aboutsummaryrefslogtreecommitdiffstats
path: root/module/zfs/dmu.c
blob: 072076ffe91ddcecf880e1fcd0dd9a745fa80e66 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or https://opensource.org/licenses/CDDL-1.0.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
 * Copyright (c) 2019 Datto Inc.
 * Copyright (c) 2019, Klara Inc.
 * Copyright (c) 2019, Allan Jude
 * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
 */

#include <sys/dmu.h>
#include <sys/dmu_impl.h>
#include <sys/dmu_tx.h>
#include <sys/dbuf.h>
#include <sys/dnode.h>
#include <sys/zfs_context.h>
#include <sys/dmu_objset.h>
#include <sys/dmu_traverse.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_synctask.h>
#include <sys/dsl_prop.h>
#include <sys/dmu_zfetch.h>
#include <sys/zfs_ioctl.h>
#include <sys/zap.h>
#include <sys/zio_checksum.h>
#include <sys/zio_compress.h>
#include <sys/sa.h>
#include <sys/zfeature.h>
#include <sys/abd.h>
#include <sys/brt.h>
#include <sys/trace_zfs.h>
#include <sys/zfs_racct.h>
#include <sys/zfs_rlock.h>
#ifdef _KERNEL
#include <sys/vmsystm.h>
#include <sys/zfs_znode.h>
#endif

/*
 * Enable/disable nopwrite feature.
 */
static int zfs_nopwrite_enabled = 1;

/*
 * Tunable to control percentage of dirtied L1 blocks from frees allowed into
 * one TXG. After this threshold is crossed, additional dirty blocks from frees
 * will wait until the next TXG.
 * A value of zero will disable this throttle.
 */
static uint_t zfs_per_txg_dirty_frees_percent = 30;

/*
 * Enable/disable forcing txg sync when dirty checking for holes with lseek().
 * By default this is enabled to ensure accurate hole reporting, it can result
 * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
 * Disabling this option will result in holes never being reported in dirty
 * files which is always safe.
 */
static int zfs_dmu_offset_next_sync = 1;

/*
 * Limit the amount we can prefetch with one call to this amount.  This
 * helps to limit the amount of memory that can be used by prefetching.
 * Larger objects should be prefetched a bit at a time.
 */
uint_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;

const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "unallocated"		},
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "object directory"	},
	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "object array"		},
	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "packed nvlist"		},
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "packed nvlist size"	},
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj"			},
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj header"		},
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map header"	},
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map"		},
	{DMU_BSWAP_UINT64, TRUE,  FALSE, TRUE,  "ZIL intent log"	},
	{DMU_BSWAP_DNODE,  TRUE,  FALSE, TRUE,  "DMU dnode"		},
	{DMU_BSWAP_OBJSET, TRUE,  TRUE,  FALSE, "DMU objset"		},
	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL directory"		},
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL directory child map"},
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset snap map"	},
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL props"		},
	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL dataset"		},
	{DMU_BSWAP_ZNODE,  TRUE,  FALSE, FALSE, "ZFS znode"		},
	{DMU_BSWAP_OLDACL, TRUE,  FALSE, TRUE,  "ZFS V0 ACL"		},
	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "ZFS plain file"	},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS directory"		},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "ZFS master node"	},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS delete queue"	},
	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "zvol object"		},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "zvol prop"		},
	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "other uint8[]"		},
	{DMU_BSWAP_UINT64, FALSE, FALSE, TRUE,  "other uint64[]"	},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "other ZAP"		},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "persistent error log"	},
	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "SPA history"		},
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA history offsets"	},
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "Pool properties"	},
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL permissions"	},
	{DMU_BSWAP_ACL,    TRUE,  FALSE, TRUE,  "ZFS ACL"		},
	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "ZFS SYSACL"		},
	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "FUID table"		},
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "FUID table size"	},
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset next clones"},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan work queue"	},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project used" },
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project quota"},
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "snapshot refcount tags"},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT ZAP algorithm"	},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT statistics"	},
	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,	"System attributes"	},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA master node"	},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr registration"	},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr layouts"	},
	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan translations"	},
	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "deduplicated block"	},
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL deadlist map"	},
	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL deadlist map hdr"	},
	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dir clones"	},
	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj subobj"		}
};

dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
	{	byteswap_uint8_array,	"uint8"		},
	{	byteswap_uint16_array,	"uint16"	},
	{	byteswap_uint32_array,	"uint32"	},
	{	byteswap_uint64_array,	"uint64"	},
	{	zap_byteswap,		"zap"		},
	{	dnode_buf_byteswap,	"dnode"		},
	{	dmu_objset_byteswap,	"objset"	},
	{	zfs_znode_byteswap,	"znode"		},
	{	zfs_oldacl_byteswap,	"oldacl"	},
	{	zfs_acl_byteswap,	"acl"		}
};

static int
dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
    const void *tag, dmu_buf_t **dbp)
{
	uint64_t blkid;
	dmu_buf_impl_t *db;

	rw_enter(&dn->dn_struct_rwlock, RW_READER);
	blkid = dbuf_whichblock(dn, 0, offset);
	db = dbuf_hold(dn, blkid, tag);
	rw_exit(&dn->dn_struct_rwlock);

	if (db == NULL) {
		*dbp = NULL;
		return (SET_ERROR(EIO));
	}

	*dbp = &db->db;
	return (0);
}
int
dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
    const void *tag, dmu_buf_t **dbp)
{
	dnode_t *dn;
	uint64_t blkid;
	dmu_buf_impl_t *db;
	int err;

	err = dnode_hold(os, object, FTAG, &dn);
	if (err)
		return (err);
	rw_enter(&dn->dn_struct_rwlock, RW_READER);
	blkid = dbuf_whichblock(dn, 0, offset);
	db = dbuf_hold(dn, blkid, tag);
	rw_exit(&dn->dn_struct_rwlock);
	dnode_rele(dn, FTAG);

	if (db == NULL) {
		*dbp = NULL;
		return (SET_ERROR(EIO));
	}

	*dbp = &db->db;
	return (err);
}

int
dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
    const void *tag, dmu_buf_t **dbp, int flags)
{
	int err;
	int db_flags = DB_RF_CANFAIL;

	if (flags & DMU_READ_NO_PREFETCH)
		db_flags |= DB_RF_NOPREFETCH;
	if (flags & DMU_READ_NO_DECRYPT)
		db_flags |= DB_RF_NO_DECRYPT;

	err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
	if (err == 0) {
		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
		err = dbuf_read(db, NULL, db_flags);
		if (err != 0) {
			dbuf_rele(db, tag);
			*dbp = NULL;
		}
	}

	return (err);
}

int
dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
    const void *tag, dmu_buf_t **dbp, int flags)
{
	int err;
	int db_flags = DB_RF_CANFAIL;

	if (flags & DMU_READ_NO_PREFETCH)
		db_flags |= DB_RF_NOPREFETCH;
	if (flags & DMU_READ_NO_DECRYPT)
		db_flags |= DB_RF_NO_DECRYPT;

	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
	if (err == 0) {
		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
		err = dbuf_read(db, NULL, db_flags);
		if (err != 0) {
			dbuf_rele(db, tag);
			*dbp = NULL;
		}
	}

	return (err);
}

int
dmu_bonus_max(void)
{
	return (DN_OLD_MAX_BONUSLEN);
}

int
dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
	dnode_t *dn;
	int error;

	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);

	if (dn->dn_bonus != db) {
		error = SET_ERROR(EINVAL);
	} else if (newsize < 0 || newsize > db_fake->db_size) {
		error = SET_ERROR(EINVAL);
	} else {
		dnode_setbonuslen(dn, newsize, tx);
		error = 0;
	}

	DB_DNODE_EXIT(db);
	return (error);
}

int
dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
	dnode_t *dn;
	int error;

	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);

	if (!DMU_OT_IS_VALID(type)) {
		error = SET_ERROR(EINVAL);
	} else if (dn->dn_bonus != db) {
		error = SET_ERROR(EINVAL);
	} else {
		dnode_setbonus_type(dn, type, tx);
		error = 0;
	}

	DB_DNODE_EXIT(db);
	return (error);
}

dmu_object_type_t
dmu_get_bonustype(dmu_buf_t *db_fake)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
	dnode_t *dn;
	dmu_object_type_t type;

