -space);
	mutex_exit(&dp->dp_lock);
}

/* ARGSUSED */
static int
upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
{
	dmu_tx_t *tx = arg;
	dsl_dataset_t *ds, *prev = NULL;
	int err;

	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
	if (err)
		return (err);

	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
		err = dsl_dataset_hold_obj(dp,
		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
		if (err) {
			dsl_dataset_rele(ds, FTAG);
			return (err);
		}

		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
			break;
		dsl_dataset_rele(ds, FTAG);
		ds = prev;
		prev = NULL;
	}

	if (prev == NULL) {
		prev = dp->dp_origin_snap;

		/*
		 * The $ORIGIN can't have any data, or the accounting
		 * will be wrong.
		 */
		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
		ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
		rrw_exit(&ds->ds_bp_rwlock, FTAG);

		/* The origin doesn't get attached to itself */
		if (ds->ds_object == prev->ds_object) {
			dsl_dataset_rele(ds, FTAG);
			return (0);
		}

		dmu_buf_will_dirty(ds->ds_dbuf, tx);
		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
		dsl_dataset_phys(ds)->ds_prev_snap_txg =
		    dsl_dataset_phys(prev)->ds_creation_txg;

		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;

		dmu_buf_will_dirty(prev->ds_dbuf, tx);
		dsl_dataset_phys(prev)->ds_num_children++;

		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
			ASSERT(ds->ds_prev == NULL);
			VERIFY0(dsl_dataset_hold_obj(dp,
			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
			    ds, &ds->ds_prev));
		}
	}

	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);

	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
		dmu_buf_will_dirty(prev->ds_dbuf, tx);
		dsl_dataset_phys(prev)->ds_next_clones_obj =
		    zap_create(dp->dp_meta_objset,
		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
	}
	VERIFY0(zap_add_int(dp->dp_meta_objset,
	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));

	dsl_dataset_rele(ds, FTAG);
	if (prev != dp->dp_origin_snap)
		dsl_dataset_rele(prev, FTAG);
	return (0);
}

void
dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
{
	ASSERT(dmu_tx_is_syncing(tx));
	ASSERT(dp->dp_origin_snap != NULL);

	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
	    tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
}

/* ARGSUSED */
static int
upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
{
	dmu_tx_t *tx = arg;
	objset_t *mos = dp->dp_meta_objset;

	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
		dsl_dataset_t *origin;

		VERIFY0(dsl_dataset_hold_obj(dp,
		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));

		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
			dsl_dir_phys(origin->ds_dir)->dd_clones =
			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
			    0, tx);
		}

		VERIFY0(zap_add_int(dp->dp_meta_objset,
		    dsl_dir_phys(origin->ds_dir)->dd_clones,
		    ds->ds_object, tx));

		dsl_dataset_rele(origin, FTAG);
	}
	return (0);
}

void
dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
{
	uint64_t obj;

	ASSERT(dmu_tx_is_syncing(tx));

	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
	VERIFY0(dsl_pool_open_special_dir(dp,
	    FREE_DIR_NAME, &dp->dp_free_dir));

	/*
	 * We can't use bpobj_alloc(), because spa_version() still
	 * returns the old version, and we need a new-version bpobj with
	 * subobj support.  So call dmu_object_alloc() directly.
	 */
	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));

	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
}

void
dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
{
	uint64_t dsobj;
	dsl_dataset_t *ds;

	ASSERT(dmu_tx_is_syncing(tx));
	ASSERT(dp->dp_origin_snap == NULL);
	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));

