aboutsummaryrefslogtreecommitdiffstats
path: root/module/zfs/arc.c
blob: 0c086fc21225d510b9f2e30aa8f0817578f8bc40 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or https://opensource.org/licenses/CDDL-1.0.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 * Copyright (c) 2018, Joyent, Inc.
 * Copyright (c) 2011, 2020, Delphix. All rights reserved.
 * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
 * Copyright (c) 2017, Nexenta Systems, Inc.  All rights reserved.
 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
 * Copyright (c) 2020, George Amanakis. All rights reserved.
 * Copyright (c) 2019, 2023, Klara Inc.
 * Copyright (c) 2019, Allan Jude
 * Copyright (c) 2020, The FreeBSD Foundation [1]
 * Copyright (c) 2021, 2024 by George Melikov. All rights reserved.
 *
 * [1] Portions of this software were developed by Allan Jude
 *     under sponsorship from the FreeBSD Foundation.
 */

/*
 * DVA-based Adjustable Replacement Cache
 *
 * While much of the theory of operation used here is
 * based on the self-tuning, low overhead replacement cache
 * presented by Megiddo and Modha at FAST 2003, there are some
 * significant differences:
 *
 * 1. The Megiddo and Modha model assumes any page is evictable.
 * Pages in its cache cannot be "locked" into memory.  This makes
 * the eviction algorithm simple: evict the last page in the list.
 * This also make the performance characteristics easy to reason
 * about.  Our cache is not so simple.  At any given moment, some
 * subset of the blocks in the cache are un-evictable because we
 * have handed out a reference to them.  Blocks are only evictable
 * when there are no external references active.  This makes
 * eviction far more problematic:  we choose to evict the evictable
 * blocks that are the "lowest" in the list.
 *
 * There are times when it is not possible to evict the requested
 * space.  In these circumstances we are unable to adjust the cache
 * size.  To prevent the cache growing unbounded at these times we
 * implement a "cache throttle" that slows the flow of new data
 * into the cache until we can make space available.
 *
 * 2. The Megiddo and Modha model assumes a fixed cache size.
 * Pages are evicted when the cache is full and there is a cache
 * miss.  Our model has a variable sized cache.  It grows with
 * high use, but also tries to react to memory pressure from the
 * operating system: decreasing its size when system memory is
 * tight.
 *
 * 3. The Megiddo and Modha model assumes a fixed page size. All
 * elements of the cache are therefore exactly the same size.  So
 * when adjusting the cache size following a cache miss, its simply
 * a matter of choosing a single page to evict.  In our model, we
 * have variable sized cache blocks (ranging from 512 bytes to
 * 128K bytes).  We therefore choose a set of blocks to evict to make
 * space for a cache miss that approximates as closely as possible
 * the space used by the new block.
 *
 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
 * by N. Megiddo & D. Modha, FAST 2003
 */

/*
 * The locking model:
 *
 * A new reference to a cache buffer can be obtained in two
 * ways: 1) via a hash table lookup using the DVA as a key,
 * or 2) via one of the ARC lists.  The arc_read() interface
 * uses method 1, while the internal ARC algorithms for
 * adjusting the cache use method 2.  We therefore provide two
 * types of locks: 1) the hash table lock array, and 2) the
 * ARC list locks.
 *
 * Buffers do not have their own mutexes, rather they rely on the
 * hash table mutexes for the bulk of their protection (i.e. most
 * fields in the arc_buf_hdr_t are protected by these mutexes).
 *
 * buf_hash_find() returns the appropriate mutex (held) when it
 * locates the requested buffer in the hash table.  It returns
 * NULL for the mutex if the buffer was not in the table.
 *
 * buf_hash_remove() expects the appropriate hash mutex to be
 * already held before it is invoked.
 *
 * Each ARC state also has a mutex which is used to protect the
 * buffer list associated with the state.  When attempting to
 * obtain a hash table lock while holding an ARC list lock you
 * must use: mutex_tryenter() to avoid deadlock.  Also note that
 * the active state mutex must be held before the ghost state mutex.
 *
 * It as also possible to register a callback which is run when the
 * metadata limit is reached and no buffers can be safely evicted.  In
 * this case the arc user should drop a reference on some arc buffers so
 * they can be reclaimed.  For example, when using the ZPL each dentry
 * holds a references on a znode.  These dentries must be pruned before
 * the arc buffer holding the znode can be safely evicted.
 *
 * Note that the majority of the performance stats are manipulated
 * with atomic operations.
 *
 * The L2ARC uses the l2ad_mtx on each vdev for the following:
 *
 *	- L2ARC buflist creation
 *	- L2ARC buflist eviction
 *	- L2ARC write completion, which walks L2ARC buflists
 *	- ARC header destruction, as it removes from L2ARC buflists
 *	- ARC header release, as it removes from L2ARC buflists
 */