	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);
	type = dn->dn_bonustype;
	DB_DNODE_EXIT(db);

	return (type);
}

int
dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
{
	dnode_t *dn;
	int error;

	error = dnode_hold(os, object, FTAG, &dn);
	dbuf_rm_spill(dn, tx);
	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
	dnode_rm_spill(dn, tx);
	rw_exit(&dn->dn_struct_rwlock);
	dnode_rele(dn, FTAG);
	return (error);
}

/*
 * Lookup and hold the bonus buffer for the provided dnode.  If the dnode
 * has not yet been allocated a new bonus dbuf a will be allocated.
 * Returns ENOENT, EIO, or 0.
 */
int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
    uint32_t flags)
{
	dmu_buf_impl_t *db;
	int error;
	uint32_t db_flags = DB_RF_MUST_SUCCEED;

	if (flags & DMU_READ_NO_PREFETCH)
		db_flags |= DB_RF_NOPREFETCH;
	if (flags & DMU_READ_NO_DECRYPT)
		db_flags |= DB_RF_NO_DECRYPT;

	rw_enter(&dn->dn_struct_rwlock, RW_READER);
	if (dn->dn_bonus == NULL) {
		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
			rw_exit(&dn->dn_struct_rwlock);
			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
		}
		if (dn->dn_bonus == NULL)
			dbuf_create_bonus(dn);
	}
	db = dn->dn_bonus;

	/* as long as the bonus buf is held, the dnode will be held */
	if (zfs_refcount_add(&db->db_holds, tag) == 1) {
		VERIFY(dnode_add_ref(dn, db));
		atomic_inc_32(&dn->dn_dbufs_count);
	}

	/*
	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
	 * a dnode hold for every dbuf.
	 */
	rw_exit(&dn->dn_struct_rwlock);

	error = dbuf_read(db, NULL, db_flags);
	if (error) {
		dnode_evict_bonus(dn);
		dbuf_rele(db, tag);
		*dbp = NULL;
		return (error);
	}

	*dbp = &db->db;
	return (0);
}

int
dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp)
{
	dnode_t *dn;
	int error;

	error = dnode_hold(os, object, FTAG, &dn);
	if (error)
		return (error);

	error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
	dnode_rele(dn, FTAG);

	return (error);
}

/*
 * returns ENOENT, EIO, or 0.
 *
 * This interface will allocate a blank spill dbuf when a spill blk
 * doesn't already exist on the dnode.
 *
 * if you only want to find an already existing spill db, then
 * dmu_spill_hold_existing() should be used.
 */
int
dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, const void *tag,
    dmu_buf_t **dbp)
{
	dmu_buf_impl_t *db = NULL;
	int err;

	if ((flags & DB_RF_HAVESTRUCT) == 0)
		rw_enter(&dn->dn_struct_rwlock, RW_READER);

	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);

	if ((flags & DB_RF_HAVESTRUCT) == 0)
		rw_exit(&dn->dn_struct_rwlock);

	if (db == NULL) {
		*dbp = NULL;
		return (SET_ERROR(EIO));
	}
	err = dbuf_read(db, NULL, flags);
	if (err == 0)
		*dbp = &db->db;
	else {
		dbuf_rele(db, tag);
		*dbp = NULL;
	}
	return (err);
}

int
dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
	dnode_t *dn;
	int err;

	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);

	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
		err = SET_ERROR(EINVAL);
	} else {
		rw_enter(&dn->dn_struct_rwlock, RW_READER);

		if (!dn->dn_have_spill) {
			err = SET_ERROR(ENOENT);
		} else {
			err = dmu_spill_hold_by_dnode(dn,
			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
		}

		rw_exit(&dn->dn_struct_rwlock);
	}

	DB_DNODE_EXIT(db);
	return (err);
}

int
dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag,
    dmu_buf_t **dbp)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
	dnode_t *dn;
	int err;
	uint32_t db_flags = DB_RF_CANFAIL;

	if (flags & DMU_READ_NO_DECRYPT)
		db_flags |= DB_RF_NO_DECRYPT;

	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);
	err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
	DB_DNODE_EXIT(db);

	return (err);
}

/*
 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
 * and can induce severe lock contention when writing to several files
 * whose dnodes are in the same block.
 */
int
dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
    boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp,
    uint32_t flags)
{
	dmu_buf_t **dbp;
	zstream_t *zs = NULL;
	uint64_t blkid, nblks, i;
	uint32_t dbuf_flags;
	int err;
	zio_t *zio = NULL;
	boolean_t missed = B_FALSE;

	ASSERT(!read || length <= DMU_MAX_ACCESS);

	/*
	 * Note: We directly notify the prefetch code of this read, so that
	 * we can tell it about the multi-block read.  dbuf_read() only knows
	 * about the one block it is accessing.
	 */
	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
	    DB_RF_NOPREFETCH;

	if ((flags & DMU_READ_NO_DECRYPT) != 0)
		dbuf_flags |= DB_RF_NO_DECRYPT;

	rw_enter(&dn->dn_struct_rwlock, RW_READER);
	if (dn->dn_datablkshift) {
		int blkshift = dn->dn_datablkshift;
		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
		    P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
	} else {
		if (offset + length > dn->dn_datablksz) {
			zfs_panic_recover("zfs: accessing past end of object "
			    "%llx/%llx (size=%u access=%llu+%llu)",
			    (longlong_t)dn->dn_objset->
			    os_dsl_dataset->ds_object,
			    (longlong_t)dn->dn_object, dn->dn_datablksz,
			    (longlong_t)offset, (longlong_t)length);
			rw_exit(&dn->dn_struct_rwlock);
			return (SET_ERROR(EIO));
		}
		nblks = 1;
	}
	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);

	if (read)
		zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
		    ZIO_FLAG_CANFAIL);
	blkid = dbuf_whichblock(dn, 0, offset);
	if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
	    length <= zfetch_array_rd_sz) {
		/*
		 * Prepare the zfetch before initiating the demand reads, so
		 * that if multiple threads block on same indirect block, we
		 * base predictions on the original less racy request order.
		 */
		zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks, read,
		    B_TRUE);
	}
	for (i = 0; i < nblks; i++) {
		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
		if (db == NULL) {
			if (zs)
				dmu_zfetch_run(zs, missed, B_TRUE);
			rw_exit(&dn->dn_struct_rwlock);
			dmu_buf_rele_array(dbp, nblks, tag);
			if (read)
				zio_nowait(zio);
			return (SET_ERROR(EIO));
		}

		/*
		 * Initiate async demand data read.
		 * We check the db_state after calling dbuf_read() because
		 * (1) dbuf_read() may change the state to CACHED due to a
		 * hit in the ARC, and (2) on a cache miss, a child will
		 * have been added to "zio" but not yet completed, so the
		 * state will not yet be CACHED.
		 */
		if (read) {
			if (i == nblks - 1 && blkid + i < dn->dn_maxblkid &&
			    offset + length < db->db.db_offset +
			    db->db.db_size) {
				if (offset <= db->db.db_offset)
					dbuf_flags |= DB_RF_PARTIAL_FIRST;
				else
					dbuf_flags |= DB_RF_PARTIAL_MORE;
			}
			(void) dbuf_read(db, zio, dbuf_flags);
			if (db->db_state != DB_CACHED)
				missed = B_TRUE;
		}
		dbp[i] = &db->db;
	}

	if (!read)
		zfs_racct_write(length, nblks);

	if (zs)
		dmu_zfetch_run(zs, missed, B_TRUE);
	rw_exit(&dn->dn_struct_rwlock);

	if (read) {
		/* wait for async read i/o */
		err = zio_wait(zio);
		if (err) {
			dmu_buf_rele_array(dbp, nblks, tag);
			return (err);
		}

		/* wait for other io to complete */
		for (i = 0; i < nblks; i++) {
			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
			mutex_enter(&db->db_mtx);
			while (db->db_state == DB_READ ||
			    db->db_state == DB_FILL)
				cv_wait(&db->db_changed, &db->db_mtx);
			if (db->db_state == DB_UNCACHED)
				err = SET_ERROR(EIO);
			mutex_exit(&db->db_mtx);
			if (err) {
				dmu_buf_rele_array(dbp, nblks, tag);
				return (err);
			}
		}
	}

	*numbufsp = nblks;
	*dbpp = dbp;
	return (0);
}

int
dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
    uint64_t length, int read, const void *tag, int *numbufsp,
    dmu_buf_t ***dbpp)
{
	dnode_t *dn;
	int err;

	err = dnode_hold(os, object, FTAG, &dn);
	if (err)
		return (err);

