summaryrefslogtreecommitdiffstats
path: root/module/zfs/dmu_zfetch.c
blob: baed0492f9066df062f0f810ea48751e9cb9f7c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

/*
 * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
 */

#include <sys/zfs_context.h>
#include <sys/dnode.h>
#include <sys/dmu_objset.h>
#include <sys/dmu_zfetch.h>
#include <sys/dmu.h>
#include <sys/dbuf.h>
#include <sys/kstat.h>

/*
 * This tunable disables predictive prefetch.  Note that it leaves "prescient"
 * prefetch (e.g. prefetch for zfs send) intact.  Unlike predictive prefetch,
 * prescient prefetch never issues i/os that end up not being needed,
 * so it can't hurt performance.
 */

int zfs_prefetch_disable = B_FALSE;

/* max # of streams per zfetch */
unsigned int	zfetch_max_streams = 8;
/* min time before stream reclaim */
unsigned int	zfetch_min_sec_reap = 2;
/* max bytes to prefetch per stream (default 8MB) */
unsigned int	zfetch_max_distance = 8 * 1024 * 1024;
/* max bytes to prefetch indirects for per stream (default 64MB) */
unsigned int	zfetch_max_idistance = 64 * 1024 * 1024;
/* max number of bytes in an array_read in which we allow prefetching (1MB) */
unsigned long	zfetch_array_rd_sz = 1024 * 1024;

typedef struct zfetch_stats {
	kstat_named_t zfetchstat_hits;
	kstat_named_t zfetchstat_misses;
	kstat_named_t zfetchstat_max_streams;
} zfetch_stats_t;

static zfetch_stats_t zfetch_stats = {
	{ "hits",			KSTAT_DATA_UINT64 },
	{ "misses",			KSTAT_DATA_UINT64 },
	{ "max_streams",		KSTAT_DATA_UINT64 },
};

#define	ZFETCHSTAT_BUMP(stat) \
	atomic_inc_64(&zfetch_stats.stat.value.ui64);

kstat_t		*zfetch_ksp;

void
zfetch_init(void)
{
	zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
	    KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
	    KSTAT_FLAG_VIRTUAL);

	if (zfetch_ksp != NULL) {
		zfetch_ksp->ks_data = &zfetch_stats;
		kstat_install(zfetch_ksp);
	}
}

void
zfetch_fini(void)
{
	if (zfetch_ksp != NULL) {
		kstat_delete(zfetch_ksp);
		zfetch_ksp = NULL;
	}
}

/*
 * This takes a pointer to a zfetch structure and a dnode.  It performs the
 * necessary setup for the zfetch structure, grokking data from the
 * associated dnode.
 */
void
dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
{
	if (zf == NULL)
		return;

	zf->zf_dnode = dno;

	list_create(&zf->zf_stream, sizeof (zstream_t),
	    offsetof(zstream_t, zs_node));

	rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
}

static void
dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
{
	ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
	list_remove(&zf->zf_stream, zs);
	mutex_destroy(&zs->zs_lock);
	kmem_free(zs, sizeof (*zs));
}

/*
 * Clean-up state associated with a zfetch structure (e.g. destroy the
 * streams).  This doesn't free the zfetch_t itself, that's left to the caller.
 */
void
dmu_zfetch_fini(zfetch_t *zf)
{
	zstream_t *zs;

	ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock));

	rw_enter(&zf->zf_rwlock, RW_WRITER);
	while ((zs = list_head(&zf->zf_stream)) != NULL)
		dmu_zfetch_stream_remove(zf, zs);
	rw_exit(&zf->zf_rwlock);
	list_destroy(&zf->zf_stream);
	rw_destroy(&zf->zf_rwlock);

	zf->zf_dnode = NULL;
}

/*
 * If there aren't too many streams already, create a new stream.
 * The "blkid" argument is the next block that we expect this stream to access.
 * While we're here, clean up old streams (which haven't been
 * accessed for at least zfetch_min_sec_reap seconds).
 */
static void
dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
{
	zstream_t *zs;
	zstream_t *zs_next;
	int numstreams = 0;
	uint32_t max_streams;

	ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));

	/*
	 * Clean up old streams.
	 */
	for (zs = list_head(&zf->zf_stream);
	    zs != NULL; zs = zs_next) {
		zs_next = list_next(&zf->zf_stream, zs);
		if (((gethrtime() - zs->zs_atime) / NANOSEC) >
		    zfetch_min_sec_reap)
			dmu_zfetch_stream_remove(zf, zs);
		else
			numstreams++;
	}

	/*
	 * The maximum number of streams is normally zfetch_max_streams,
	 * but for small files we lower it such that it's at least possible
	 * for all the streams to be non-overlapping.
	 *
	 * If we are already at the maximum number of streams for this file,
	 * even after removing old streams, then don't create this stream.
	 */
	max_streams = MAX(1, MIN(zfetch_max_streams,
	    zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
	    zfetch_max_distance));
	if (numstreams >= max_streams) {
		ZFETCHSTAT_BUMP(zfetchstat_max_streams);
		return;
	}

	zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
	zs->zs_blkid = blkid;
	zs->zs_pf_blkid = blkid;
	zs->zs_ipf_blkid = blkid;
	zs->zs_atime = gethrtime();
	mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL);

	list_insert_head(&zf->zf_stream, zs);
}

/*
 * This is the predictive prefetch entry point.  It associates dnode access
 * specified with blkid and nblks arguments with prefetch stream, predicts
 * further accesses based on that stats and initiates speculative prefetch.
 * fetch_data argument specifies whether actual data blocks should be fetched:
 *   FALSE -- prefetch only indirect blocks for predicted data blocks;
 *   TRUE -- prefetch predicted data blocks plus following indirect blocks.
 */
void
dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data)
{
	zstream_t *zs;
	int64_t pf_start, ipf_start, ipf_istart, ipf_iend;
	int64_t pf_ahead_blks, max_blks, iblk;
	int epbs, max_dist_blks, pf_nblks, ipf_nblks, i;
	uint64_t end_of_access_blkid;
	end_of_access_blkid = blkid + nblks;

	if (zfs_prefetch_disable)
		return;