/*
 * ARC operation:
 *
 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
 * This structure can point either to a block that is still in the cache or to
 * one that is only accessible in an L2 ARC device, or it can provide
 * information about a block that was recently evicted. If a block is
 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
 * information to retrieve it from the L2ARC device. This information is
 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
 * that is in this state cannot access the data directly.
 *
 * Blocks that are actively being referenced or have not been evicted
 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
 * the arc_buf_hdr_t that will point to the data block in memory. A block can
 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
 *
 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
 * ability to store the physical data (b_pabd) associated with the DVA of the
 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
 * it will match its on-disk compression characteristics. This behavior can be
 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
 * compressed ARC functionality is disabled, the b_pabd will point to an
 * uncompressed version of the on-disk data.
 *
 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
 * consumer. The ARC will provide references to this data and will keep it
 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
 * data block and will evict any arc_buf_t that is no longer referenced. The
 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
 * "overhead_size" kstat.
 *
 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
 * compressed form. The typical case is that consumers will want uncompressed
 * data, and when that happens a new data buffer is allocated where the data is
 * decompressed for them to use. Currently the only consumer who wants
 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
 * with the arc_buf_hdr_t.
 *
 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
 * first one is owned by a compressed send consumer (and therefore references
 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
 * used by any other consumer (and has its own uncompressed copy of the data
 * buffer).
 *
 *   arc_buf_hdr_t
 *   +-----------+
 *   | fields    |
 *   | common to |
 *   | L1- and   |
 *   | L2ARC     |
 *   +-----------+
 *   | l2arc_buf_hdr_t
 *   |           |
 *   +-----------+
 *   | l1arc_buf_hdr_t
 *   |           |              arc_buf_t
 *   | b_buf     +------------>+-----------+      arc_buf_t
 *   | b_pabd    +-+           |b_next     +---->+-----------+
 *   +-----------+ |           |-----------|     |b_next     +-->NULL
 *                 |           |b_comp = T |     +-----------+
 *                 |           |b_data     +-+   |b_comp = F |
 *                 |           +-----------+ |   |b_data     +-+
 *                 +->+------+               |   +-----------+ |
 *        compressed  |      |               |                 |
 *           data     |      |<--------------+                 | uncompressed
 *                    +------+          compressed,            |     data
 *                                        shared               +-->+------+
 *                                         data                    |      |
 *                                                                 |      |
 *                                                                 +------+
 *
 * When a consumer reads a block, the ARC must first look to see if the
 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
 * arc_buf_t and either copies uncompressed data into a new data buffer from an
 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
 * hdr is compressed and the desired compression characteristics of the
 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
 * be anywhere in the hdr's list.
 *
 * The diagram below shows an example of an uncompressed ARC hdr that is
 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
 * the last element in the buf list):
 *
 *                arc_buf_hdr_t
 *                +-----------+
 *                |           |
 *                |           |
 *                |           |
 *                +-----------+
 * l2arc_buf_hdr_t|           |
 *                |           |
 *                +-----------+
 * l1arc_buf_hdr_t|           |
 *                |           |                 arc_buf_t    (shared)
 *                |    b_buf  +------------>+---------+      arc_buf_t
 *                |           |             |b_next   +---->+---------+
 *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
 *                +-----------+ |           |         |     +---------+
 *                              |           |b_data   +-+   |         |
 *                              |           +---------+ |   |b_data   +-+
 *                              +->+------+             |   +---------+ |
 *                                 |      |             |               |
 *                   uncompressed  |      |             |               |
 *                        data     +------+             |               |
 *                                    ^                 +->+------+     |
 *                                    |       uncompressed |      |     |
 *                                    |           data     |      |     |
 *                                    |                    +------+     |
 *                                    +---------------------------------+
 *
 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
 * since the physical block is about to be rewritten. The new data contents
 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
 * it may compress the data before writing it to disk. The ARC will be called
 * with the transformed data and will memcpy the transformed on-disk block into
 * a newly allocated b_pabd. Writes are always done into buffers which have
 * either been loaned (and hence are new and don't have other readers) or
 * buffers which have been released (and hence have their own hdr, if there
 * were originally other readers of the buf's original hdr). This ensures that
 * the ARC only needs to update a single buf and its hdr after a write occurs.
 *
 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
 * that when compressed ARC is enabled that the L2ARC blocks are identical
 * to the on-disk block in the main data pool. This provides a significant
 * advantage since the ARC can leverage the bp's checksum when reading from the
 * L2ARC to determine if the contents are valid. However, if the compressed
 * ARC is disabled, then the L2ARC's block must be transformed to look
 * like the physical block in the main data pool before comparing the
 * checksum and determining its validity.
 *
 * The L1ARC has a slightly different system for storing encrypted data.
 * Raw (encrypted + possibly compressed) data has a few subtle differences from
 * data that is just compressed. The biggest difference is that it is not
 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
 * The other difference is that encryption cannot be treated as a suggestion.
 * If a caller would prefer compressed data, but they actually wind up with
 * uncompressed data the worst thing that could happen is there might be a
 * performance hit. If the caller requests encrypted data, however, we must be
 * sure they actually get it or else secret information could be leaked. Raw
 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
 * may have both an encrypted version and a decrypted version of its data at
 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
 * copied out of this header. To avoid complications with b_pabd, raw buffers
 * cannot be shared.
 */

#include <sys/spa.h>
#include <sys/zio.h>
#include <sys/spa_impl.h>
#include <sys/zio_compress.h>
#include <sys/zio_checksum.h>
#include <sys/zfs_context.h>
#include <sys/arc.h>
#include <sys/zfs_refcount.h>
#include <sys/vdev.h>
#include <sys/vdev_impl.h>
#include <sys/dsl_pool.h>
#include <sys/multilist.h>
#include <sys/abd.h>
#include <sys/zil.h>
#include <sys/fm/fs/zfs.h>
#include <sys/callb.h>
#include <sys/kstat.h>
#include <sys/zthr.h>
#include <zfs_fletcher.h>
#include <sys/arc_impl.h>
#include <sys/trace_zfs.h>
#include <sys/aggsum.h>
#include <sys/wmsum.h>
#include <cityhash.h>
#include <sys/vdev_trim.h>
#include <sys/zfs_racct.h>
#include <sys/zstd/zstd.h>

#ifndef _KERNEL
/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
boolean_t arc_watch = B_FALSE;
#endif

/*
 * This thread's job is to keep enough free memory in the system, by
 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
 * arc_available_memory().
 */
static zthr_t *arc_reap_zthr;

/*
 * This thread's job is to keep arc_size under arc_c, by calling
 * arc_evict(), which improves arc_is_overflowing().
 */
static zthr_t *arc_evict_zthr;
static arc_buf_hdr_t **arc_state_evict_markers;
static int arc_state_evict_marker_count;

static kmutex_t arc_evict_lock;
static boolean_t arc_evict_needed = B_FALSE;
static clock_t arc_last_uncached_flush;

/*
 * Count of bytes evicted since boot.
 */
static uint64_t arc_evict_count;

/*
 * List of arc_evict_waiter_t's, representing threads waiting for the
 * arc_evict_count to reach specific values.
 */
static list_t arc_evict_waiters;

/*
 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
 * the requested amount of data to be evicted.  For example, by default for
 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
 * Since this is above 100%, it ensures that progress is made towards getting
 * arc_size under arc_c.  Since this is finite, it ensures that allocations
 * can still happen, even during the potentially long time that arc_size is
 * more than arc_c.
 */
static uint_t zfs_arc_eviction_pct = 200;

/*
 * The number of headers to evict in arc_evict_state_impl() before
 * dropping the sublist lock and evicting from another sublist. A lower
 * value means we're more likely to evict the "correct" header (i.e. the
 * oldest header in the arc state), but comes with higher overhead
 * (i.e. more invocations of arc_evict_state_impl()).
 */
static uint_t zfs_arc_evict_batch_limit = 10;

/* number of seconds before growing cache again */
uint_t arc_grow_retry = 5;

/*
 * Minimum time between calls to arc_kmem_reap_soon().
 */
static const int arc_kmem_cache_reap_retry_ms = 1000;

/* shift of arc_c for calculating overflow limit in arc_get_data_impl */
static int zfs_arc_overflow_shift = 8;

/* log2(fraction of arc to reclaim) */
uint_t arc_shrink_shift = 7;

