summaryrefslogtreecommitdiffstats
path: root/module/zfs/dmu_redact.c
blob: 1c5f1bd24860c0ed69f0330acbf8a0c4bee098e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2017, 2018 by Delphix. All rights reserved.
 */

#include <sys/zfs_context.h>
#include <sys/txg.h>
#include <sys/dmu_objset.h>
#include <sys/dmu_traverse.h>
#include <sys/dmu_redact.h>
#include <sys/bqueue.h>
#include <sys/objlist.h>
#include <sys/dmu_tx.h>
#ifdef _KERNEL
#include <sys/zfs_vfsops.h>
#include <sys/zap.h>
#include <sys/zfs_znode.h>
#endif

/*
 * This controls the number of entries in the buffer the redaction_list_update
 * synctask uses to buffer writes to the redaction list.
 */
int redact_sync_bufsize = 1024;

/*
 * Controls how often to update the redaction list when creating a redaction
 * list.
 */
uint64_t redaction_list_update_interval_ns = 1000 * 1000 * 1000ULL; /* NS */

/*
 * This tunable controls the length of the queues that zfs redact worker threads
 * use to communicate.  If the dmu_redact_snap thread is blocking on these
 * queues, this variable may need to be increased.  If there is a significant
 * slowdown at the start of a redact operation as these threads consume all the
 * available IO resources, or the queues are consuming too much memory, this
 * variable may need to be decreased.
 */
int zfs_redact_queue_length = 1024 * 1024;

/*
 * These tunables control the fill fraction of the queues by zfs redact. The
 * fill fraction controls the frequency with which threads have to be
 * cv_signaled. If a lot of cpu time is being spent on cv_signal, then these
 * should be tuned down.  If the queues empty before the signalled thread can
 * catch up, then these should be tuned up.
 */
uint64_t zfs_redact_queue_ff = 20;

struct redact_record {
	bqueue_node_t		ln;
	boolean_t		eos_marker; /* Marks the end of the stream */
	uint64_t		start_object;
	uint64_t		start_blkid;
	uint64_t		end_object;
	uint64_t		end_blkid;
	uint8_t			indblkshift;
	uint32_t		datablksz;
};

struct redact_thread_arg {
	bqueue_t	q;
	objset_t	*os;		/* Objset to traverse */
	dsl_dataset_t	*ds;		/* Dataset to traverse */
	struct redact_record *current_record;
	int		error_code;
	boolean_t	cancel;
	zbookmark_phys_t resume;
	objlist_t	*deleted_objs;
	uint64_t	*num_blocks_visited;
	uint64_t	ignore_object;	/* ignore further callbacks on this */
	uint64_t	txg; /* txg to traverse since */
};

/*
 * The redaction node is a wrapper around the redaction record that is used
 * by the redaction merging thread to sort the records and determine overlaps.
 *
 * It contains two nodes; one sorts the records by their start_zb, and the other
 * sorts the records by their end_zb.
 */
struct redact_node {
	avl_node_t			avl_node_start;
	avl_node_t			avl_node_end;
	struct redact_record		*record;
	struct redact_thread_arg	*rt_arg;
	uint32_t			thread_num;
};

struct merge_data {
	list_t				md_redact_block_pending;
	redact_block_phys_t		md_coalesce_block;
	uint64_t			md_last_time;
	redact_block_phys_t		md_furthest[TXG_SIZE];
	/* Lists of struct redact_block_list_node. */
	list_t				md_blocks[TXG_SIZE];
	boolean_t			md_synctask_txg[TXG_SIZE];
	uint64_t			md_latest_synctask_txg;
	redaction_list_t		*md_redaction_list;
};

/*
 * A wrapper around struct redact_block so it can be stored in a list_t.
 */
struct redact_block_list_node {
	redact_block_phys_t	block;
	list_node_t		node;
};

/*
 * We've found a new redaction candidate.  In order to improve performance, we
 * coalesce these blocks when they're adjacent to each other.  This function
 * handles that.  If the new candidate block range is immediately after the
 * range we're building, coalesce it into the range we're building.  Otherwise,
 * put the record we're building on the queue, and update the build pointer to
 * point to the new record.
 */
static void
record_merge_enqueue(bqueue_t *q, struct redact_record **build,
    struct redact_record *new)
{
	if (new->eos_marker) {
		if (*build != NULL)
			bqueue_enqueue(q, *build, sizeof (*build));
		bqueue_enqueue_flush(q, new, sizeof (*new));
		return;
	}
	if (*build == NULL) {
		*build = new;
		return;
	}
	struct redact_record *curbuild = *build;
	if ((curbuild->end_object == new->start_object &&
	    curbuild->end_blkid + 1 == new->start_blkid &&
	    curbuild->end_blkid != UINT64_MAX) ||
	    (curbuild->end_object + 1 == new->start_object &&
	    curbuild->end_blkid == UINT64_MAX && new->start_blkid == 0)) {
		curbuild->end_object = new->end_object;
		curbuild->end_blkid = new->end_blkid;
		kmem_free(new, sizeof (*new));
	} else {
		bqueue_enqueue(q, curbuild, sizeof (*curbuild));
		*build = new;
	}
}
#ifdef _KERNEL
struct objnode {
	avl_node_t node;
	uint64_t obj;
};

static int
objnode_compare(const void *o1, const void *o2)
{
	const struct objnode *obj1 = o1;
	const struct objnode *obj2 = o2;
	if (obj1->obj < obj2->obj)
		return (-1);
	if (obj1->obj > obj2->obj)
		return (1);
	return (0);
}


static objlist_t *
zfs_get_deleteq(objset_t *os)
{
	objlist_t *deleteq_objlist = objlist_create();
	uint64_t deleteq_obj;
	zap_cursor_t zc;
	zap_attribute_t za;
	dmu_object_info_t doi;

	ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
	VERIFY0(dmu_object_info(os, MASTER_NODE_OBJ, &doi));
	ASSERT3U(doi.doi_type, ==, DMU_OT_MASTER_NODE);

	VERIFY0(zap_lookup(os, MASTER_NODE_OBJ,
	    ZFS_UNLINKED_SET, sizeof (uint64_t), 1, &deleteq_obj));

	/*
	 * In order to insert objects into the objlist, they must be in sorted
	 * order. We don't know what order we'll get them out of the ZAP in, so
	 * we insert them into and remove them from an avl_tree_t to sort them.
	 */
	avl_tree_t at;
	avl_create(&at, objnode_compare, sizeof (struct objnode),
	    offsetof(struct objnode, node));

	for (zap_cursor_init(&zc, os, deleteq_obj);
	    zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) {
		struct objnode *obj = kmem_zalloc(sizeof (*obj), KM_SLEEP);
		obj->obj = za.za_first_integer;
		avl_add(&at, obj);
	}
	zap_cursor_fini(&zc);

	struct objnode *next, *found = avl_first(&at);
	while (found != NULL) {
		next = AVL_NEXT(&at, found);
		objlist_insert(deleteq_objlist, found->obj);
		found = next;
	}

	void *cookie = NULL;
	while ((found = avl_destroy_nodes(&at, &cookie)) != NULL)
		kmem_free(found, sizeof (*found));
	avl_destroy(&at);
	return (deleteq_objlist);
}
#endif

/*
 * This is the callback function to traverse_dataset for the redaction threads
 * for dmu_redact_snap.  This thread is responsible for creating redaction
 * records for all the data that is modified by the snapshots we're redacting
 * with respect to.  Redaction records represent ranges of data that have been
 * modified by one of the redaction snapshots, and are stored in the
 * redact_record struct. We need to create redaction records for three
 * cases:
 *
 * First, if there's a normal write, we need to create a redaction record for
 * that block.
 *
 * Second, if there's a hole, we need to create a redaction record that covers
 * the whole range of the hole.  If the hole is in the meta-dnode, it must cover
 * every block in all of the objects in the hole.
 *
 * Third, if there is a deleted object, we need to create a redaction record for
 * all of the blocks in that object.
 */
/*ARGSUSED*/
static int
redact_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
    const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
{
	struct redact_thread_arg *rta = arg;
	struct redact_record *record;

	ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
	    zb->zb_object >= rta->resume.zb_object);

	if (rta->cancel)
		return (SET_ERROR(EINTR));

	if (rta->ignore_object == zb->zb_object)
		return (0);

	/*
	 * If we're visiting a dnode, we need to handle the case where the
	 * object has been deleted.
	 */
	if (zb->zb_level == ZB_DNODE_LEVEL) {
		ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);

		if (zb->zb_object == 0)
			return (0);

		/*
		 * If the object has been deleted, redact all of the blocks in
		 * it.
		 */
		if (dnp->dn_type == DMU_OT_NONE ||
		    objlist_exists(rta->deleted_objs, zb->zb_object)) {
			rta->ignore_object = zb->zb_object;
			record = kmem_zalloc(sizeof (struct redact_record),
			    KM_SLEEP);

			record->eos_marker = B_FALSE;
			record->start_object = record->end_object =
			    zb->zb_object;
			record->start_blkid = 0;
			record->end_blkid = UINT64_MAX;
			record_merge_enqueue(&rta->q,
			    &rta->current_record, record);
		}
		return (0);
	} else if (zb->zb_level < 0) {
		return (0);
	} else if (zb->zb_level > 0 && !BP_IS_HOLE(bp)) {
		/*
		 * If this is an indirect block, but not a hole, it doesn't
		 * provide any useful information for redaction, so ignore it.
		 */
		return (0);
	}

	/*
	 * At this point, there are two options left for the type of block we're
	 * looking at.  Either this is a hole (which could be in the dnode or
	 * the meta-dnode), or it's a level 0 block of some sort.  If it's a
	 * hole, we create a redaction record that covers the whole range.  If
	 * the hole is in a dnode, we need to redact all the blocks in that
	 * hole.  If the hole is in the meta-dnode, we instead need to redact
	 * all blocks in every object covered by that hole.  If it's a level 0
	 * block, we only need to redact that single block.
	 */
	record = kmem_zalloc(sizeof (struct redact_record), KM_SLEEP);
	record->eos_marker = B_FALSE;

	record->start_object = record->end_object = zb->zb_object;
	if (BP_IS_HOLE(bp)) {
		record->start_blkid = zb->zb_blkid *
		    bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level);

		record->end_blkid = ((zb->zb_blkid + 1) *
		    bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level)) - 1;