	/*
	 * As a fast path for small (single-block) files, ignore access
	 * to the first block.
	 */
	if (blkid == 0)
		return;

	rw_enter(&zf->zf_rwlock, RW_READER);

	for (zs = list_head(&zf->zf_stream); zs != NULL;
	    zs = list_next(&zf->zf_stream, zs)) {
		if (blkid == zs->zs_blkid) {
			mutex_enter(&zs->zs_lock);
			/*
			 * zs_blkid could have changed before we
			 * acquired zs_lock; re-check them here.
			 */
			if (blkid != zs->zs_blkid) {
				mutex_exit(&zs->zs_lock);
				continue;
			}
			break;
		}
	}

	if (zs == NULL) {
		/*
		 * This access is not part of any existing stream.  Create
		 * a new stream for it.
		 */
		ZFETCHSTAT_BUMP(zfetchstat_misses);
		if (rw_tryupgrade(&zf->zf_rwlock))
			dmu_zfetch_stream_create(zf, end_of_access_blkid);
		rw_exit(&zf->zf_rwlock);
		return;
	}

	/*
	 * This access was to a block that we issued a prefetch for on
	 * behalf of this stream. Issue further prefetches for this stream.
	 *
	 * Normally, we start prefetching where we stopped
	 * prefetching last (zs_pf_blkid).  But when we get our first
	 * hit on this stream, zs_pf_blkid == zs_blkid, we don't
	 * want to prefetch the block we just accessed.  In this case,
	 * start just after the block we just accessed.
	 */
	pf_start = MAX(zs->zs_pf_blkid, end_of_access_blkid);

	/*
	 * Double our amount of prefetched data, but don't let the
	 * prefetch get further ahead than zfetch_max_distance.
	 */
	if (fetch_data) {
		max_dist_blks =
		    zfetch_max_distance >> zf->zf_dnode->dn_datablkshift;
		/*
		 * Previously, we were (zs_pf_blkid - blkid) ahead.  We
		 * want to now be double that, so read that amount again,
		 * plus the amount we are catching up by (i.e. the amount
		 * read just now).
		 */
		pf_ahead_blks = zs->zs_pf_blkid - blkid + nblks;
		max_blks = max_dist_blks - (pf_start - end_of_access_blkid);
		pf_nblks = MIN(pf_ahead_blks, max_blks);
	} else {
		pf_nblks = 0;
	}

	zs->zs_pf_blkid = pf_start + pf_nblks;

	/*
	 * Do the same for indirects, starting from where we stopped last,
	 * or where we will stop reading data blocks (and the indirects
	 * that point to them).
	 */
	ipf_start = MAX(zs->zs_ipf_blkid, zs->zs_pf_blkid);
	max_dist_blks = zfetch_max_idistance >> zf->zf_dnode->dn_datablkshift;
	/*
	 * We want to double our distance ahead of the data prefetch
	 * (or reader, if we are not prefetching data).  Previously, we
	 * were (zs_ipf_blkid - blkid) ahead.  To double that, we read
	 * that amount again, plus the amount we are catching up by
	 * (i.e. the amount read now + the amount of data prefetched now).
	 */
	pf_ahead_blks = zs->zs_ipf_blkid - blkid + nblks + pf_nblks;
	max_blks = max_dist_blks - (ipf_start - end_of_access_blkid);
	ipf_nblks = MIN(pf_ahead_blks, max_blks);
	zs->zs_ipf_blkid = ipf_start + ipf_nblks;

	epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
	ipf_istart = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
	ipf_iend = P2ROUNDUP(zs->zs_ipf_blkid, 1 << epbs) >> epbs;

	zs->zs_atime = gethrtime();
	zs->zs_blkid = end_of_access_blkid;
	mutex_exit(&zs->zs_lock);
	rw_exit(&zf->zf_rwlock);

	/*
	 * dbuf_prefetch() is asynchronous (even when it needs to read
	 * indirect blocks), but we still prefer to drop our locks before
	 * calling it to reduce the time we hold them.
	 */

	for (i = 0; i < pf_nblks; i++) {
		dbuf_prefetch(zf->zf_dnode, 0, pf_start + i,
		    ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
	}
	for (iblk = ipf_istart; iblk < ipf_iend; iblk++) {
		dbuf_prefetch(zf->zf_dnode, 1, iblk,
		    ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
	}
	ZFETCHSTAT_BUMP(zfetchstat_hits);
}

#if defined(_KERNEL) && defined(HAVE_SPL)
module_param(zfs_prefetch_disable, int, 0644);
MODULE_PARM_DESC(zfs_prefetch_disable, "Disable all ZFS prefetching");

module_param(zfetch_max_streams, uint, 0644);
MODULE_PARM_DESC(zfetch_max_streams, "Max number of streams per zfetch");

module_param(zfetch_min_sec_reap, uint, 0644);
MODULE_PARM_DESC(zfetch_min_sec_reap, "Min time before stream reclaim");

module_param(zfetch_max_distance, uint, 0644);
MODULE_PARM_DESC(zfetch_max_distance,
	"Max bytes to prefetch per stream (default 8MB)");

module_param(zfetch_array_rd_sz, ulong, 0644);
MODULE_PARM_DESC(zfetch_array_rd_sz, "Number of bytes in a array_read");
#endif