/* percent of pagecache to reclaim arc to */
#ifdef _KERNEL
uint_t zfs_arc_pc_percent = 0;
#endif

/*
 * log2(fraction of ARC which must be free to allow growing).
 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
 * when reading a new block into the ARC, we will evict an equal-sized block
 * from the ARC.
 *
 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
 * we will still not allow it to grow.
 */
uint_t		arc_no_grow_shift = 5;


/*
 * minimum lifespan of a prefetch block in clock ticks
 * (initialized in arc_init())
 */
static uint_t		arc_min_prefetch_ms;
static uint_t		arc_min_prescient_prefetch_ms;

/*
 * If this percent of memory is free, don't throttle.
 */
uint_t arc_lotsfree_percent = 10;

/*
 * The arc has filled available memory and has now warmed up.
 */
boolean_t arc_warm;

/*
 * These tunables are for performance analysis.
 */
uint64_t zfs_arc_max = 0;
uint64_t zfs_arc_min = 0;
static uint64_t zfs_arc_dnode_limit = 0;
static uint_t zfs_arc_dnode_reduce_percent = 10;
static uint_t zfs_arc_grow_retry = 0;
static uint_t zfs_arc_shrink_shift = 0;
uint_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */

/*
 * ARC dirty data constraints for arc_tempreserve_space() throttle:
 * * total dirty data limit
 * * anon block dirty limit
 * * each pool's anon allowance
 */
static const unsigned long zfs_arc_dirty_limit_percent = 50;
static const unsigned long zfs_arc_anon_limit_percent = 25;
static const unsigned long zfs_arc_pool_dirty_percent = 20;

/*
 * Enable or disable compressed arc buffers.
 */
int zfs_compressed_arc_enabled = B_TRUE;

/*
 * Balance between metadata and data on ghost hits.  Values above 100
 * increase metadata caching by proportionally reducing effect of ghost
 * data hits on target data/metadata rate.
 */
static uint_t zfs_arc_meta_balance = 500;

/*
 * Percentage that can be consumed by dnodes of ARC meta buffers.
 */
static uint_t zfs_arc_dnode_limit_percent = 10;

/*
 * These tunables are Linux-specific
 */
static uint64_t zfs_arc_sys_free = 0;
static uint_t zfs_arc_min_prefetch_ms = 0;
static uint_t zfs_arc_min_prescient_prefetch_ms = 0;
static uint_t zfs_arc_lotsfree_percent = 10;

/*
 * Number of arc_prune threads
 */
static int zfs_arc_prune_task_threads = 1;

/* The 7 states: */
arc_state_t ARC_anon;
arc_state_t ARC_mru;
arc_state_t ARC_mru_ghost;
arc_state_t ARC_mfu;
arc_state_t ARC_mfu_ghost;
arc_state_t ARC_l2c_only;
arc_state_t ARC_uncached;