	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
	    numbufsp, dbpp, DMU_READ_PREFETCH);

	dnode_rele(dn, FTAG);

	return (err);
}

int
dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
    uint64_t length, boolean_t read, const void *tag, int *numbufsp,
    dmu_buf_t ***dbpp)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
	dnode_t *dn;
	int err;

	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);
	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
	    numbufsp, dbpp, DMU_READ_PREFETCH);
	DB_DNODE_EXIT(db);

	return (err);
}

void
dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag)
{
	int i;
	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;

	if (numbufs == 0)
		return;

	for (i = 0; i < numbufs; i++) {
		if (dbp[i])
			dbuf_rele(dbp[i], tag);
	}

	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
}

/*
 * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
 * indirect blocks prefetched will be those that point to the blocks containing
 * the data starting at offset, and continuing to offset + len.
 *
 * Note that if the indirect blocks above the blocks being prefetched are not
 * in cache, they will be asynchronously read in.
 */
void
dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
    uint64_t len, zio_priority_t pri)
{
	dnode_t *dn;
	uint64_t blkid;
	int nblks, err;

	if (len == 0) {  /* they're interested in the bonus buffer */
		dn = DMU_META_DNODE(os);

		if (object == 0 || object >= DN_MAX_OBJECT)
			return;

		rw_enter(&dn->dn_struct_rwlock, RW_READER);
		blkid = dbuf_whichblock(dn, level,
		    object * sizeof (dnode_phys_t));
		dbuf_prefetch(dn, level, blkid, pri, 0);
		rw_exit(&dn->dn_struct_rwlock);
		return;
	}

	/*
	 * See comment before the definition of dmu_prefetch_max.
	 */
	len = MIN(len, dmu_prefetch_max);

	/*
	 * XXX - Note, if the dnode for the requested object is not
	 * already cached, we will do a *synchronous* read in the
	 * dnode_hold() call.  The same is true for any indirects.
	 */
	err = dnode_hold(os, object, FTAG, &dn);
	if (err != 0)
		return;

	/*
	 * offset + len - 1 is the last byte we want to prefetch for, and offset
	 * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
	 * last block we want to prefetch, and dbuf_whichblock(dn, level,
	 * offset)  is the first.  Then the number we need to prefetch is the
	 * last - first + 1.
	 */
	rw_enter(&dn->dn_struct_rwlock, RW_READER);
	if (level > 0 || dn->dn_datablkshift != 0) {
		nblks = dbuf_whichblock(dn, level, offset + len - 1) -
		    dbuf_whichblock(dn, level, offset) + 1;
	} else {
		nblks = (offset < dn->dn_datablksz);
	}

	if (nblks != 0) {
		blkid = dbuf_whichblock(dn, level, offset);
		for (int i = 0; i < nblks; i++)
			dbuf_prefetch(dn, level, blkid + i, pri, 0);
	}
	rw_exit(&dn->dn_struct_rwlock);

	dnode_rele(dn, FTAG);
}

/*
 * Get the next "chunk" of file data to free.  We traverse the file from
 * the end so that the file gets shorter over time (if we crashes in the
 * middle, this will leave us in a better state).  We find allocated file
 * data by simply searching the allocated level 1 indirects.
 *
 * On input, *start should be the first offset that does not need to be
 * freed (e.g. "offset + length").  On return, *start will be the first
 * offset that should be freed and l1blks is set to the number of level 1
 * indirect blocks found within the chunk.
 */
static int
get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
{
	uint64_t blks;
	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
	/* bytes of data covered by a level-1 indirect block */
	uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
	    EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);

	ASSERT3U(minimum, <=, *start);

	/*
	 * Check if we can free the entire range assuming that all of the
	 * L1 blocks in this range have data. If we can, we use this
	 * worst case value as an estimate so we can avoid having to look
	 * at the object's actual data.
	 */
	uint64_t total_l1blks =
	    (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
	    iblkrange;
	if (total_l1blks <= maxblks) {
		*l1blks = total_l1blks;
		*start = minimum;
		return (0);
	}
	ASSERT(ISP2(iblkrange));

	for (blks = 0; *start > minimum && blks < maxblks; blks++) {
		int err;

		/*
		 * dnode_next_offset(BACKWARDS) will find an allocated L1
		 * indirect block at or before the input offset.  We must
		 * decrement *start so that it is at the end of the region
		 * to search.
		 */
		(*start)--;

		err = dnode_next_offset(dn,
		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);

		/* if there are no indirect blocks before start, we are done */
		if (err == ESRCH) {
			*start = minimum;
			break;
		} else if (err != 0) {
			*l1blks = blks;
			return (err);
		}

		/* set start to the beginning of this L1 indirect */
		*start = P2ALIGN(*start, iblkrange);
	}
	if (*start < minimum)
		*start = minimum;
	*l1blks = blks;

	return (0);
}

/*
 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
 * otherwise return false.
 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
 */
static boolean_t
dmu_objset_zfs_unmounting(objset_t *os)
{
#ifdef _KERNEL
	if (dmu_objset_type(os) == DMU_OST_ZFS)
		return (zfs_get_vfs_flag_unmounted(os));
#else
	(void) os;
#endif
	return (B_FALSE);
}

static int
dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
    uint64_t length)
{
	uint64_t object_size;
	int err;
	uint64_t dirty_frees_threshold;
	dsl_pool_t *dp = dmu_objset_pool(os);

	if (dn == NULL)
		return (SET_ERROR(EINVAL));

	object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
	if (offset >= object_size)
		return (0);

	if (zfs_per_txg_dirty_frees_percent <= 100)
		dirty_frees_threshold =
		    zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
	else
		dirty_frees_threshold = zfs_dirty_data_max / 20;

	if (length == DMU_OBJECT_END || offset + length > object_size)
		length = object_size - offset;

	while (length != 0) {
		uint64_t chunk_end, chunk_begin, chunk_len;
		uint64_t l1blks;
		dmu_tx_t *tx;

		if (dmu_objset_zfs_unmounting(dn->dn_objset))
			return (SET_ERROR(EINTR));

		chunk_end = chunk_begin = offset + length;

		/* move chunk_begin backwards to the beginning of this chunk */
		err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
		if (err)
			return (err);
		ASSERT3U(chunk_begin, >=, offset);
		ASSERT3U(chunk_begin, <=, chunk_end);

		chunk_len = chunk_end - chunk_begin;

		tx = dmu_tx_create(os);
		dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);

		/*
		 * Mark this transaction as typically resulting in a net
		 * reduction in space used.
		 */
		dmu_tx_mark_netfree(tx);
		err = dmu_tx_assign(tx, TXG_WAIT);
		if (err) {
			dmu_tx_abort(tx);
			return (err);
		}

		uint64_t txg = dmu_tx_get_txg(tx);

		mutex_enter(&dp->dp_lock);
		uint64_t long_free_dirty =
		    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
		mutex_exit(&dp->dp_lock);

		/*
		 * To avoid filling up a TXG with just frees, wait for
		 * the next TXG to open before freeing more chunks if
		 * we have reached the threshold of frees.
		 */
		if (dirty_frees_threshold != 0 &&
		    long_free_dirty >= dirty_frees_threshold) {
			DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
			dmu_tx_commit(tx);
			txg_wait_open(dp, 0, B_TRUE);
			continue;
		}

		/*
		 * In order to prevent unnecessary write throttling, for each
		 * TXG, we track the cumulative size of L1 blocks being dirtied
		 * in dnode_free_range() below. We compare this number to a
		 * tunable threshold, past which we prevent new L1 dirty freeing
		 * blocks from being added into the open TXG. See
		 * dmu_free_long_range_impl() for details. The threshold
		 * prevents write throttle activation due to dirty freeing L1
		 * blocks taking up a large percentage of zfs_dirty_data_max.
		 */
		mutex_enter(&dp->dp_lock);
		dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
		    l1blks << dn->dn_indblkshift;
		mutex_exit(&dp->dp_lock);
		DTRACE_PROBE3(free__long__range,
		    uint64_t, long_free_dirty, uint64_t, chunk_len,
		    uint64_t, txg);
		dnode_free_range(dn, chunk_begin, chunk_len, tx);

		dmu_tx_commit(tx);

		length -= chunk_len;
	}
	return (0);
}

int
dmu_free_long_range(objset_t *os, uint64_t object,
    uint64_t offset, uint64_t length)
{
	dnode_t *dn;
	int err;

	err = dnode_hold(os, object, FTAG, &dn);
	if (err != 0)
		return (err);
	err = dmu_free_long_range_impl(os, dn, offset, length);