		if (zb->zb_object == DMU_META_DNODE_OBJECT) {
			record->start_object = record->start_blkid *
			    ((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) /
			    sizeof (dnode_phys_t));
			record->start_blkid = 0;
			record->end_object = ((record->end_blkid +
			    1) * ((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) /
			    sizeof (dnode_phys_t))) - 1;
			record->end_blkid = UINT64_MAX;
		}
	} else if (zb->zb_level != 0 ||
	    zb->zb_object == DMU_META_DNODE_OBJECT) {
		kmem_free(record, sizeof (*record));
		return (0);
	} else {
		record->start_blkid = record->end_blkid = zb->zb_blkid;
	}
	record->indblkshift = dnp->dn_indblkshift;
	record->datablksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
	record_merge_enqueue(&rta->q, &rta->current_record, record);

	return (0);
}

static void
redact_traverse_thread(void *arg)
{
	struct redact_thread_arg *rt_arg = arg;
	int err;
	struct redact_record *data;
#ifdef _KERNEL
	if (rt_arg->os->os_phys->os_type == DMU_OST_ZFS)
		rt_arg->deleted_objs = zfs_get_deleteq(rt_arg->os);
	else
		rt_arg->deleted_objs = objlist_create();
#else
	rt_arg->deleted_objs = objlist_create();
#endif

	err = traverse_dataset_resume(rt_arg->ds, rt_arg->txg,
	    &rt_arg->resume, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
	    redact_cb, rt_arg);

	if (err != EINTR)
		rt_arg->error_code = err;
	objlist_destroy(rt_arg->deleted_objs);
	data = kmem_zalloc(sizeof (*data), KM_SLEEP);
	data->eos_marker = B_TRUE;
	record_merge_enqueue(&rt_arg->q, &rt_arg->current_record, data);
	thread_exit();
}

static inline void
create_zbookmark_from_obj_off(zbookmark_phys_t *zb, uint64_t object,
    uint64_t blkid)
{
	zb->zb_object = object;
	zb->zb_level = 0;
	zb->zb_blkid = blkid;
}

/*
 * This is a utility function that can do the comparison for the start or ends
 * of the ranges in a redact_record.
 */
static int
redact_range_compare(uint64_t obj1, uint64_t off1, uint32_t dbss1,
    uint64_t obj2, uint64_t off2, uint32_t dbss2)
{
	zbookmark_phys_t z1, z2;
	create_zbookmark_from_obj_off(&z1, obj1, off1);
	create_zbookmark_from_obj_off(&z2, obj2, off2);

	return (zbookmark_compare(dbss1 >> SPA_MINBLOCKSHIFT, 0,
	    dbss2 >> SPA_MINBLOCKSHIFT, 0, &z1, &z2));
}

/*
 * Compare two redaction records by their range's start location.  Also makes
 * eos records always compare last.  We use the thread number in the redact_node
 * to ensure that records do not compare equal (which is not allowed in our avl
 * trees).
 */
static int
redact_node_compare_start(const void *arg1, const void *arg2)
{
	const struct redact_node *rn1 = arg1;
	const struct redact_node *rn2 = arg2;
	const struct redact_record *rr1 = rn1->record;
	const struct redact_record *rr2 = rn2->record;
	if (rr1->eos_marker)
		return (1);
	if (rr2->eos_marker)
		return (-1);

	int cmp = redact_range_compare(rr1->start_object, rr1->start_blkid,
	    rr1->datablksz, rr2->start_object, rr2->start_blkid,
	    rr2->datablksz);
	if (cmp == 0)
		cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1);
	return (cmp);
}

/*
 * Compare two redaction records by their range's end location.  Also makes
 * eos records always compare last.  We use the thread number in the redact_node
 * to ensure that records do not compare equal (which is not allowed in our avl
 * trees).
 */
static int
redact_node_compare_end(const void *arg1, const void *arg2)
{
	const struct redact_node *rn1 = arg1;
	const struct redact_node *rn2 = arg2;
	const struct redact_record *srr1 = rn1->record;
	const struct redact_record *srr2 = rn2->record;
	if (srr1->eos_marker)
		return (1);
	if (srr2->eos_marker)
		return (-1);

	int cmp = redact_range_compare(srr1->end_object, srr1->end_blkid,
	    srr1->datablksz, srr2->end_object, srr2->end_blkid,
	    srr2->datablksz);
	if (cmp == 0)
		cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1);
	return (cmp);
}

/*
 * Utility function that compares two redaction records to determine if any part
 * of the "from" record is before any part of the "to" record. Also causes End
 * of Stream redaction records to compare after all others, so that the
 * redaction merging logic can stay simple.
 */
static boolean_t
redact_record_before(const struct redact_record *from,
    const struct redact_record *to)
{
	if (from->eos_marker == B_TRUE)
		return (B_FALSE);
	else if (to->eos_marker == B_TRUE)
		return (B_TRUE);
	return (redact_range_compare(from->start_object, from->start_blkid,
	    from->datablksz, to->end_object, to->end_blkid,
	    to->datablksz) <= 0);
}

/*
 * Pop a new redaction record off the queue, check that the records are in the
 * right order, and free the old data.
 */
static struct redact_record *
get_next_redact_record(bqueue_t *bq, struct redact_record *prev)
{
	struct redact_record *next = bqueue_dequeue(bq);
	ASSERT(redact_record_before(prev, next));
	kmem_free(prev, sizeof (*prev));
	return (next);
}