arc_stats_t arc_stats = {
	{ "hits",			KSTAT_DATA_UINT64 },
	{ "iohits",			KSTAT_DATA_UINT64 },
	{ "misses",			KSTAT_DATA_UINT64 },
	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
	{ "demand_data_iohits",		KSTAT_DATA_UINT64 },
	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
	{ "demand_metadata_iohits",	KSTAT_DATA_UINT64 },
	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
	{ "prefetch_data_iohits",	KSTAT_DATA_UINT64 },
	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
	{ "prefetch_metadata_iohits",	KSTAT_DATA_UINT64 },
	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
	{ "mru_hits",			KSTAT_DATA_UINT64 },
	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
	{ "mfu_hits",			KSTAT_DATA_UINT64 },
	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
	{ "uncached_hits",		KSTAT_DATA_UINT64 },
	{ "deleted",			KSTAT_DATA_UINT64 },
	{ "mutex_miss",			KSTAT_DATA_UINT64 },
	{ "access_skip",		KSTAT_DATA_UINT64 },
	{ "evict_skip",			KSTAT_DATA_UINT64 },
	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
	{ "evict_l2_eligible_mfu",	KSTAT_DATA_UINT64 },
	{ "evict_l2_eligible_mru",	KSTAT_DATA_UINT64 },
	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
	{ "hash_elements",		KSTAT_DATA_UINT64 },
	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
	{ "hash_collisions",		KSTAT_DATA_UINT64 },
	{ "hash_chains",		KSTAT_DATA_UINT64 },
	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
	{ "meta",			KSTAT_DATA_UINT64 },
	{ "pd",				KSTAT_DATA_UINT64 },
	{ "pm",				KSTAT_DATA_UINT64 },
	{ "c",				KSTAT_DATA_UINT64 },
	{ "c_min",			KSTAT_DATA_UINT64 },
	{ "c_max",			KSTAT_DATA_UINT64 },
	{ "size",			KSTAT_DATA_UINT64 },
	{ "compressed_size",		KSTAT_DATA_UINT64 },
	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
	{ "overhead_size",		KSTAT_DATA_UINT64 },
	{ "hdr_size",			KSTAT_DATA_UINT64 },
	{ "data_size",			KSTAT_DATA_UINT64 },
	{ "metadata_size",		KSTAT_DATA_UINT64 },
	{ "dbuf_size",			KSTAT_DATA_UINT64 },
	{ "dnode_size",			KSTAT_DATA_UINT64 },
	{ "bonus_size",			KSTAT_DATA_UINT64 },
#if defined(COMPAT_FREEBSD11)
	{ "other_size",			KSTAT_DATA_UINT64 },
#endif
	{ "anon_size",			KSTAT_DATA_UINT64 },
	{ "anon_data",			KSTAT_DATA_UINT64 },
	{ "anon_metadata",		KSTAT_DATA_UINT64 },
	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
	{ "mru_size",			KSTAT_DATA_UINT64 },
	{ "mru_data",			KSTAT_DATA_UINT64 },
	{ "mru_metadata",		KSTAT_DATA_UINT64 },
	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
	{ "mru_ghost_data",		KSTAT_DATA_UINT64 },
	{ "mru_ghost_metadata",		KSTAT_DATA_UINT64 },
	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
	{ "mfu_size",			KSTAT_DATA_UINT64 },
	{ "mfu_data",			KSTAT_DATA_UINT64 },
	{ "mfu_metadata",		KSTAT_DATA_UINT64 },
	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
	{ "mfu_ghost_data",		KSTAT_DATA_UINT64 },
	{ "mfu_ghost_metadata",		KSTAT_DATA_UINT64 },
	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
	{ "uncached_size",		KSTAT_DATA_UINT64 },
	{ "uncached_data",		KSTAT_DATA_UINT64 },
	{ "uncached_metadata",		KSTAT_DATA_UINT64 },
	{ "uncached_evictable_data",	KSTAT_DATA_UINT64 },
	{ "uncached_evictable_metadata", KSTAT_DATA_UINT64 },
	{ "l2_hits",			KSTAT_DATA_UINT64 },
	{ "l2_misses",			KSTAT_DATA_UINT64 },
	{ "l2_prefetch_asize",		KSTAT_DATA_UINT64 },
	{ "l2_mru_asize",		KSTAT_DATA_UINT64 },
	{ "l2_mfu_asize",		KSTAT_DATA_UINT64 },
	{ "l2_bufc_data_asize",		KSTAT_DATA_UINT64 },
	{ "l2_bufc_metadata_asize",	KSTAT_DATA_UINT64 },
	{ "l2_feeds",			KSTAT_DATA_UINT64 },
	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
	{ "l2_io_error",		KSTAT_DATA_UINT64 },
	{ "l2_size",			KSTAT_DATA_UINT64 },
	{ "l2_asize",			KSTAT_DATA_UINT64 },
	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
	{ "l2_log_blk_writes",		KSTAT_DATA_UINT64 },
	{ "l2_log_blk_avg_asize",	KSTAT_DATA_UINT64 },
	{ "l2_log_blk_asize",		KSTAT_DATA_UINT64 },
	{ "l2_log_blk_count",		KSTAT_DATA_UINT64 },
	{ "l2_data_to_meta_ratio",	KSTAT_DATA_UINT64 },
	{ "l2_rebuild_success",		KSTAT_DATA_UINT64 },
	{ "l2_rebuild_unsupported",	KSTAT_DATA_UINT64 },
	{ "l2_rebuild_io_errors",	KSTAT_DATA_UINT64 },
	{ "l2_rebuild_dh_errors",	KSTAT_DATA_UINT64 },
	{ "l2_rebuild_cksum_lb_errors",	KSTAT_DATA_UINT64 },
	{ "l2_rebuild_lowmem",		KSTAT_DATA_UINT64 },
	{ "l2_rebuild_size",		KSTAT_DATA_UINT64 },
	{ "l2_rebuild_asize",		KSTAT_DATA_UINT64 },
	{ "l2_rebuild_bufs",		KSTAT_DATA_UINT64 },
	{ "l2_rebuild_bufs_precached",	KSTAT_DATA_UINT64 },
	{ "l2_rebuild_log_blks",	KSTAT_DATA_UINT64 },
	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
	{ "memory_direct_count",	KSTAT_DATA_UINT64 },
	{ "memory_indirect_count",	KSTAT_DATA_UINT64 },
	{ "memory_all_bytes",		KSTAT_DATA_UINT64 },
	{ "memory_free_bytes",		KSTAT_DATA_UINT64 },
	{ "memory_available_bytes",	KSTAT_DATA_INT64 },
	{ "arc_no_grow",		KSTAT_DATA_UINT64 },
	{ "arc_tempreserve",		KSTAT_DATA_UINT64 },
	{ "arc_loaned_bytes",		KSTAT_DATA_UINT64 },
	{ "arc_prune",			KSTAT_DATA_UINT64 },
	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
	{ "arc_dnode_limit",		KSTAT_DATA_UINT64 },
	{ "async_upgrade_sync",		KSTAT_DATA_UINT64 },
	{ "predictive_prefetch", KSTAT_DATA_UINT64 },
	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
	{ "demand_iohit_predictive_prefetch", KSTAT_DATA_UINT64 },
	{ "prescient_prefetch", KSTAT_DATA_UINT64 },
	{ "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
	{ "demand_iohit_prescient_prefetch", KSTAT_DATA_UINT64 },
	{ "arc_need_free",		KSTAT_DATA_UINT64 },
	{ "arc_sys_free",		KSTAT_DATA_UINT64 },
	{ "arc_raw_size",		KSTAT_DATA_UINT64 },
	{ "cached_only_in_progress",	KSTAT_DATA_UINT64 },
	{ "abd_chunk_waste_size",	KSTAT_DATA_UINT64 },
};

arc_sums_t arc_sums;

#define	ARCSTAT_MAX(stat, val) {					\
	uint64_t m;							\
	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
		continue;						\
}

/*
 * We define a macro to allow ARC hits/misses to be easily broken down by
 * two separate conditions, giving a total of four different subtypes for
 * each of hits and misses (so eight statistics total).
 */
#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
	if (cond1) {							\
		if (cond2) {						\
			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
		} else {						\
			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
		}							\
	} else {							\
		if (cond2) {						\
			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
		} else {						\
			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
		}							\
	}

/*
 * This macro allows us to use kstats as floating averages. Each time we
 * update this kstat, we first factor it and the update value by
 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
 * average. This macro assumes that integer loads and stores are atomic, but
 * is not safe for multiple writers updating the kstat in parallel (only the
 * last writer's update will remain).
 */
#define	ARCSTAT_F_AVG_FACTOR	3
#define	ARCSTAT_F_AVG(stat, value) \
	do { \
		uint64_t x = ARCSTAT(stat); \
		x = x - x / ARCSTAT_F_AVG_FACTOR + \
		    (value) / ARCSTAT_F_AVG_FACTOR; \
		ARCSTAT(stat) = x; \
	} while (0)

static kstat_t			*arc_ksp;

/*
 * There are several ARC variables that are critical to export as kstats --
 * but we don't want to have to grovel around in the kstat whenever we wish to
 * manipulate them.  For these variables, we therefore define them to be in
 * terms of the statistic variable.  This assures that we are not introducing
 * the possibility of inconsistency by having shadow copies of the variables,
 * while still allowing the code to be readable.
 */
#define	arc_tempreserve	ARCSTAT(arcstat_tempreserve)
#define	arc_loaned_bytes	ARCSTAT(arcstat_loaned_bytes)
#define	arc_dnode_limit	ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
#define	arc_need_free	ARCSTAT(arcstat_need_free) /* waiting to be evicted */

hrtime_t arc_growtime;
list_t arc_prune_list;
kmutex_t arc_prune_mtx;
taskq_t *arc_prune_taskq;

#define	GHOST_STATE(state)	\
	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
	(state) == arc_l2c_only)

#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
#define	HDR_PRESCIENT_PREFETCH(hdr)	\
	((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
#define	HDR_COMPRESSION_ENABLED(hdr)	\
	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)

#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
#define	HDR_UNCACHED(hdr)	((hdr)->b_flags & ARC_FLAG_UNCACHED)
#define	HDR_L2_READING(hdr)	\
	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
#define	HDR_PROTECTED(hdr)	((hdr)->b_flags & ARC_FLAG_PROTECTED)
#define	HDR_NOAUTH(hdr)		((hdr)->b_flags & ARC_FLAG_NOAUTH)
#define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)