	/*
	 * It is important to zero out the maxblkid when freeing the entire
	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
	 * will take the fast path, and (b) dnode_reallocate() can verify
	 * that the entire file has been freed.
	 */
	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
		dn->dn_maxblkid = 0;

	dnode_rele(dn, FTAG);
	return (err);
}

int
dmu_free_long_object(objset_t *os, uint64_t object)
{
	dmu_tx_t *tx;
	int err;

	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
	if (err != 0)
		return (err);

	tx = dmu_tx_create(os);
	dmu_tx_hold_bonus(tx, object);
	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
	dmu_tx_mark_netfree(tx);
	err = dmu_tx_assign(tx, TXG_WAIT);
	if (err == 0) {
		err = dmu_object_free(os, object, tx);
		dmu_tx_commit(tx);
	} else {
		dmu_tx_abort(tx);
	}

	return (err);
}

int
dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
    uint64_t size, dmu_tx_t *tx)
{
	dnode_t *dn;
	int err = dnode_hold(os, object, FTAG, &dn);
	if (err)
		return (err);
	ASSERT(offset < UINT64_MAX);
	ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
	dnode_free_range(dn, offset, size, tx);
	dnode_rele(dn, FTAG);
	return (0);
}

static int
dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
    void *buf, uint32_t flags)
{
	dmu_buf_t **dbp;
	int numbufs, err = 0;

	/*
	 * Deal with odd block sizes, where there can't be data past the first
	 * block.  If we ever do the tail block optimization, we will need to
	 * handle that here as well.
	 */
	if (dn->dn_maxblkid == 0) {
		uint64_t newsz = offset > dn->dn_datablksz ? 0 :
		    MIN(size, dn->dn_datablksz - offset);
		memset((char *)buf + newsz, 0, size - newsz);
		size = newsz;
	}

	while (size > 0) {
		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
		int i;

		/*
		 * NB: we could do this block-at-a-time, but it's nice
		 * to be reading in parallel.
		 */
		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
		    TRUE, FTAG, &numbufs, &dbp, flags);
		if (err)
			break;

		for (i = 0; i < numbufs; i++) {
			uint64_t tocpy;
			int64_t bufoff;
			dmu_buf_t *db = dbp[i];

			ASSERT(size > 0);

			bufoff = offset - db->db_offset;
			tocpy = MIN(db->db_size - bufoff, size);

			(void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);

			offset += tocpy;
			size -= tocpy;
			buf = (char *)buf + tocpy;
		}
		dmu_buf_rele_array(dbp, numbufs, FTAG);
	}
	return (err);
}

int
dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
    void *buf, uint32_t flags)
{
	dnode_t *dn;
	int err;

	err = dnode_hold(os, object, FTAG, &dn);
	if (err != 0)
		return (err);

	err = dmu_read_impl(dn, offset, size, buf, flags);
	dnode_rele(dn, FTAG);
	return (err);
}

int
dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
    uint32_t flags)
{
	return (dmu_read_impl(dn, offset, size, buf, flags));
}

static void
dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
    const void *buf, dmu_tx_t *tx)
{
	int i;

	for (i = 0; i < numbufs; i++) {
		uint64_t tocpy;
		int64_t bufoff;
		dmu_buf_t *db = dbp[i];

		ASSERT(size > 0);

		bufoff = offset - db->db_offset;
		tocpy = MIN(db->db_size - bufoff, size);

		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);

		if (tocpy == db->db_size)
			dmu_buf_will_fill(db, tx);
		else
			dmu_buf_will_dirty(db, tx);

		(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);

		if (tocpy == db->db_size)
			dmu_buf_fill_done(db, tx);

		offset += tocpy;
		size -= tocpy;
		buf = (char *)buf + tocpy;
	}
}

void
dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
    const void *buf, dmu_tx_t *tx)
{
	dmu_buf_t **dbp;
	int numbufs;

	if (size == 0)
		return;

	VERIFY0(dmu_buf_hold_array(os, object, offset, size,
	    FALSE, FTAG, &numbufs, &dbp));
	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
	dmu_buf_rele_array(dbp, numbufs, FTAG);
}

/*
 * Note: Lustre is an external consumer of this interface.
 */
void
dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
    const void *buf, dmu_tx_t *tx)
{
	dmu_buf_t **dbp;
	int numbufs;

	if (size == 0)
		return;

	VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
	dmu_buf_rele_array(dbp, numbufs, FTAG);
}

void
dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
    dmu_tx_t *tx)
{
	dmu_buf_t **dbp;
	int numbufs, i;

	if (size == 0)
		return;

	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
	    FALSE, FTAG, &numbufs, &dbp));

	for (i = 0; i < numbufs; i++) {
		dmu_buf_t *db = dbp[i];

		dmu_buf_will_not_fill(db, tx);
	}
	dmu_buf_rele_array(dbp, numbufs, FTAG);
}

void
dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
    void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
    int compressed_size, int byteorder, dmu_tx_t *tx)
{
	dmu_buf_t *db;

	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
	VERIFY0(dmu_buf_hold_noread(os, object, offset,
	    FTAG, &db));

	dmu_buf_write_embedded(db,
	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
	    uncompressed_size, compressed_size, byteorder, tx);

	dmu_buf_rele(db, FTAG);
}

void
dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
    dmu_tx_t *tx)
{
	int numbufs, i;
	dmu_buf_t **dbp;

	VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
	    &numbufs, &dbp));
	for (i = 0; i < numbufs; i++)
		dmu_buf_redact(dbp[i], tx);
	dmu_buf_rele_array(dbp, numbufs, FTAG);
}

#ifdef _KERNEL
int
dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size)
{
	dmu_buf_t **dbp;
	int numbufs, i, err;

	/*
	 * NB: we could do this block-at-a-time, but it's nice
	 * to be reading in parallel.
	 */
	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
	    TRUE, FTAG, &numbufs, &dbp, 0);
	if (err)
		return (err);

	for (i = 0; i < numbufs; i++) {
		uint64_t tocpy;
		int64_t bufoff;
		dmu_buf_t *db = dbp[i];

		ASSERT(size > 0);

		bufoff = zfs_uio_offset(uio) - db->db_offset;
		tocpy = MIN(db->db_size - bufoff, size);

		err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
		    UIO_READ, uio);

		if (err)
			break;

		size -= tocpy;
	}
	dmu_buf_rele_array(dbp, numbufs, FTAG);

	return (err);
}

/*
 * Read 'size' bytes into the uio buffer.
 * From object zdb->db_object.
 * Starting at zfs_uio_offset(uio).
 *
 * If the caller already has a dbuf in the target object
 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
 * because we don't have to find the dnode_t for the object.
 */
int
dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
	dnode_t *dn;
	int err;

	if (size == 0)
		return (0);

	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);
	err = dmu_read_uio_dnode(dn, uio, size);
	DB_DNODE_EXIT(db);

	return (err);
}

/*
 * Read 'size' bytes into the uio buffer.
 * From the specified object
 * Starting at offset zfs_uio_offset(uio).
 */
int
dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size)
{
	dnode_t *dn;
	int err;

	if (size == 0)
		return (0);

	err = dnode_hold(os, object, FTAG, &dn);
	if (err)
		return (err);

	err = dmu_read_uio_dnode(dn, uio, size);

	dnode_rele(dn, FTAG);

	return (err);
}

int
dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx)
{
	dmu_buf_t **dbp;
	int numbufs;
	int err = 0;
	int i;

	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
	if (err)
		return (err);

	for (i = 0; i < numbufs; i++) {
		uint64_t tocpy;
		int64_t bufoff;
		dmu_buf_t *db = dbp[i];

		ASSERT(size > 0);

		bufoff = zfs_uio_offset(uio) - db->db_offset;
		tocpy = MIN(db->db_size - bufoff, size);

		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);

		if (tocpy == db->db_size)
			dmu_buf_will_fill(db, tx);
		else
			dmu_buf_will_dirty(db, tx);