	/* create the origin dir, ds, & snap-ds */
	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
	    NULL, 0, kcred, NULL, tx);
	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
	    dp, &dp->dp_origin_snap));
	dsl_dataset_rele(ds, FTAG);
}

taskq_t *
dsl_pool_iput_taskq(dsl_pool_t *dp)
{
	return (dp->dp_iput_taskq);
}

/*
 * Walk through the pool-wide zap object of temporary snapshot user holds
 * and release them.
 */
void
dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
{
	zap_attribute_t za;
	zap_cursor_t zc;
	objset_t *mos = dp->dp_meta_objset;
	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
	nvlist_t *holds;

	if (zapobj == 0)
		return;
	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);

	holds = fnvlist_alloc();

	for (zap_cursor_init(&zc, mos, zapobj);
	    zap_cursor_retrieve(&zc, &za) == 0;
	    zap_cursor_advance(&zc)) {
		char *htag;
		nvlist_t *tags;

		htag = strchr(za.za_name, '-');
		*htag = '\0';
		++htag;
		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
			tags = fnvlist_alloc();
			fnvlist_add_boolean(tags, htag);
			fnvlist_add_nvlist(holds, za.za_name, tags);
			fnvlist_free(tags);
		} else {
			fnvlist_add_boolean(tags, htag);
		}
	}
	dsl_dataset_user_release_tmp(dp, holds);
	fnvlist_free(holds);
	zap_cursor_fini(&zc);
}

/*
 * Create the pool-wide zap object for storing temporary snapshot holds.
 */
void
dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
{
	objset_t *mos = dp->dp_meta_objset;

	ASSERT(dp->dp_tmp_userrefs_obj == 0);
	ASSERT(dmu_tx_is_syncing(tx));

	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
}

static int
dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
    const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
{
	objset_t *mos = dp->dp_meta_objset;
	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
	char *name;
	int error;

	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
	ASSERT(dmu_tx_is_syncing(tx));

	/*
	 * If the pool was created prior to SPA_VERSION_USERREFS, the
	 * zap object for temporary holds might not exist yet.
	 */
	if (zapobj == 0) {
		if (holding) {
			dsl_pool_user_hold_create_obj(dp, tx);
			zapobj = dp->dp_tmp_userrefs_obj;
		} else {
			return (SET_ERROR(ENOENT));
		}
	}

	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
	if (holding)
		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
	else
		error = zap_remove(mos, zapobj, name, tx);
	strfree(name);

	return (error);
}

/*
 * Add a temporary hold for the given dataset object and tag.
 */
int
dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
    uint64_t now, dmu_tx_t *tx)
{
	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
}

/*
 * Release a temporary hold for the given dataset object and tag.
 */
int
dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
    dmu_tx_t *tx)
{
	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
	    tx, B_FALSE));
}

/*
 * DSL Pool Configuration Lock
 *
 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
 * creation / destruction / rename / property setting).  It must be held for
 * read to hold a dataset or dsl_dir.  I.e. you must call
 * dsl_pool_config_enter() or dsl_pool_hold() before calling
 * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
 * must be held continuously until all datasets and dsl_dirs are released.
 *
 * The only exception to this rule is that if a "long hold" is placed on
 * a dataset, then the dp_config_rwlock may be dropped while the dataset
 * is still held.  The long hold will prevent the dataset from being
 * destroyed -- the destroy will fail with EBUSY.  A long hold can be
 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
 *
 * Legitimate long-holders (including owners) should be long-running, cancelable
 * tasks that should cause "zfs destroy" to fail.  This includes DMU
 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
 * "zfs send", and "zfs diff".  There are several other long-holders whose
 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
 *
 * The usual formula for long-holding would be:
 * dsl_pool_hold()
 * dsl_dataset_hold()
 * ... perform checks ...
 * dsl_dataset_long_hold()
 * dsl_pool_rele()
 * ... perform long-running task ...
 * dsl_dataset_long_rele()
 * dsl_dataset_rele()
 *
 * Note that when the long hold is released, the dataset is still held but
 * the pool is not held.  The dataset may change arbitrarily during this time
 * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
 * dataset except release it.
 *
 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
 * or modifying operations.
 *
 * Modifying operations should generally use dsl_sync_task().  The synctask
 * infrastructure enforces proper locking strategy with respect to the
 * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
 *
 * Read-only operations will manually hold the pool, then the dataset, obtain
 * information from the dataset, then release the pool and dataset.
 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
 * hold/rele.
 */