#define	HDR_ISTYPE_METADATA(hdr)	\
	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))

#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
#define	HDR_HAS_RABD(hdr)	\
	(HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) &&	\
	(hdr)->b_crypt_hdr.b_rabd != NULL)
#define	HDR_ENCRYPTED(hdr)	\
	(HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
#define	HDR_AUTHENTICATED(hdr)	\
	(HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))

/* For storing compression mode in b_flags */
#define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)

#define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
#define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));

#define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
#define	ARC_BUF_SHARED(buf)	((buf)->b_flags & ARC_BUF_FLAG_SHARED)
#define	ARC_BUF_COMPRESSED(buf)	((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
#define	ARC_BUF_ENCRYPTED(buf)	((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)

/*
 * Other sizes
 */

#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))

/*
 * Hash table routines
 */

#define	BUF_LOCKS 2048
typedef struct buf_hash_table {
	uint64_t ht_mask;
	arc_buf_hdr_t **ht_table;
	kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned;
} buf_hash_table_t;

static buf_hash_table_t buf_hash_table;

#define	BUF_HASH_INDEX(spa, dva, birth) \
	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
#define	BUF_HASH_LOCK(idx)	(&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
#define	HDR_LOCK(hdr) \
	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))

uint64_t zfs_crc64_table[256];

/*
 * Level 2 ARC
 */

#define	L2ARC_WRITE_SIZE	(32 * 1024 * 1024)	/* initial write max */
#define	L2ARC_HEADROOM		8			/* num of writes */

/*
 * If we discover during ARC scan any buffers to be compressed, we boost
 * our headroom for the next scanning cycle by this percentage multiple.
 */
#define	L2ARC_HEADROOM_BOOST	200
#define	L2ARC_FEED_SECS		1		/* caching interval secs */
#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */

/*
 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
 * and each of the state has two types: data and metadata.
 */
#define	L2ARC_FEED_TYPES	4

/* L2ARC Performance Tunables */
uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* def max write size */
uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra warmup write */
uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* # of dev writes */
uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval msecs */
int l2arc_noprefetch = B_TRUE;			/* don't cache prefetch bufs */
int l2arc_feed_again = B_TRUE;			/* turbo warmup */
int l2arc_norw = B_FALSE;			/* no reads during writes */
static uint_t l2arc_meta_percent = 33;	/* limit on headers size */

/*
 * L2ARC Internals
 */
static list_t L2ARC_dev_list;			/* device list */
static list_t *l2arc_dev_list;			/* device list pointer */
static kmutex_t l2arc_dev_mtx;			/* device list mutex */
static l2arc_dev_t *l2arc_dev_last;		/* last device used */
static list_t L2ARC_free_on_write;		/* free after write buf list */
static list_t *l2arc_free_on_write;		/* free after write list ptr */
static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
static uint64_t l2arc_ndev;			/* number of devices */

typedef struct l2arc_read_callback {
	arc_buf_hdr_t		*l2rcb_hdr;		/* read header */
	blkptr_t		l2rcb_bp;		/* original blkptr */
	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
	int			l2rcb_flags;		/* original flags */
	abd_t			*l2rcb_abd;		/* temporary buffer */
} l2arc_read_callback_t;

typedef struct l2arc_data_free {
	/* protected by l2arc_free_on_write_mtx */
	abd_t		*l2df_abd;
	size_t		l2df_size;
	arc_buf_contents_t l2df_type;
	list_node_t	l2df_list_node;
} l2arc_data_free_t;

typedef enum arc_fill_flags {
	ARC_FILL_LOCKED		= 1 << 0, /* hdr lock is held */
	ARC_FILL_COMPRESSED	= 1 << 1, /* fill with compressed data */
	ARC_FILL_ENCRYPTED	= 1 << 2, /* fill with encrypted data */
	ARC_FILL_NOAUTH		= 1 << 3, /* don't attempt to authenticate */
	ARC_FILL_IN_PLACE	= 1 << 4  /* fill in place (special case) */
} arc_fill_flags_t;

typedef enum arc_ovf_level {
	ARC_OVF_NONE,			/* ARC within target size. */
	ARC_OVF_SOME,			/* ARC is slightly overflowed. */
	ARC_OVF_SEVERE			/* ARC is severely overflowed. */
} arc_ovf_level_t;

static kmutex_t l2arc_feed_thr_lock;
static kcondvar_t l2arc_feed_thr_cv;
static uint8_t l2arc_thread_exit;

static kmutex_t l2arc_rebuild_thr_lock;
static kcondvar_t l2arc_rebuild_thr_cv;

enum arc_hdr_alloc_flags {
	ARC_HDR_ALLOC_RDATA = 0x1,
	ARC_HDR_USE_RESERVE = 0x4,
	ARC_HDR_ALLOC_LINEAR = 0x8,
};


static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, const void *, int);
static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, const void *);
static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, const void *, int);
static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, const void *);
static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, const void *);
static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size,
    const void *tag);
static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int);
static void arc_hdr_destroy(arc_buf_hdr_t *);
static void arc_access(arc_buf_hdr_t *, arc_flags_t, boolean_t);
static void arc_buf_watch(arc_buf_t *);
static void arc_change_state(arc_state_t *, arc_buf_hdr_t *);

static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);

static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
static void l2arc_read_done(zio_t *);
static void l2arc_do_free_on_write(void);
static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
    boolean_t state_only);

static void arc_prune_async(uint64_t adjust);

#define	l2arc_hdr_arcstats_increment(hdr) \
	l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
#define	l2arc_hdr_arcstats_decrement(hdr) \
	l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
#define	l2arc_hdr_arcstats_increment_state(hdr) \
	l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
#define	l2arc_hdr_arcstats_decrement_state(hdr) \
	l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)

/*
 * l2arc_exclude_special : A zfs module parameter that controls whether buffers
 * 		present on special vdevs are eligibile for caching in L2ARC. If
 * 		set to 1, exclude dbufs on special vdevs from being cached to
 * 		L2ARC.
 */
int l2arc_exclude_special = 0;

/*
 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
 * 		metadata and data are cached from ARC into L2ARC.
 */
static int l2arc_mfuonly = 0;