		/*
		 * XXX zfs_uiomove could block forever (eg.nfs-backed
		 * pages).  There needs to be a uiolockdown() function
		 * to lock the pages in memory, so that zfs_uiomove won't
		 * block.
		 */
		err = zfs_uio_fault_move((char *)db->db_data + bufoff,
		    tocpy, UIO_WRITE, uio);

		if (tocpy == db->db_size)
			dmu_buf_fill_done(db, tx);

		if (err)
			break;

		size -= tocpy;
	}

	dmu_buf_rele_array(dbp, numbufs, FTAG);
	return (err);
}

/*
 * Write 'size' bytes from the uio buffer.
 * To object zdb->db_object.
 * Starting at offset zfs_uio_offset(uio).
 *
 * If the caller already has a dbuf in the target object
 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
 * because we don't have to find the dnode_t for the object.
 */
int
dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
    dmu_tx_t *tx)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
	dnode_t *dn;
	int err;

	if (size == 0)
		return (0);

	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);
	err = dmu_write_uio_dnode(dn, uio, size, tx);
	DB_DNODE_EXIT(db);

	return (err);
}

/*
 * Write 'size' bytes from the uio buffer.
 * To the specified object.
 * Starting at offset zfs_uio_offset(uio).
 */
int
dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
    dmu_tx_t *tx)
{
	dnode_t *dn;
	int err;

	if (size == 0)
		return (0);

	err = dnode_hold(os, object, FTAG, &dn);
	if (err)
		return (err);

	err = dmu_write_uio_dnode(dn, uio, size, tx);

	dnode_rele(dn, FTAG);

	return (err);
}
#endif /* _KERNEL */

/*
 * Allocate a loaned anonymous arc buffer.
 */
arc_buf_t *
dmu_request_arcbuf(dmu_buf_t *handle, int size)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;

	return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
}

/*
 * Free a loaned arc buffer.
 */
void
dmu_return_arcbuf(arc_buf_t *buf)
{
	arc_return_buf(buf, FTAG);
	arc_buf_destroy(buf, FTAG);
}

/*
 * A "lightweight" write is faster than a regular write (e.g.
 * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
 * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t.  However, the
 * data can not be read or overwritten until the transaction's txg has been
 * synced.  This makes it appropriate for workloads that are known to be
 * (temporarily) write-only, like "zfs receive".
 *
 * A single block is written, starting at the specified offset in bytes.  If
 * the call is successful, it returns 0 and the provided abd has been
 * consumed (the caller should not free it).
 */
int
dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
    const zio_prop_t *zp, zio_flag_t flags, dmu_tx_t *tx)
{
	dbuf_dirty_record_t *dr =
	    dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
	if (dr == NULL)
		return (SET_ERROR(EIO));
	dr->dt.dll.dr_abd = abd;
	dr->dt.dll.dr_props = *zp;
	dr->dt.dll.dr_flags = flags;
	return (0);
}

/*
 * When possible directly assign passed loaned arc buffer to a dbuf.
 * If this is not possible copy the contents of passed arc buf via
 * dmu_write().
 */
int
dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
    dmu_tx_t *tx)
{
	dmu_buf_impl_t *db;
	objset_t *os = dn->dn_objset;
	uint64_t object = dn->dn_object;
	uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
	uint64_t blkid;

	rw_enter(&dn->dn_struct_rwlock, RW_READER);
	blkid = dbuf_whichblock(dn, 0, offset);
	db = dbuf_hold(dn, blkid, FTAG);
	if (db == NULL)
		return (SET_ERROR(EIO));
	rw_exit(&dn->dn_struct_rwlock);

	/*
	 * We can only assign if the offset is aligned and the arc buf is the
	 * same size as the dbuf.
	 */
	if (offset == db->db.db_offset && blksz == db->db.db_size) {
		zfs_racct_write(blksz, 1);
		dbuf_assign_arcbuf(db, buf, tx);
		dbuf_rele(db, FTAG);
	} else {
		/* compressed bufs must always be assignable to their dbuf */
		ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
		ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));

		dbuf_rele(db, FTAG);
		dmu_write(os, object, offset, blksz, buf->b_data, tx);
		dmu_return_arcbuf(buf);
	}

	return (0);
}

int
dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
    dmu_tx_t *tx)
{
	int err;
	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;

	DB_DNODE_ENTER(dbuf);
	err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
	DB_DNODE_EXIT(dbuf);

	return (err);
}

typedef struct {
	dbuf_dirty_record_t	*dsa_dr;
	dmu_sync_cb_t		*dsa_done;
	zgd_t			*dsa_zgd;
	dmu_tx_t		*dsa_tx;
} dmu_sync_arg_t;

static void
dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
{
	(void) buf;
	dmu_sync_arg_t *dsa = varg;
	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
	blkptr_t *bp = zio->io_bp;

	if (zio->io_error == 0) {
		if (BP_IS_HOLE(bp)) {
			/*
			 * A block of zeros may compress to a hole, but the
			 * block size still needs to be known for replay.
			 */
			BP_SET_LSIZE(bp, db->db_size);
		} else if (!BP_IS_EMBEDDED(bp)) {
			ASSERT(BP_GET_LEVEL(bp) == 0);
			BP_SET_FILL(bp, 1);
		}
	}
}

static void
dmu_sync_late_arrival_ready(zio_t *zio)
{
	dmu_sync_ready(zio, NULL, zio->io_private);
}

static void
dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
{
	(void) buf;
	dmu_sync_arg_t *dsa = varg;
	dbuf_dirty_record_t *dr = dsa->dsa_dr;
	dmu_buf_impl_t *db = dr->dr_dbuf;
	zgd_t *zgd = dsa->dsa_zgd;

	/*
	 * Record the vdev(s) backing this blkptr so they can be flushed after
	 * the writes for the lwb have completed.
	 */
	if (zio->io_error == 0) {
		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
	}

	mutex_enter(&db->db_mtx);
	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
	if (zio->io_error == 0) {
		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
		if (dr->dt.dl.dr_nopwrite) {
			blkptr_t *bp = zio->io_bp;
			blkptr_t *bp_orig = &zio->io_bp_orig;
			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);

			ASSERT(BP_EQUAL(bp, bp_orig));
			VERIFY(BP_EQUAL(bp, db->db_blkptr));
			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
			VERIFY(zio_checksum_table[chksum].ci_flags &
			    ZCHECKSUM_FLAG_NOPWRITE);
		}
		dr->dt.dl.dr_overridden_by = *zio->io_bp;
		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;

		/*
		 * Old style holes are filled with all zeros, whereas
		 * new-style holes maintain their lsize, type, level,
		 * and birth time (see zio_write_compress). While we
		 * need to reset the BP_SET_LSIZE() call that happened
		 * in dmu_sync_ready for old style holes, we do *not*
		 * want to wipe out the information contained in new
		 * style holes. Thus, only zero out the block pointer if
		 * it's an old style hole.
		 */
		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
		    dr->dt.dl.dr_overridden_by.blk_birth == 0)
			BP_ZERO(&dr->dt.dl.dr_overridden_by);
	} else {
		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
	}
	cv_broadcast(&db->db_changed);
	mutex_exit(&db->db_mtx);

	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);

	kmem_free(dsa, sizeof (*dsa));
}

static void
dmu_sync_late_arrival_done(zio_t *zio)
{
	blkptr_t *bp = zio->io_bp;
	dmu_sync_arg_t *dsa = zio->io_private;
	zgd_t *zgd = dsa->dsa_zgd;

	if (zio->io_error == 0) {
		/*
		 * Record the vdev(s) backing this blkptr so they can be
		 * flushed after the writes for the lwb have completed.
		 */
		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);

		if (!BP_IS_HOLE(bp)) {
			blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
			ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
		}
	}

	dmu_tx_commit(dsa->dsa_tx);

	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);

	abd_free(zio->io_abd);
	kmem_free(dsa, sizeof (*dsa));
}

static int
dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
    zio_prop_t *zp, zbookmark_phys_t *zb)
{
	dmu_sync_arg_t *dsa;
	dmu_tx_t *tx;

	tx = dmu_tx_create(os);
	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
		dmu_tx_abort(tx);
		/* Make zl_get_data do txg_waited_synced() */
		return (SET_ERROR(EIO));
	}

	/*
	 * In order to prevent the zgd's lwb from being free'd prior to
	 * dmu_sync_late_arrival_done() being called, we have to ensure
	 * the lwb's "max txg" takes this tx's txg into account.
	 */
	zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));

	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
	dsa->dsa_dr = NULL;
	dsa->dsa_done = done;
	dsa->dsa_zgd = zgd;
	dsa->dsa_tx = tx;