int
dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
{
	spa_t *spa;
	int error;

	error = spa_open(name, &spa, tag);
	if (error == 0) {
		*dp = spa_get_dsl(spa);
		dsl_pool_config_enter(*dp, tag);
	}
	return (error);
}

void
dsl_pool_rele(dsl_pool_t *dp, void *tag)
{
	dsl_pool_config_exit(dp, tag);
	spa_close(dp->dp_spa, tag);
}

void
dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
{
	/*
	 * We use a "reentrant" reader-writer lock, but not reentrantly.
	 *
	 * The rrwlock can (with the track_all flag) track all reading threads,
	 * which is very useful for debugging which code path failed to release
	 * the lock, and for verifying that the *current* thread does hold
	 * the lock.
	 *
	 * (Unlike a rwlock, which knows that N threads hold it for
	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
	 * if any thread holds it for read, even if this thread doesn't).
	 */
	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
}

void
dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
{
	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
	rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
}

void
dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
{
	rrw_exit(&dp->dp_config_rwlock, tag);
}

boolean_t
dsl_pool_config_held(dsl_pool_t *dp)
{
	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
}

boolean_t
dsl_pool_config_held_writer(dsl_pool_t *dp)
{
	return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
}

#if defined(_KERNEL)
EXPORT_SYMBOL(dsl_pool_config_enter);
EXPORT_SYMBOL(dsl_pool_config_exit);

/* BEGIN CSTYLED */
/* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
module_param(zfs_dirty_data_max_percent, int, 0444);
MODULE_PARM_DESC(zfs_dirty_data_max_percent, "percent of ram can be dirty");

/* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
module_param(zfs_dirty_data_max_max_percent, int, 0444);
MODULE_PARM_DESC(zfs_dirty_data_max_max_percent,
	"zfs_dirty_data_max upper bound as % of RAM");

module_param(zfs_delay_min_dirty_percent, int, 0644);
MODULE_PARM_DESC(zfs_delay_min_dirty_percent, "transaction delay threshold");

module_param(zfs_dirty_data_max, ulong, 0644);
MODULE_PARM_DESC(zfs_dirty_data_max, "determines the dirty space limit");

/* zfs_dirty_data_max_max only applied at module load in arc_init(). */
module_param(zfs_dirty_data_max_max, ulong, 0444);
MODULE_PARM_DESC(zfs_dirty_data_max_max,
	"zfs_dirty_data_max upper bound in bytes");

module_param(zfs_dirty_data_sync, ulong, 0644);
MODULE_PARM_DESC(zfs_dirty_data_sync, "sync txg when this much dirty data");

module_param(zfs_delay_scale, ulong, 0644);
MODULE_PARM_DESC(zfs_delay_scale, "how quickly delay approaches infinity");

module_param(zfs_sync_taskq_batch_pct, int, 0644);
MODULE_PARM_DESC(zfs_sync_taskq_batch_pct,
	"max percent of CPUs that are used to sync dirty data");

module_param(zfs_zil_clean_taskq_nthr_pct, int, 0644);
MODULE_PARM_DESC(zfs_zil_clean_taskq_nthr_pct,
	"max percent of CPUs that are used per dp_sync_taskq");

module_param(zfs_zil_clean_taskq_minalloc, int, 0644);
MODULE_PARM_DESC(zfs_zil_clean_taskq_minalloc,
	"number of taskq entries that are pre-populated");

module_param(zfs_zil_clean_taskq_maxalloc, int, 0644);
MODULE_PARM_DESC(zfs_zil_clean_taskq_maxalloc,
	"max number of taskq entries that are cached");

/* END CSTYLED */
#endif