/*
 * L2ARC TRIM
 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
 * 		the current write size (l2arc_write_max) we should TRIM if we
 * 		have filled the device. It is defined as a percentage of the
 * 		write size. If set to 100 we trim twice the space required to
 * 		accommodate upcoming writes. A minimum of 64MB will be trimmed.
 * 		It also enables TRIM of the whole L2ARC device upon creation or
 * 		addition to an existing pool or if the header of the device is
 * 		invalid upon importing a pool or onlining a cache device. The
 * 		default is 0, which disables TRIM on L2ARC altogether as it can
 * 		put significant stress on the underlying storage devices. This
 * 		will vary depending of how well the specific device handles
 * 		these commands.
 */
static uint64_t l2arc_trim_ahead = 0;

/*
 * Performance tuning of L2ARC persistence:
 *
 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
 * 		an L2ARC device (either at pool import or later) will attempt
 * 		to rebuild L2ARC buffer contents.
 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
 * 		whether log blocks are written to the L2ARC device. If the L2ARC
 * 		device is less than 1GB, the amount of data l2arc_evict()
 * 		evicts is significant compared to the amount of restored L2ARC
 * 		data. In this case do not write log blocks in L2ARC in order
 * 		not to waste space.
 */
static int l2arc_rebuild_enabled = B_TRUE;
static uint64_t l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;

/* L2ARC persistence rebuild control routines. */
void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
static __attribute__((noreturn)) void l2arc_dev_rebuild_thread(void *arg);
static int l2arc_rebuild(l2arc_dev_t *dev);

/* L2ARC persistence read I/O routines. */
static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
static int l2arc_log_blk_read(l2arc_dev_t *dev,
    const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
    l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
    zio_t *this_io, zio_t **next_io);
static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
    const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
static void l2arc_log_blk_fetch_abort(zio_t *zio);

/* L2ARC persistence block restoration routines. */
static void l2arc_log_blk_restore(l2arc_dev_t *dev,
    const l2arc_log_blk_phys_t *lb, uint64_t lb_asize);
static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
    l2arc_dev_t *dev);

/* L2ARC persistence write I/O routines. */
static uint64_t l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
    l2arc_write_callback_t *cb);

/* L2ARC persistence auxiliary routines. */
boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
    const l2arc_log_blkptr_t *lbp);
static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
    const arc_buf_hdr_t *ab);
boolean_t l2arc_range_check_overlap(uint64_t bottom,
    uint64_t top, uint64_t check);
static void l2arc_blk_fetch_done(zio_t *zio);
static inline uint64_t
    l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);

/*
 * We use Cityhash for this. It's fast, and has good hash properties without
 * requiring any large static buffers.
 */
static uint64_t
buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
{
	return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
}

#define	HDR_EMPTY(hdr)						\
	((hdr)->b_dva.dva_word[0] == 0 &&			\
	(hdr)->b_dva.dva_word[1] == 0)

#define	HDR_EMPTY_OR_LOCKED(hdr)				\
	(HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))

#define	HDR_EQUAL(spa, dva, birth, hdr)				\
	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)

static void
buf_discard_identity(arc_buf_hdr_t *hdr)
{
	hdr->b_dva.dva_word[0] = 0;
	hdr->b_dva.dva_word[1] = 0;
	hdr->b_birth = 0;
}

static arc_buf_hdr_t *
buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
{
	const dva_t *dva = BP_IDENTITY(bp);
	uint64_t birth = BP_GET_BIRTH(bp);
	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
	arc_buf_hdr_t *hdr;

	mutex_enter(hash_lock);
	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
	    hdr = hdr->b_hash_next) {
		if (HDR_EQUAL(spa, dva, birth, hdr)) {
			*lockp = hash_lock;
			return (hdr);
		}
	}
	mutex_exit(hash_lock);
	*lockp = NULL;
	return (NULL);
}

/*
 * Insert an entry into the hash table.  If there is already an element
 * equal to elem in the hash table, then the already existing element
 * will be returned and the new element will not be inserted.
 * Otherwise returns NULL.
 * If lockp == NULL, the caller is assumed to already hold the hash lock.
 */
static arc_buf_hdr_t *
buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
{
	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
	arc_buf_hdr_t *fhdr;
	uint32_t i;

	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
	ASSERT(hdr->b_birth != 0);
	ASSERT(!HDR_IN_HASH_TABLE(hdr));

	if (lockp != NULL) {
		*lockp = hash_lock;
		mutex_enter(hash_lock);
	} else {
		ASSERT(MUTEX_HELD(hash_lock));
	}

	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
	    fhdr = fhdr->b_hash_next, i++) {
		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
			return (fhdr);
	}

	hdr->b_hash_next = buf_hash_table.ht_table[idx];
	buf_hash_table.ht_table[idx] = hdr;
	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);

	/* collect some hash table performance data */
	if (i > 0) {
		ARCSTAT_BUMP(arcstat_hash_collisions);
		if (i == 1)
			ARCSTAT_BUMP(arcstat_hash_chains);
		ARCSTAT_MAX(arcstat_hash_chain_max, i);
	}
	ARCSTAT_BUMP(arcstat_hash_elements);

	return (NULL);
}

static void
buf_hash_remove(arc_buf_hdr_t *hdr)
{
	arc_buf_hdr_t *fhdr, **hdrp;
	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);

	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
	ASSERT(HDR_IN_HASH_TABLE(hdr));

	hdrp = &buf_hash_table.ht_table[idx];
	while ((fhdr = *hdrp) != hdr) {
		ASSERT3P(fhdr, !=, NULL);
		hdrp = &fhdr->b_hash_next;
	}
	*hdrp = hdr->b_hash_next;
	hdr->b_hash_next = NULL;
	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);

	/* collect some hash table performance data */
	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
	if (buf_hash_table.ht_table[idx] &&
	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
}

/*
 * Global data structures and functions for the buf kmem cache.
 */

static kmem_cache_t *hdr_full_cache;
static kmem_cache_t *hdr_l2only_cache;
static kmem_cache_t *buf_cache;

static void
buf_fini(void)
{
#if defined(_KERNEL)
	/*
	 * Large allocations which do not require contiguous pages
	 * should be using vmem_free() in the linux kernel\
	 */
	vmem_free(buf_hash_table.ht_table,
	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
#else
	kmem_free(buf_hash_table.ht_table,
	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
#endif
	for (int i = 0; i < BUF_LOCKS; i++)
		mutex_destroy(BUF_HASH_LOCK(i));
	kmem_cache_destroy(hdr_full_cache);
	kmem_cache_destroy(hdr_l2only_cache);
	kmem_cache_destroy(buf_cache);
}