/*
 * Remove the given redaction node from both trees, pull a new redaction record
 * off the queue, free the old redaction record, update the redaction node, and
 * reinsert the node into the trees.
 */
static int
update_avl_trees(avl_tree_t *start_tree, avl_tree_t *end_tree,
    struct redact_node *redact_node)
{
	avl_remove(start_tree, redact_node);
	avl_remove(end_tree, redact_node);
	redact_node->record = get_next_redact_record(&redact_node->rt_arg->q,
	    redact_node->record);
	avl_add(end_tree, redact_node);
	avl_add(start_tree, redact_node);
	return (redact_node->rt_arg->error_code);
}

/*
 * Synctask for updating redaction lists.  We first take this txg's list of
 * redacted blocks and append those to the redaction list.  We then update the
 * redaction list's bonus buffer.  We store the furthest blocks we visited and
 * the list of snapshots that we're redacting with respect to.  We need these so
 * that redacted sends and receives can be correctly resumed.
 */
static void
redaction_list_update_sync(void *arg, dmu_tx_t *tx)
{
	struct merge_data *md = arg;
	uint64_t txg = dmu_tx_get_txg(tx);
	list_t *list = &md->md_blocks[txg & TXG_MASK];
	redact_block_phys_t *furthest_visited =
	    &md->md_furthest[txg & TXG_MASK];
	objset_t *mos = tx->tx_pool->dp_meta_objset;
	redaction_list_t *rl = md->md_redaction_list;
	int bufsize = redact_sync_bufsize;
	redact_block_phys_t *buf = kmem_alloc(bufsize * sizeof (*buf),
	    KM_SLEEP);
	int index = 0;

	dmu_buf_will_dirty(rl->rl_dbuf, tx);

	for (struct redact_block_list_node *rbln = list_remove_head(list);
	    rbln != NULL; rbln = list_remove_head(list)) {
		ASSERT3U(rbln->block.rbp_object, <=,
		    furthest_visited->rbp_object);
		ASSERT(rbln->block.rbp_object < furthest_visited->rbp_object ||
		    rbln->block.rbp_blkid <= furthest_visited->rbp_blkid);
		buf[index] = rbln->block;
		index++;
		if (index == bufsize) {
			dmu_write(mos, rl->rl_object,
			    rl->rl_phys->rlp_num_entries * sizeof (*buf),
			    bufsize * sizeof (*buf), buf, tx);
			rl->rl_phys->rlp_num_entries += bufsize;
			index = 0;
		}
		kmem_free(rbln, sizeof (*rbln));
	}
	if (index > 0) {
		dmu_write(mos, rl->rl_object, rl->rl_phys->rlp_num_entries *
		    sizeof (*buf), index * sizeof (*buf), buf, tx);
		rl->rl_phys->rlp_num_entries += index;
	}
	kmem_free(buf, bufsize * sizeof (*buf));

	md->md_synctask_txg[txg & TXG_MASK] = B_FALSE;
	rl->rl_phys->rlp_last_object = furthest_visited->rbp_object;
	rl->rl_phys->rlp_last_blkid = furthest_visited->rbp_blkid;
}

static void
commit_rl_updates(objset_t *os, struct merge_data *md, uint64_t object,
    uint64_t blkid)
{
	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(os->os_spa)->dp_mos_dir);
	dmu_tx_hold_space(tx, sizeof (struct redact_block_list_node));
	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
	uint64_t txg = dmu_tx_get_txg(tx);
	if (!md->md_synctask_txg[txg & TXG_MASK]) {
		dsl_sync_task_nowait(dmu_tx_pool(tx),
		    redaction_list_update_sync, md, tx);
		md->md_synctask_txg[txg & TXG_MASK] = B_TRUE;
		md->md_latest_synctask_txg = txg;
	}
	md->md_furthest[txg & TXG_MASK].rbp_object = object;
	md->md_furthest[txg & TXG_MASK].rbp_blkid = blkid;
	list_move_tail(&md->md_blocks[txg & TXG_MASK],
	    &md->md_redact_block_pending);
	dmu_tx_commit(tx);
	md->md_last_time = gethrtime();
}

/*
 * We want to store the list of blocks that we're redacting in the bookmark's
 * redaction list.  However, this list is stored in the MOS, which means it can
 * only be written to in syncing context.  To get around this, we create a
 * synctask that will write to the mos for us.  We tell it what to write by
 * a linked list for each current transaction group; every time we decide to
 * redact a block, we append it to the transaction group that is currently in
 * open context.  We also update some progress information that the synctask
 * will store to enable resumable redacted sends.
 */
static void
update_redaction_list(struct merge_data *md, objset_t *os,
    uint64_t object, uint64_t blkid, uint64_t endblkid, uint32_t blksz)
{
	boolean_t enqueue = B_FALSE;
	redact_block_phys_t cur = {0};
	uint64_t count = endblkid - blkid + 1;
	while (count > REDACT_BLOCK_MAX_COUNT) {
		update_redaction_list(md, os, object, blkid,
		    blkid + REDACT_BLOCK_MAX_COUNT - 1, blksz);
		blkid += REDACT_BLOCK_MAX_COUNT;
		count -= REDACT_BLOCK_MAX_COUNT;
	}
	redact_block_phys_t *coalesce = &md->md_coalesce_block;
	boolean_t new;
	if (coalesce->rbp_size_count == 0) {
		new = B_TRUE;
		enqueue = B_FALSE;
	} else  {
		uint64_t old_count = redact_block_get_count(coalesce);
		if (coalesce->rbp_object == object &&
		    coalesce->rbp_blkid + old_count == blkid &&
		    old_count + count <= REDACT_BLOCK_MAX_COUNT) {
			ASSERT3U(redact_block_get_size(coalesce), ==, blksz);
			redact_block_set_count(coalesce, old_count + count);
			new = B_FALSE;
			enqueue = B_FALSE;
		} else {
			new = B_TRUE;
			enqueue = B_TRUE;
		}
	}