	/*
	 * Since we are currently syncing this txg, it's nontrivial to
	 * determine what BP to nopwrite against, so we disable nopwrite.
	 *
	 * When syncing, the db_blkptr is initially the BP of the previous
	 * txg.  We can not nopwrite against it because it will be changed
	 * (this is similar to the non-late-arrival case where the dbuf is
	 * dirty in a future txg).
	 *
	 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
	 * We can not nopwrite against it because although the BP will not
	 * (typically) be changed, the data has not yet been persisted to this
	 * location.
	 *
	 * Finally, when dbuf_write_done() is called, it is theoretically
	 * possible to always nopwrite, because the data that was written in
	 * this txg is the same data that we are trying to write.  However we
	 * would need to check that this dbuf is not dirty in any future
	 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
	 * don't nopwrite in this case.
	 */
	zp->zp_nopwrite = B_FALSE;

	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
	    abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
	    zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
	    dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
	    dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));

	return (0);
}

/*
 * Intent log support: sync the block associated with db to disk.
 * N.B. and XXX: the caller is responsible for making sure that the
 * data isn't changing while dmu_sync() is writing it.
 *
 * Return values:
 *
 *	EEXIST: this txg has already been synced, so there's nothing to do.
 *		The caller should not log the write.
 *
 *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
 *		The caller should not log the write.
 *
 *	EALREADY: this block is already in the process of being synced.
 *		The caller should track its progress (somehow).
 *
 *	EIO: could not do the I/O.
 *		The caller should do a txg_wait_synced().
 *
 *	0: the I/O has been initiated.
 *		The caller should log this blkptr in the done callback.
 *		It is possible that the I/O will fail, in which case
 *		the error will be reported to the done callback and
 *		propagated to pio from zio_done().
 */
int
dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
	objset_t *os = db->db_objset;
	dsl_dataset_t *ds = os->os_dsl_dataset;
	dbuf_dirty_record_t *dr, *dr_next;
	dmu_sync_arg_t *dsa;
	zbookmark_phys_t zb;
	zio_prop_t zp;
	dnode_t *dn;

	ASSERT(pio != NULL);
	ASSERT(txg != 0);

	SET_BOOKMARK(&zb, ds->ds_object,
	    db->db.db_object, db->db_level, db->db_blkid);

	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);
	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
	DB_DNODE_EXIT(db);

	/*
	 * If we're frozen (running ziltest), we always need to generate a bp.
	 */
	if (txg > spa_freeze_txg(os->os_spa))
		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));

	/*
	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
	 * and us.  If we determine that this txg is not yet syncing,
	 * but it begins to sync a moment later, that's OK because the
	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
	 */
	mutex_enter(&db->db_mtx);

	if (txg <= spa_last_synced_txg(os->os_spa)) {
		/*
		 * This txg has already synced.  There's nothing to do.
		 */
		mutex_exit(&db->db_mtx);
		return (SET_ERROR(EEXIST));
	}

	if (txg <= spa_syncing_txg(os->os_spa)) {
		/*
		 * This txg is currently syncing, so we can't mess with
		 * the dirty record anymore; just write a new log block.
		 */
		mutex_exit(&db->db_mtx);
		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
	}

	dr = dbuf_find_dirty_eq(db, txg);

	if (dr == NULL) {
		/*
		 * There's no dr for this dbuf, so it must have been freed.
		 * There's no need to log writes to freed blocks, so we're done.
		 */
		mutex_exit(&db->db_mtx);
		return (SET_ERROR(ENOENT));
	}

	dr_next = list_next(&db->db_dirty_records, dr);
	ASSERT(dr_next == NULL || dr_next->dr_txg < txg);

	if (db->db_blkptr != NULL) {
		/*
		 * We need to fill in zgd_bp with the current blkptr so that
		 * the nopwrite code can check if we're writing the same
		 * data that's already on disk.  We can only nopwrite if we
		 * are sure that after making the copy, db_blkptr will not
		 * change until our i/o completes.  We ensure this by
		 * holding the db_mtx, and only allowing nopwrite if the
		 * block is not already dirty (see below).  This is verified
		 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
		 * not changed.
		 */
		*zgd->zgd_bp = *db->db_blkptr;
	}

	/*
	 * Assume the on-disk data is X, the current syncing data (in
	 * txg - 1) is Y, and the current in-memory data is Z (currently
	 * in dmu_sync).
	 *
	 * We usually want to perform a nopwrite if X and Z are the
	 * same.  However, if Y is different (i.e. the BP is going to
	 * change before this write takes effect), then a nopwrite will
	 * be incorrect - we would override with X, which could have
	 * been freed when Y was written.
	 *
	 * (Note that this is not a concern when we are nop-writing from
	 * syncing context, because X and Y must be identical, because
	 * all previous txgs have been synced.)
	 *
	 * Therefore, we disable nopwrite if the current BP could change
	 * before this TXG.  There are two ways it could change: by
	 * being dirty (dr_next is non-NULL), or by being freed
	 * (dnode_block_freed()).  This behavior is verified by
	 * zio_done(), which VERIFYs that the override BP is identical
	 * to the on-disk BP.
	 */
	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);
	if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
		zp.zp_nopwrite = B_FALSE;
	DB_DNODE_EXIT(db);

	ASSERT(dr->dr_txg == txg);
	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
		/*
		 * We have already issued a sync write for this buffer,
		 * or this buffer has already been synced.  It could not
		 * have been dirtied since, or we would have cleared the state.
		 */
		mutex_exit(&db->db_mtx);
		return (SET_ERROR(EALREADY));
	}

	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
	mutex_exit(&db->db_mtx);

	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
	dsa->dsa_dr = dr;
	dsa->dsa_done = done;
	dsa->dsa_zgd = zgd;
	dsa->dsa_tx = NULL;

	zio_nowait(arc_write(pio, os->os_spa, txg, zgd->zgd_bp,
	    dr->dt.dl.dr_data, !DBUF_IS_CACHEABLE(db), dbuf_is_l2cacheable(db),
	    &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));

	return (0);
}

int
dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
{
	dnode_t *dn;
	int err;

	err = dnode_hold(os, object, FTAG, &dn);
	if (err)
		return (err);
	err = dnode_set_nlevels(dn, nlevels, tx);
	dnode_rele(dn, FTAG);
	return (err);
}

int
dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
    dmu_tx_t *tx)
{
	dnode_t *dn;
	int err;

	err = dnode_hold(os, object, FTAG, &dn);
	if (err)
		return (err);
	err = dnode_set_blksz(dn, size, ibs, tx);
	dnode_rele(dn, FTAG);
	return (err);
}

int
dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
    dmu_tx_t *tx)
{
	dnode_t *dn;
	int err;

	err = dnode_hold(os, object, FTAG, &dn);
	if (err)
		return (err);
	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
	dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
	rw_exit(&dn->dn_struct_rwlock);
	dnode_rele(dn, FTAG);
	return (0);
}

void
dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
    dmu_tx_t *tx)
{
	dnode_t *dn;

	/*
	 * Send streams include each object's checksum function.  This
	 * check ensures that the receiving system can understand the
	 * checksum function transmitted.
	 */
	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);

	VERIFY0(dnode_hold(os, object, FTAG, &dn));
	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
	dn->dn_checksum = checksum;
	dnode_setdirty(dn, tx);
	dnode_rele(dn, FTAG);
}

void
dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
    dmu_tx_t *tx)
{
	dnode_t *dn;

	/*
	 * Send streams include each object's compression function.  This
	 * check ensures that the receiving system can understand the
	 * compression function transmitted.
	 */
	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);

	VERIFY0(dnode_hold(os, object, FTAG, &dn));
	dn->dn_compress = compress;
	dnode_setdirty(dn, tx);
	dnode_rele(dn, FTAG);
}

/*
 * When the "redundant_metadata" property is set to "most", only indirect
 * blocks of this level and higher will have an additional ditto block.
 */
static const int zfs_redundant_metadata_most_ditto_level = 2;

void
dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
{
	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
	    (wp & WP_SPILL));
	enum zio_checksum checksum = os->os_checksum;
	enum zio_compress compress = os->os_compress;
	uint8_t complevel = os->os_complevel;
	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
	boolean_t dedup = B_FALSE;
	boolean_t nopwrite = B_FALSE;
	boolean_t dedup_verify = os->os_dedup_verify;
	boolean_t encrypt = B_FALSE;
	int copies = os->os_copies;