/*
 * Constructor callback - called when the cache is empty
 * and a new buf is requested.
 */
static int
hdr_full_cons(void *vbuf, void *unused, int kmflag)
{
	(void) unused, (void) kmflag;
	arc_buf_hdr_t *hdr = vbuf;

	memset(hdr, 0, HDR_FULL_SIZE);
	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
	zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
#ifdef ZFS_DEBUG
	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
#endif
	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
	list_link_init(&hdr->b_l2hdr.b_l2node);
	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);

	return (0);
}

static int
hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
{
	(void) unused, (void) kmflag;
	arc_buf_hdr_t *hdr = vbuf;

	memset(hdr, 0, HDR_L2ONLY_SIZE);
	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);

	return (0);
}

static int
buf_cons(void *vbuf, void *unused, int kmflag)
{
	(void) unused, (void) kmflag;
	arc_buf_t *buf = vbuf;

	memset(buf, 0, sizeof (arc_buf_t));
	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);

	return (0);
}

/*
 * Destructor callback - called when a cached buf is
 * no longer required.
 */
static void
hdr_full_dest(void *vbuf, void *unused)
{
	(void) unused;
	arc_buf_hdr_t *hdr = vbuf;

	ASSERT(HDR_EMPTY(hdr));
	zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
#ifdef ZFS_DEBUG
	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
#endif
	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
}

static void
hdr_l2only_dest(void *vbuf, void *unused)
{
	(void) unused;
	arc_buf_hdr_t *hdr = vbuf;

	ASSERT(HDR_EMPTY(hdr));
	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
}

static void
buf_dest(void *vbuf, void *unused)
{
	(void) unused;
	(void) vbuf;

	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
}

static void
buf_init(void)
{
	uint64_t *ct = NULL;
	uint64_t hsize = 1ULL << 12;
	int i, j;

	/*
	 * The hash table is big enough to fill all of physical memory
	 * with an average block size of zfs_arc_average_blocksize (default 8K).
	 * By default, the table will take up
	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
	 */
	while (hsize * zfs_arc_average_blocksize < arc_all_memory())
		hsize <<= 1;
retry:
	buf_hash_table.ht_mask = hsize - 1;
#if defined(_KERNEL)
	/*
	 * Large allocations which do not require contiguous pages
	 * should be using vmem_alloc() in the linux kernel
	 */
	buf_hash_table.ht_table =
	    vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
#else
	buf_hash_table.ht_table =
	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
#endif
	if (buf_hash_table.ht_table == NULL) {
		ASSERT(hsize > (1ULL << 8));
		hsize >>= 1;
		goto retry;
	}

	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
	    0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, KMC_RECLAIMABLE);
	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
	    NULL, NULL, 0);
	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);

	for (i = 0; i < 256; i++)
		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);

	for (i = 0; i < BUF_LOCKS; i++)
		mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL);
}

#define	ARC_MINTIME	(hz>>4) /* 62 ms */

/*
 * This is the size that the buf occupies in memory. If the buf is compressed,
 * it will correspond to the compressed size. You should use this method of
 * getting the buf size unless you explicitly need the logical size.
 */
uint64_t
arc_buf_size(arc_buf_t *buf)
{
	return (ARC_BUF_COMPRESSED(buf) ?
	    HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
}

uint64_t
arc_buf_lsize(arc_buf_t *buf)
{
	return (HDR_GET_LSIZE(buf->b_hdr));
}

/*
 * This function will return B_TRUE if the buffer is encrypted in memory.
 * This buffer can be decrypted by calling arc_untransform().
 */
boolean_t
arc_is_encrypted(arc_buf_t *buf)
{
	return (ARC_BUF_ENCRYPTED(buf) != 0);
}

/*
 * Returns B_TRUE if the buffer represents data that has not had its MAC
 * verified yet.
 */
boolean_t
arc_is_unauthenticated(arc_buf_t *buf)
{
	return (HDR_NOAUTH(buf->b_hdr) != 0);
}

void
arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
    uint8_t *iv, uint8_t *mac)
{
	arc_buf_hdr_t *hdr = buf->b_hdr;

	ASSERT(HDR_PROTECTED(hdr));

	memcpy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
	memcpy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
	memcpy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
	*byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
	    ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
}

/*
 * Indicates how this buffer is compressed in memory. If it is not compressed
 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
 * arc_untransform() as long as it is also unencrypted.
 */
enum zio_compress
arc_get_compression(arc_buf_t *buf)
{
	return (ARC_BUF_COMPRESSED(buf) ?
	    HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
}

/*
 * Return the compression algorithm used to store this data in the ARC. If ARC
 * compression is enabled or this is an encrypted block, this will be the same
 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
 */
static inline enum zio_compress
arc_hdr_get_compress(arc_buf_hdr_t *hdr)
{
	return (HDR_COMPRESSION_ENABLED(hdr) ?
	    HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
}

uint8_t
arc_get_complevel(arc_buf_t *buf)
{
	return (buf->b_hdr->b_complevel);
}

static inline boolean_t
arc_buf_is_shared(arc_buf_t *buf)
{
	boolean_t shared = (buf->b_data != NULL &&
	    buf->b_hdr->b_l1hdr.b_pabd != NULL &&
	    abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
	    buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
	EQUIV(shared, ARC_BUF_SHARED(buf));
	IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));

	/*
	 * It would be nice to assert arc_can_share() too, but the "hdr isn't
	 * already being shared" requirement prevents us from doing that.
	 */

	return (shared);
}

/*
 * Free the checksum associated with this header. If there is no checksum, this
 * is a no-op.
 */
static inline void
arc_cksum_free(arc_buf_hdr_t *hdr)
{
#ifdef ZFS_DEBUG
	ASSERT(HDR_HAS_L1HDR(hdr));

	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
		hdr->b_l1hdr.b_freeze_cksum = NULL;
	}
	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
#endif
}

/*
 * Return true iff at least one of the bufs on hdr is not compressed.
 * Encrypted buffers count as compressed.
 */
static boolean_t
arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
{
	ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));

	for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
		if (!ARC_BUF_COMPRESSED(b)) {
			return (B_TRUE);
		}
	}
	return (B_FALSE);
}


/*
 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
 * matches the checksum that is stored in the hdr. If there is no checksum,
 * or if the buf is compressed, this is a no-op.
 */
static void
arc_cksum_verify(arc_buf_t *buf)
{
#ifdef ZFS_DEBUG
	arc_buf_hdr_t *hdr = buf->b_hdr;
	zio_cksum_t zc;

	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
		return;

	if (ARC_BUF_COMPRESSED(buf))
		return;

	ASSERT(HDR_HAS_L1HDR(hdr));

	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);

	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
		return;
	}

	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
		panic("buffer modified while frozen!");
	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
#endif
}

/*
 * This function makes the assumption that data stored in the L2ARC
 * will be transformed exactly as it is in the main pool. Because of
 * this we can verify the checksum against the reading process's bp.
 */
static boolean_t
arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
{
	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));