	if (new) {
		cur = *coalesce;
		coalesce->rbp_blkid = blkid;
		coalesce->rbp_object = object;

		redact_block_set_count(coalesce, count);
		redact_block_set_size(coalesce, blksz);
	}

	if (enqueue && redact_block_get_size(&cur) != 0) {
		struct redact_block_list_node *rbln =
		    kmem_alloc(sizeof (struct redact_block_list_node),
		    KM_SLEEP);
		rbln->block = cur;
		list_insert_tail(&md->md_redact_block_pending, rbln);
	}

	if (gethrtime() > md->md_last_time +
	    redaction_list_update_interval_ns) {
		commit_rl_updates(os, md, object, blkid);
	}
}

/*
 * This thread merges all the redaction records provided by the worker threads,
 * and determines which blocks are redacted by all the snapshots.  The algorithm
 * for doing so is similar to performing a merge in mergesort with n sub-lists
 * instead of 2, with some added complexity due to the fact that the entries are
 * ranges, not just single blocks.  This algorithm relies on the fact that the
 * queues are sorted, which is ensured by the fact that traverse_dataset
 * traverses the dataset in a consistent order.  We pull one entry off the front
 * of the queues of each secure dataset traversal thread.  Then we repeat the
 * following: each record represents a range of blocks modified by one of the
 * redaction snapshots, and each block in that range may need to be redacted in
 * the send stream.  Find the record with the latest start of its range, and the
 * record with the earliest end of its range. If the last start is before the
 * first end, then we know that the blocks in the range [last_start, first_end]
 * are covered by all of the ranges at the front of the queues, which means
 * every thread redacts that whole range.  For example, let's say the ranges on
 * each queue look like this:
 *
 * Block Id   1  2  3  4  5  6  7  8  9 10 11
 * Thread 1 |    [====================]
 * Thread 2 |       [========]
 * Thread 3 |             [=================]
 *
 * Thread 3 has the last start (5), and the thread 2 has the last end (6).  All
 * three threads modified the range [5,6], so that data should not be sent over
 * the wire.  After we've determined whether or not to redact anything, we take
 * the record with the first end.  We discard that record, and pull a new one
 * off the front of the queue it came from.  In the above example, we would
 * discard Thread 2's record, and pull a new one.  Let's say the next record we
 * pulled from Thread 2 covered range [10,11].  The new layout would look like
 * this:
 *
 * Block Id   1  2  3  4  5  6  7  8  9 10 11
 * Thread 1 |    [====================]
 * Thread 2 |                            [==]
 * Thread 3 |             [=================]
 *
 * When we compare the last start (10, from Thread 2) and the first end (9, from
 * Thread 1), we see that the last start is greater than the first end.
 * Therefore, we do not redact anything from these records.  We'll iterate by
 * replacing the record from Thread 1.
 *
 * We iterate by replacing the record with the lowest end because we know
 * that the record with the lowest end has helped us as much as it can.  All the
 * ranges before it that we will ever redact have been redacted.  In addition,
 * by replacing the one with the lowest end, we guarantee we catch all ranges
 * that need to be redacted.  For example, if in the case above we had replaced
 * the record from Thread 1 instead, we might have ended up with the following:
 *
 * Block Id   1  2  3  4  5  6  7  8  9 10 11 12
 * Thread 1 |                               [==]
 * Thread 2 |       [========]
 * Thread 3 |             [=================]
 *
 * If the next record from Thread 2 had been [8,10], for example, we should have
 * redacted part of that range, but because we updated Thread 1's record, we
 * missed it.
 *
 * We implement this algorithm by using two trees.  The first sorts the
 * redaction records by their start_zb, and the second sorts them by their
 * end_zb.  We use these to find the record with the last start and the record
 * with the first end.  We create a record with that start and end, and send it
 * on.  The overall runtime of this implementation is O(n log m), where n is the
 * total number of redaction records from all the different redaction snapshots,
 * and m is the number of redaction snapshots.
 *
 * If we redact with respect to zero snapshots, we create a redaction
 * record with the start object and blkid to 0, and the end object and blkid to
 * UINT64_MAX.  This will result in us redacting every block.
 */
static int
perform_thread_merge(bqueue_t *q, uint32_t num_threads,
    struct redact_thread_arg *thread_args, boolean_t *cancel)
{
	struct redact_node *redact_nodes = NULL;
	avl_tree_t start_tree, end_tree;
	struct redact_record *record;
	struct redact_record *current_record = NULL;
	int err = 0;
	struct merge_data md = { {0} };
	list_create(&md.md_redact_block_pending,
	    sizeof (struct redact_block_list_node),
	    offsetof(struct redact_block_list_node, node));