	/*
	 * We maintain different write policies for each of the following
	 * types of data:
	 *	 1. metadata
	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
	 *	 3. all other level 0 blocks
	 */
	if (ismd) {
		/*
		 * XXX -- we should design a compression algorithm
		 * that specializes in arrays of bps.
		 */
		compress = zio_compress_select(os->os_spa,
		    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);

		/*
		 * Metadata always gets checksummed.  If the data
		 * checksum is multi-bit correctable, and it's not a
		 * ZBT-style checksum, then it's suitable for metadata
		 * as well.  Otherwise, the metadata checksum defaults
		 * to fletcher4.
		 */
		if (!(zio_checksum_table[checksum].ci_flags &
		    ZCHECKSUM_FLAG_METADATA) ||
		    (zio_checksum_table[checksum].ci_flags &
		    ZCHECKSUM_FLAG_EMBEDDED))
			checksum = ZIO_CHECKSUM_FLETCHER_4;

		switch (os->os_redundant_metadata) {
		case ZFS_REDUNDANT_METADATA_ALL:
			copies++;
			break;
		case ZFS_REDUNDANT_METADATA_MOST:
			if (level >= zfs_redundant_metadata_most_ditto_level ||
			    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))
				copies++;
			break;
		case ZFS_REDUNDANT_METADATA_SOME:
			if (DMU_OT_IS_CRITICAL(type))
				copies++;
			break;
		case ZFS_REDUNDANT_METADATA_NONE:
			break;
		}
	} else if (wp & WP_NOFILL) {
		ASSERT(level == 0);

		/*
		 * If we're writing preallocated blocks, we aren't actually
		 * writing them so don't set any policy properties.  These
		 * blocks are currently only used by an external subsystem
		 * outside of zfs (i.e. dump) and not written by the zio
		 * pipeline.
		 */
		compress = ZIO_COMPRESS_OFF;
		checksum = ZIO_CHECKSUM_OFF;
	} else {
		compress = zio_compress_select(os->os_spa, dn->dn_compress,
		    compress);
		complevel = zio_complevel_select(os->os_spa, compress,
		    complevel, complevel);

		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
		    zio_checksum_select(dn->dn_checksum, checksum) :
		    dedup_checksum;

		/*
		 * Determine dedup setting.  If we are in dmu_sync(),
		 * we won't actually dedup now because that's all
		 * done in syncing context; but we do want to use the
		 * dedup checksum.  If the checksum is not strong
		 * enough to ensure unique signatures, force
		 * dedup_verify.
		 */
		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
			if (!(zio_checksum_table[checksum].ci_flags &
			    ZCHECKSUM_FLAG_DEDUP))
				dedup_verify = B_TRUE;
		}

		/*
		 * Enable nopwrite if we have secure enough checksum
		 * algorithm (see comment in zio_nop_write) and
		 * compression is enabled.  We don't enable nopwrite if
		 * dedup is enabled as the two features are mutually
		 * exclusive.
		 */
		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
		    ZCHECKSUM_FLAG_NOPWRITE) &&
		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
	}

	/*
	 * All objects in an encrypted objset are protected from modification
	 * via a MAC. Encrypted objects store their IV and salt in the last DVA
	 * in the bp, so we cannot use all copies. Encrypted objects are also
	 * not subject to nopwrite since writing the same data will still
	 * result in a new ciphertext. Only encrypted blocks can be dedup'd
	 * to avoid ambiguity in the dedup code since the DDT does not store
	 * object types.
	 */
	if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
		encrypt = B_TRUE;

		if (DMU_OT_IS_ENCRYPTED(type)) {
			copies = MIN(copies, SPA_DVAS_PER_BP - 1);
			nopwrite = B_FALSE;
		} else {
			dedup = B_FALSE;
		}

		if (level <= 0 &&
		    (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
			compress = ZIO_COMPRESS_EMPTY;
		}
	}

	zp->zp_compress = compress;
	zp->zp_complevel = complevel;
	zp->zp_checksum = checksum;
	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
	zp->zp_level = level;
	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
	zp->zp_dedup = dedup;
	zp->zp_dedup_verify = dedup && dedup_verify;
	zp->zp_nopwrite = nopwrite;
	zp->zp_encrypt = encrypt;
	zp->zp_byteorder = ZFS_HOST_BYTEORDER;
	memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN);
	memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN);
	memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN);
	zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
	    os->os_zpl_special_smallblock : 0;

	ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
}

/*
 * Reports the location of data and holes in an object.  In order to
 * accurately report holes all dirty data must be synced to disk.  This
 * causes extremely poor performance when seeking for holes in a dirty file.
 * As a compromise, only provide hole data when the dnode is clean.  When
 * a dnode is dirty report the dnode as having no holes by returning EBUSY
 * which is always safe to do.
 */
int
dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
{
	dnode_t *dn;
	int restarted = 0, err;

restart:
	err = dnode_hold(os, object, FTAG, &dn);
	if (err)
		return (err);

	rw_enter(&dn->dn_struct_rwlock, RW_READER);

	if (dnode_is_dirty(dn)) {
		/*
		 * If the zfs_dmu_offset_next_sync module option is enabled
		 * then hole reporting has been requested.  Dirty dnodes
		 * must be synced to disk to accurately report holes.
		 *
		 * Provided a RL_READER rangelock spanning 0-UINT64_MAX is
		 * held by the caller only a single restart will be required.
		 * We tolerate callers which do not hold the rangelock by
		 * returning EBUSY and not reporting holes after one restart.
		 */
		if (zfs_dmu_offset_next_sync) {
			rw_exit(&dn->dn_struct_rwlock);
			dnode_rele(dn, FTAG);

			if (restarted)
				return (SET_ERROR(EBUSY));

			txg_wait_synced(dmu_objset_pool(os), 0);
			restarted = 1;
			goto restart;
		}

		err = SET_ERROR(EBUSY);
	} else {
		err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK |
		    (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
	}

	rw_exit(&dn->dn_struct_rwlock);
	dnode_rele(dn, FTAG);

	return (err);
}

int
dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
    blkptr_t *bps, size_t *nbpsp)
{
	dmu_buf_t **dbp, *dbuf;
	dmu_buf_impl_t *db;
	blkptr_t *bp;
	int error, numbufs;

	error = dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
	    &numbufs, &dbp);
	if (error != 0) {
		if (error == ESRCH) {
			error = SET_ERROR(ENXIO);
		}
		return (error);
	}

	ASSERT3U(numbufs, <=, *nbpsp);

	for (int i = 0; i < numbufs; i++) {
		dbuf = dbp[i];
		db = (dmu_buf_impl_t *)dbuf;

		mutex_enter(&db->db_mtx);

		if (!list_is_empty(&db->db_dirty_records)) {
			dbuf_dirty_record_t *dr;

			dr = list_head(&db->db_dirty_records);
			if (dr->dt.dl.dr_brtwrite) {
				/*
				 * This is very special case where we clone a
				 * block and in the same transaction group we
				 * read its BP (most likely to clone the clone).
				 */
				bp = &dr->dt.dl.dr_overridden_by;
			} else {
				/*
				 * The block was modified in the same
				 * transaction group.
				 */
				mutex_exit(&db->db_mtx);
				error = SET_ERROR(EAGAIN);
				goto out;
			}
		} else {
			bp = db->db_blkptr;
		}

		mutex_exit(&db->db_mtx);

		if (bp == NULL) {
			/*
			 * The block was created in this transaction group,
			 * so it has no BP yet.
			 */
			error = SET_ERROR(EAGAIN);
			goto out;
		}
		/*
		 * Make sure we clone only data blocks.
		 */
		if (BP_IS_METADATA(bp) && !BP_IS_HOLE(bp)) {
			error = SET_ERROR(EINVAL);
			goto out;
		}

		bps[i] = *bp;
	}

	*nbpsp = numbufs;
out:
	dmu_buf_rele_array(dbp, numbufs, FTAG);

	return (error);
}

int
dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
    dmu_tx_t *tx, const blkptr_t *bps, size_t nbps, boolean_t replay)
{
	spa_t *spa;
	dmu_buf_t **dbp, *dbuf;
	dmu_buf_impl_t *db;
	struct dirty_leaf *dl;
	dbuf_dirty_record_t *dr;
	const blkptr_t *bp;
	int error = 0, i, numbufs;

	spa = os->os_spa;

	VERIFY0(dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
	    &numbufs, &dbp));
	ASSERT3U(nbps, ==, numbufs);

	/*
	 * Before we start cloning make sure that the dbufs sizes much new BPs
	 * sizes. If they don't, that's a no-go, as we are not able to shrink
	 * dbufs.
	 */
	for (i = 0; i < numbufs; i++) {
		dbuf = dbp[i];
		db = (dmu_buf_impl_t *)dbuf;
		bp = &bps[i];

		ASSERT0(db->db_level);
		ASSERT(db->db_blkid != DMU_BONUS_BLKID);

		if (!BP_IS_HOLE(bp) && BP_GET_LSIZE(bp) != dbuf->db_size) {
			error = SET_ERROR(EXDEV);
			goto out;
		}
	}

	for (i = 0; i < numbufs; i++) {
		dbuf = dbp[i];
		db = (dmu_buf_impl_t *)dbuf;
		bp = &bps[i];

		ASSERT0(db->db_level);
		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
		ASSERT(BP_IS_HOLE(bp) || dbuf->db_size == BP_GET_LSIZE(bp));

		dmu_buf_will_clone(dbuf, tx);

		mutex_enter(&db->db_mtx);

		dr = list_head(&db->db_dirty_records);
		VERIFY(dr != NULL);
		ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
		dl = &dr->dt.dl;
		dl->dr_overridden_by = *bp;
		dl->dr_brtwrite = B_TRUE;
		dl->dr_override_state = DR_OVERRIDDEN;
		if (BP_IS_HOLE(bp)) {
			dl->dr_overridden_by.blk_birth = 0;
			dl->dr_overridden_by.blk_phys_birth = 0;
		} else {
			dl->dr_overridden_by.blk_birth = dr->dr_txg;
			if (!BP_IS_EMBEDDED(bp)) {
				dl->dr_overridden_by.blk_phys_birth =
				    BP_PHYSICAL_BIRTH(bp);
			}
		}

		mutex_exit(&db->db_mtx);

		/*
		 * When data in embedded into BP there is no need to create
		 * BRT entry as there is no data block. Just copy the BP as
		 * it contains the data.
		 * Also, when replaying ZIL we don't want to bump references
		 * in the BRT as it was already done during ZIL claim.
		 */
		if (!replay && !BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
			brt_pending_add(spa, bp, tx);
		}
	}
out:
	dmu_buf_rele_array(dbp, numbufs, FTAG);

	return (error);
}

void
__dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
{
	dnode_phys_t *dnp = dn->dn_phys;

	doi->doi_data_block_size = dn->dn_datablksz;
	doi->doi_metadata_block_size = dn->dn_indblkshift ?
	    1ULL << dn->dn_indblkshift : 0;
	doi->doi_type = dn->dn_type;
	doi->doi_bonus_type = dn->dn_bonustype;
	doi->doi_bonus_size = dn->dn_bonuslen;
	doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
	doi->doi_indirection = dn->dn_nlevels;
	doi->doi_checksum = dn->dn_checksum;
	doi->doi_compress = dn->dn_compress;
	doi->doi_nblkptr = dn->dn_nblkptr;
	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
	doi->doi_fill_count = 0;
	for (int i = 0; i < dnp->dn_nblkptr; i++)
		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
}

void
dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
{
	rw_enter(&dn->dn_struct_rwlock, RW_READER);
	mutex_enter(&dn->dn_mtx);

	__dmu_object_info_from_dnode(dn, doi);

	mutex_exit(&dn->dn_mtx);
	rw_exit(&dn->dn_struct_rwlock);
}

/*
 * Get information on a DMU object.
 * If doi is NULL, just indicates whether the object exists.
 */
int
dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
{
	dnode_t *dn;
	int err = dnode_hold(os, object, FTAG, &dn);

	if (err)
		return (err);

	if (doi != NULL)
		dmu_object_info_from_dnode(dn, doi);

	dnode_rele(dn, FTAG);
	return (0);
}

/*
 * As above, but faster; can be used when you have a held dbuf in hand.
 */
void
dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;

	DB_DNODE_ENTER(db);
	dmu_object_info_from_dnode(DB_DNODE(db), doi);
	DB_DNODE_EXIT(db);
}

/*
 * Faster still when you only care about the size.
 */
void
dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
    u_longlong_t *nblk512)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
	dnode_t *dn;

	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);

	*blksize = dn->dn_datablksz;
	/* add in number of slots used for the dnode itself */
	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
	    SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
	DB_DNODE_EXIT(db);
}

void
dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
{
	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
	dnode_t *dn;

	DB_DNODE_ENTER(db);
	dn = DB_DNODE(db);
	*dnsize = dn->dn_num_slots << DNODE_SHIFT;
	DB_DNODE_EXIT(db);
}

void
byteswap_uint64_array(void *vbuf, size_t size)
{
	uint64_t *buf = vbuf;
	size_t count = size >> 3;
	int i;

	ASSERT((size & 7) == 0);

	for (i = 0; i < count; i++)
		buf[i] = BSWAP_64(buf[i]);
}

void
byteswap_uint32_array(void *vbuf, size_t size)
{
	uint32_t *buf = vbuf;
	size_t count = size >> 2;
	int i;

	ASSERT((size & 3) == 0);

	for (i = 0; i < count; i++)
		buf[i] = BSWAP_32(buf[i]);
}

void
byteswap_uint16_array(void *vbuf, size_t size)
{
	uint16_t *buf = vbuf;
	size_t count = size >> 1;
	int i;

	ASSERT((size & 1) == 0);

	for (i = 0; i < count; i++)
		buf[i] = BSWAP_16(buf[i]);
}

void
byteswap_uint8_array(void *vbuf, size_t size)
{
	(void) vbuf, (void) size;
}

void
dmu_init(void)
{
	abd_init();
	zfs_dbgmsg_init();
	sa_cache_init();
	dmu_objset_init();
	dnode_init();
	zfetch_init();
	dmu_tx_init();
	l2arc_init();
	arc_init();
	dbuf_init();
}

void
dmu_fini(void)
{
	arc_fini(); /* arc depends on l2arc, so arc must go first */
	l2arc_fini();
	dmu_tx_fini();
	zfetch_fini();
	dbuf_fini();
	dnode_fini();
	dmu_objset_fini();
	sa_cache_fini();
	zfs_dbgmsg_fini();
	abd_fini();
}

EXPORT_SYMBOL(dmu_bonus_hold);
EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
EXPORT_SYMBOL(dmu_buf_rele_array);
EXPORT_SYMBOL(dmu_prefetch);
EXPORT_SYMBOL(dmu_free_range);
EXPORT_SYMBOL(dmu_free_long_range);
EXPORT_SYMBOL(dmu_free_long_object);
EXPORT_SYMBOL(dmu_read);
EXPORT_SYMBOL(dmu_read_by_dnode);
EXPORT_SYMBOL(dmu_write);
EXPORT_SYMBOL(dmu_write_by_dnode);
EXPORT_SYMBOL(dmu_prealloc);
EXPORT_SYMBOL(dmu_object_info);
EXPORT_SYMBOL(dmu_object_info_from_dnode);
EXPORT_SYMBOL(dmu_object_info_from_db);
EXPORT_SYMBOL(dmu_object_size_from_db);
EXPORT_SYMBOL(dmu_object_dnsize_from_db);
EXPORT_SYMBOL(dmu_object_set_nlevels);
EXPORT_SYMBOL(dmu_object_set_blocksize);
EXPORT_SYMBOL(dmu_object_set_maxblkid);
EXPORT_SYMBOL(dmu_object_set_checksum);
EXPORT_SYMBOL(dmu_object_set_compress);
EXPORT_SYMBOL(dmu_offset_next);
EXPORT_SYMBOL(dmu_write_policy);
EXPORT_SYMBOL(dmu_sync);
EXPORT_SYMBOL(dmu_request_arcbuf);
EXPORT_SYMBOL(dmu_return_arcbuf);
EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
EXPORT_SYMBOL(dmu_buf_hold);
EXPORT_SYMBOL(dmu_ot);

ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
	"Enable NOP writes");

ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, UINT, ZMOD_RW,
	"Percentage of dirtied blocks from frees in one TXG");

ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
	"Enable forcing txg sync to find holes");

/* CSTYLED */
ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW,
	"Limit one prefetch call to this size");