	/*
	 * If we're redacting with respect to zero snapshots, then no data is
	 * permitted to be sent.  We enqueue a record that redacts all blocks,
	 * and an eos marker.
	 */
	if (num_threads == 0) {
		record = kmem_zalloc(sizeof (struct redact_record),
		    KM_SLEEP);
		// We can't redact object 0, so don't try.
		record->start_object = 1;
		record->start_blkid = 0;
		record->end_object = record->end_blkid = UINT64_MAX;
		bqueue_enqueue(q, record, sizeof (*record));
		return (0);
	}
	if (num_threads > 0) {
		redact_nodes = kmem_zalloc(num_threads *
		    sizeof (*redact_nodes), KM_SLEEP);
	}

	avl_create(&start_tree, redact_node_compare_start,
	    sizeof (struct redact_node),
	    offsetof(struct redact_node, avl_node_start));
	avl_create(&end_tree, redact_node_compare_end,
	    sizeof (struct redact_node),
	    offsetof(struct redact_node, avl_node_end));

	for (int i = 0; i < num_threads; i++) {
		struct redact_node *node = &redact_nodes[i];
		struct redact_thread_arg *targ = &thread_args[i];
		node->record = bqueue_dequeue(&targ->q);
		node->rt_arg = targ;
		node->thread_num = i;
		avl_add(&start_tree, node);
		avl_add(&end_tree, node);
	}

	/*
	 * Once the first record in the end tree has returned EOS, every record
	 * must be an EOS record, so we should stop.
	 */
	while (err == 0 && !((struct redact_node *)avl_first(&end_tree))->
	    record->eos_marker) {
		if (*cancel) {
			err = EINTR;
			break;
		}
		struct redact_node *last_start = avl_last(&start_tree);
		struct redact_node *first_end = avl_first(&end_tree);

		/*
		 * If the last start record is before the first end record,
		 * then we have blocks that are redacted by all threads.
		 * Therefore, we should redact them.  Copy the record, and send
		 * it to the main thread.
		 */
		if (redact_record_before(last_start->record,
		    first_end->record)) {
			record = kmem_zalloc(sizeof (struct redact_record),
			    KM_SLEEP);
			*record = *first_end->record;
			record->start_object = last_start->record->start_object;
			record->start_blkid = last_start->record->start_blkid;
			record_merge_enqueue(q, &current_record,
			    record);
		}
		err = update_avl_trees(&start_tree, &end_tree, first_end);
	}

	/*
	 * We're done; if we were cancelled, we need to cancel our workers and
	 * clear out their queues.  Either way, we need to remove every thread's
	 * redact_node struct from the avl trees.
	 */
	for (int i = 0; i < num_threads; i++) {
		if (err != 0) {
			thread_args[i].cancel = B_TRUE;
			while (!redact_nodes[i].record->eos_marker) {
				(void) update_avl_trees(&start_tree, &end_tree,
				    &redact_nodes[i]);
			}
		}
		avl_remove(&start_tree, &redact_nodes[i]);
		avl_remove(&end_tree, &redact_nodes[i]);
		kmem_free(redact_nodes[i].record,
		    sizeof (struct redact_record));
	}

	avl_destroy(&start_tree);
	avl_destroy(&end_tree);
	kmem_free(redact_nodes, num_threads * sizeof (*redact_nodes));
	if (current_record != NULL)
		bqueue_enqueue(q, current_record, sizeof (current_record));
	return (err);
}

struct redact_merge_thread_arg {
	bqueue_t q;
	spa_t *spa;
	int numsnaps;
	struct redact_thread_arg *thr_args;
	boolean_t cancel;
	int error_code;
};

static void
redact_merge_thread(void *arg)
{
	struct redact_merge_thread_arg *rmta = arg;
	rmta->error_code = perform_thread_merge(&rmta->q,
	    rmta->numsnaps, rmta->thr_args, &rmta->cancel);
	struct redact_record *rec = kmem_zalloc(sizeof (*rec), KM_SLEEP);
	rec->eos_marker = B_TRUE;
	bqueue_enqueue_flush(&rmta->q, rec, 1);
	thread_exit();
}

/*
 * Find the next object in or after the redaction range passed in, and hold
 * its dnode with the provided tag.  Also update *object to contain the new
 * object number.
 */
static int
hold_next_object(objset_t *os, struct redact_record *rec, void *tag,
    uint64_t *object, dnode_t **dn)
{
	int err = 0;
	if (*dn != NULL)
		dnode_rele(*dn, FTAG);
	*dn = NULL;
	if (*object < rec->start_object) {
		*object = rec->start_object - 1;
	}
	err = dmu_object_next(os, object, B_FALSE, 0);
	if (err != 0)
		return (err);

	err = dnode_hold(os, *object, tag, dn);
	while (err == 0 && (*object < rec->start_object ||
	    DMU_OT_IS_METADATA((*dn)->dn_type))) {
		dnode_rele(*dn, tag);
		*dn = NULL;
		err = dmu_object_next(os, object, B_FALSE, 0);
		if (err != 0)
			break;
		err = dnode_hold(os, *object, tag, dn);
	}
	return (err);
}

static int
perform_redaction(objset_t *os, redaction_list_t *rl,
    struct redact_merge_thread_arg *rmta)
{
	int err = 0;
	bqueue_t *q = &rmta->q;
	struct redact_record *rec = NULL;
	struct merge_data md = { {0} };

	list_create(&md.md_redact_block_pending,
	    sizeof (struct redact_block_list_node),
	    offsetof(struct redact_block_list_node, node));
	md.md_redaction_list = rl;

	for (int i = 0; i < TXG_SIZE; i++) {
		list_create(&md.md_blocks[i],
		    sizeof (struct redact_block_list_node),
		    offsetof(struct redact_block_list_node, node));
	}
	dnode_t *dn = NULL;
	uint64_t prev_obj = 0;
	for (rec = bqueue_dequeue(q); !rec->eos_marker && err == 0;
	    rec = get_next_redact_record(q, rec)) {
		ASSERT3U(rec->start_object, !=, 0);
		uint64_t object;
		if (prev_obj != rec->start_object) {
			object = rec->start_object - 1;
			err = hold_next_object(os, rec, FTAG, &object, &dn);
		} else {
			object = prev_obj;
		}
		while (err == 0 && object <= rec->end_object) {
			if (issig(JUSTLOOKING) && issig(FORREAL)) {
				err = EINTR;
				break;
			}
			/*
			 * Part of the current object is contained somewhere in
			 * the range covered by rec.
			 */
			uint64_t startblkid;
			uint64_t endblkid;
			uint64_t maxblkid = dn->dn_phys->dn_maxblkid;

			if (rec->start_object < object)
				startblkid = 0;
			else if (rec->start_blkid > maxblkid)
				break;
			else
				startblkid = rec->start_blkid;

			if (rec->end_object > object || rec->end_blkid >
			    maxblkid) {
				endblkid = maxblkid;
			} else {
				endblkid = rec->end_blkid;
			}
			update_redaction_list(&md, os, object, startblkid,
			    endblkid, dn->dn_datablksz);

			if (object == rec->end_object)
				break;
			err = hold_next_object(os, rec, FTAG, &object, &dn);
		}
		if (err == ESRCH)
			err = 0;
		if (dn != NULL)
			prev_obj = object;
	}
	if (err == 0 && dn != NULL)
		dnode_rele(dn, FTAG);

	if (err == ESRCH)
		err = 0;
	rmta->cancel = B_TRUE;
	while (!rec->eos_marker)
		rec = get_next_redact_record(q, rec);
	kmem_free(rec, sizeof (*rec));

	/*
	 * There may be a block that's being coalesced, sync that out before we
	 * return.
	 */
	if (err == 0 && md.md_coalesce_block.rbp_size_count != 0) {
		struct redact_block_list_node *rbln =
		    kmem_alloc(sizeof (struct redact_block_list_node),
		    KM_SLEEP);
		rbln->block = md.md_coalesce_block;
		list_insert_tail(&md.md_redact_block_pending, rbln);
	}
	commit_rl_updates(os, &md, UINT64_MAX, UINT64_MAX);

	/*
	 * Wait for all the redaction info to sync out before we return, so that
	 * anyone who attempts to resume this redaction will have all the data
	 * they need.
	 */
	dsl_pool_t *dp = spa_get_dsl(os->os_spa);
	if (md.md_latest_synctask_txg != 0)
		txg_wait_synced(dp, md.md_latest_synctask_txg);
	for (int i = 0; i < TXG_SIZE; i++)
		list_destroy(&md.md_blocks[i]);
	return (err);
}

static boolean_t
redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
{
	for (int i = 0; i < num_snaps; i++) {
		if (snaps[i] == guid)
			return (B_TRUE);
	}
	return (B_FALSE);
}

int
dmu_redact_snap(const char *snapname, nvlist_t *redactnvl,
    const char *redactbook)
{
	int err = 0;
	dsl_pool_t *dp = NULL;
	dsl_dataset_t *ds = NULL;
	int numsnaps = 0;
	objset_t *os;
	struct redact_thread_arg *args = NULL;
	redaction_list_t *new_rl = NULL;

	if ((err = dsl_pool_hold(snapname, FTAG, &dp)) != 0)
		return (err);

	if ((err = dsl_dataset_hold_flags(dp, snapname, DS_HOLD_FLAG_DECRYPT,
	    FTAG, &ds)) != 0) {
		goto out;
	}
	dsl_dataset_long_hold(ds, FTAG);
	if (!ds->ds_is_snapshot || dmu_objset_from_ds(ds, &os) != 0) {
		err = EINVAL;
		goto out;
	}
	if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_REDACTED_DATASETS)) {
		err = EALREADY;
		goto out;
	}

	numsnaps = fnvlist_num_pairs(redactnvl);
	if (numsnaps > 0)
		args = kmem_zalloc(numsnaps * sizeof (*args), KM_SLEEP);

	nvpair_t *pair = NULL;
	for (int i = 0; i < numsnaps; i++) {
		pair = nvlist_next_nvpair(redactnvl, pair);
		const char *name = nvpair_name(pair);
		struct redact_thread_arg *rta = &args[i];
		err = dsl_dataset_hold_flags(dp, name, DS_HOLD_FLAG_DECRYPT,
		    FTAG, &rta->ds);
		if (err != 0)
			break;
		/*
		 * We want to do the long hold before we can get any other
		 * errors, because the cleanup code will release the long
		 * hold if rta->ds is filled in.
		 */
		dsl_dataset_long_hold(rta->ds, FTAG);

		err = dmu_objset_from_ds(rta->ds, &rta->os);
		if (err != 0)
			break;
		if (!dsl_dataset_is_before(rta->ds, ds, 0)) {
			err = EINVAL;
			break;
		}
		if (dsl_dataset_feature_is_active(rta->ds,
		    SPA_FEATURE_REDACTED_DATASETS)) {
			err = EALREADY;
			break;

		}
	}
	VERIFY3P(nvlist_next_nvpair(redactnvl, pair), ==, NULL);
	if (err != 0)
		goto out;

	boolean_t resuming = B_FALSE;
	char newredactbook[ZFS_MAX_DATASET_NAME_LEN];
	zfs_bookmark_phys_t bookmark;

	(void) strlcpy(newredactbook, snapname, ZFS_MAX_DATASET_NAME_LEN);
	char *c = strchr(newredactbook, '@');
	ASSERT3P(c, !=, NULL);
	int n = snprintf(c, ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook),
	    "#%s", redactbook);
	if (n >= ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook)) {
		dsl_pool_rele(dp, FTAG);
		return (SET_ERROR(ENAMETOOLONG));
	}
	err = dsl_bookmark_lookup(dp, newredactbook, NULL, &bookmark);
	if (err == 0) {
		resuming = B_TRUE;
		if (bookmark.zbm_redaction_obj == 0) {
			err = EEXIST;
			goto out;
		}
		err = dsl_redaction_list_hold_obj(dp,
		    bookmark.zbm_redaction_obj, FTAG, &new_rl);
		if (err != 0) {
			err = EIO;
			goto out;
		}
		dsl_redaction_list_long_hold(dp, new_rl, FTAG);
		if (new_rl->rl_phys->rlp_num_snaps != numsnaps) {
			err = ESRCH;
			goto out;
		}
		for (int i = 0; i < numsnaps; i++) {
			struct redact_thread_arg *rta = &args[i];
			if (!redact_snaps_contains(new_rl->rl_phys->rlp_snaps,
			    new_rl->rl_phys->rlp_num_snaps,
			    dsl_dataset_phys(rta->ds)->ds_guid)) {
				err = ESRCH;
				goto out;
			}
		}
		if (new_rl->rl_phys->rlp_last_blkid == UINT64_MAX &&
		    new_rl->rl_phys->rlp_last_object == UINT64_MAX) {
			err = EEXIST;
			goto out;
		}
		dsl_pool_rele(dp, FTAG);
		dp = NULL;
	} else {
		uint64_t *guids = NULL;
		if (numsnaps > 0) {
			guids = kmem_zalloc(numsnaps * sizeof (uint64_t),
			    KM_SLEEP);
		}
		for (int i = 0; i < numsnaps; i++) {
			struct redact_thread_arg *rta = &args[i];
			guids[i] = dsl_dataset_phys(rta->ds)->ds_guid;
		}

		dsl_pool_rele(dp, FTAG);
		dp = NULL;
		err = dsl_bookmark_create_redacted(newredactbook, snapname,
		    numsnaps, guids, FTAG, &new_rl);
		kmem_free(guids, numsnaps * sizeof (uint64_t));
		if (err != 0) {
			goto out;
		}
	}

	for (int i = 0; i < numsnaps; i++) {
		struct redact_thread_arg *rta = &args[i];
		(void) bqueue_init(&rta->q, zfs_redact_queue_ff,
		    zfs_redact_queue_length,
		    offsetof(struct redact_record, ln));
		if (resuming) {
			rta->resume.zb_blkid =
			    new_rl->rl_phys->rlp_last_blkid;
			rta->resume.zb_object =
			    new_rl->rl_phys->rlp_last_object;
		}
		rta->txg = dsl_dataset_phys(ds)->ds_creation_txg;
		(void) thread_create(NULL, 0, redact_traverse_thread, rta,
		    0, curproc, TS_RUN, minclsyspri);
	}
	struct redact_merge_thread_arg rmta = { { {0} } };
	(void) bqueue_init(&rmta.q, zfs_redact_queue_ff,
	    zfs_redact_queue_length, offsetof(struct redact_record, ln));
	rmta.numsnaps = numsnaps;
	rmta.spa = os->os_spa;
	rmta.thr_args = args;
	(void) thread_create(NULL, 0, redact_merge_thread, &rmta, 0, curproc,
	    TS_RUN, minclsyspri);
	err = perform_redaction(os, new_rl, &rmta);
out:
	if (new_rl != NULL) {
		dsl_redaction_list_long_rele(new_rl, FTAG);
		dsl_redaction_list_rele(new_rl, FTAG);
	}
	for (int i = 0; i < numsnaps; i++) {
		struct redact_thread_arg *rta = &args[i];
		/*
		 * rta->ds may be NULL if we got an error while filling
		 * it in.
		 */
		if (rta->ds != NULL) {
			dsl_dataset_long_rele(rta->ds, FTAG);
			dsl_dataset_rele_flags(rta->ds,
			    DS_HOLD_FLAG_DECRYPT, FTAG);
		}
	}

	if (args != NULL)
		kmem_free(args, numsnaps * sizeof (*args));
	if (dp != NULL)
		dsl_pool_rele(dp, FTAG);
	if (ds != NULL) {
		dsl_dataset_long_rele(ds, FTAG);
		dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
	}
	return (SET_ERROR(err));

}