	/*
	 * Block pointers always store the checksum for the logical data.
	 * If the block pointer has the gang bit set, then the checksum
	 * it represents is for the reconstituted data and not for an
	 * individual gang member. The zio pipeline, however, must be able to
	 * determine the checksum of each of the gang constituents so it
	 * treats the checksum comparison differently than what we need
	 * for l2arc blocks. This prevents us from using the
	 * zio_checksum_error() interface directly. Instead we must call the
	 * zio_checksum_error_impl() so that we can ensure the checksum is
	 * generated using the correct checksum algorithm and accounts for the
	 * logical I/O size and not just a gang fragment.
	 */
	return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
	    BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
	    zio->io_offset, NULL) == 0);
}

/*
 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
 * isn't modified later on. If buf is compressed or there is already a checksum
 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
 */
static void
arc_cksum_compute(arc_buf_t *buf)
{
	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
		return;

#ifdef ZFS_DEBUG
	arc_buf_hdr_t *hdr = buf->b_hdr;
	ASSERT(HDR_HAS_L1HDR(hdr));
	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
	if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
		return;
	}

	ASSERT(!ARC_BUF_ENCRYPTED(buf));
	ASSERT(!ARC_BUF_COMPRESSED(buf));
	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
	    KM_SLEEP);
	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
	    hdr->b_l1hdr.b_freeze_cksum);
	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
#endif
	arc_buf_watch(buf);
}

#ifndef _KERNEL
void
arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
{
	(void) sig, (void) unused;
	panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
}
#endif

static void
arc_buf_unwatch(arc_buf_t *buf)
{
#ifndef _KERNEL
	if (arc_watch) {
		ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
		    PROT_READ | PROT_WRITE));
	}
#else
	(void) buf;
#endif
}

static void
arc_buf_watch(arc_buf_t *buf)
{
#ifndef _KERNEL
	if (arc_watch)
		ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
		    PROT_READ));
#else
	(void) buf;
#endif
}

static arc_buf_contents_t
arc_buf_type(arc_buf_hdr_t *hdr)
{
	arc_buf_contents_t type;
	if (HDR_ISTYPE_METADATA(hdr)) {
		type = ARC_BUFC_METADATA;
	} else {
		type = ARC_BUFC_DATA;
	}
	VERIFY3U(hdr->b_type, ==, type);
	return (type);
}

boolean_t
arc_is_metadata(arc_buf_t *buf)
{
	return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
}

static uint32_t
arc_bufc_to_flags(arc_buf_contents_t type)
{
	switch (type) {
	case ARC_BUFC_DATA:
		/* metadata field is 0 if buffer contains normal data */
		return (0);
	case ARC_BUFC_METADATA:
		return (ARC_FLAG_BUFC_METADATA);
	default:
		break;
	}
	panic("undefined ARC buffer type!");
	return ((uint32_t)-1);
}

void
arc_buf_thaw(arc_buf_t *buf)
{
	arc_buf_hdr_t *hdr = buf->b_hdr;

	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
	ASSERT(!HDR_IO_IN_PROGRESS(hdr));

	arc_cksum_verify(buf);

	/*
	 * Compressed buffers do not manipulate the b_freeze_cksum.
	 */
	if (ARC_BUF_COMPRESSED(buf))
		return;

	ASSERT(HDR_HAS_L1HDR(hdr));
	arc_cksum_free(hdr);
	arc_buf_unwatch(buf);
}

void
arc_buf_freeze(arc_buf_t *buf)
{
	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
		return;

	if (ARC_BUF_COMPRESSED(buf))
		return;

	ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
	arc_cksum_compute(buf);
}

/*
 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
 * the following functions should be used to ensure that the flags are
 * updated in a thread-safe way. When manipulating the flags either
 * the hash_lock must be held or the hdr must be undiscoverable. This
 * ensures that we're not racing with any other threads when updating
 * the flags.
 */
static inline void
arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
{
	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
	hdr->b_flags |= flags;
}

static inline void
arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
{
	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
	hdr->b_flags &= ~flags;
}

/*
 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
 * done in a special way since we have to clear and set bits
 * at the same time. Consumers that wish to set the compression bits
 * must use this function to ensure that the flags are updated in
 * thread-safe manner.
 */
static void
arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
{
	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));

	/*
	 * Holes and embedded blocks will always have a psize = 0 so
	 * we ignore the compression of the blkptr and set the
	 * want to uncompress them. Mark them as uncompressed.
	 */
	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
	} else {
		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
	}

	HDR_SET_COMPRESS(hdr, cmp);
	ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
}

/*
 * Looks for another buf on the same hdr which has the data decompressed, copies
 * from it, and returns true. If no such buf exists, returns false.
 */
static boolean_t
arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
{
	arc_buf_hdr_t *hdr = buf->b_hdr;
	boolean_t copied = B_FALSE;

	ASSERT(HDR_HAS_L1HDR(hdr));
	ASSERT3P(buf->b_data, !=, NULL);
	ASSERT(!ARC_BUF_COMPRESSED(buf));

	for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
	    from = from->b_next) {
		/* can't use our own data buffer */
		if (from == buf) {
			continue;
		}

		if (!ARC_BUF_COMPRESSED(from)) {
			memcpy(buf->b_data, from->b_data, arc_buf_size(buf));
			copied = B_TRUE;
			break;
		}
	}

#ifdef ZFS_DEBUG
	/*
	 * There were no decompressed bufs, so there should not be a
	 * checksum on the hdr either.
	 */
	if (zfs_flags & ZFS_DEBUG_MODIFY)
		EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
#endif

	return (copied);
}

/*
 * Allocates an ARC buf header that's in an evicted & L2-cached state.
 * This is used during l2arc reconstruction to make empty ARC buffers
 * which circumvent the regular disk->arc->l2arc path and instead come
 * into being in the reverse order, i.e. l2arc->arc.
 */
static arc_buf_hdr_t *
arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
    dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth,
    enum zio_compress compress, uint8_t complevel, boolean_t protected,
    boolean_t prefetch, arc_state_type_t arcs_state)
{
	arc_buf_hdr_t	*hdr;

	ASSERT(size != 0);
	hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
	hdr->b_birth = birth;
	hdr->b_type = type;
	hdr->b_flags = 0;
	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
	HDR_SET_LSIZE(hdr, size);
	HDR_SET_PSIZE(hdr, psize);
	arc_hdr_set_compress(hdr, compress);
	hdr->b_complevel = complevel;
	if (protected)
		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
	if (prefetch)
		arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
	hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);

	hdr->b_dva = dva;

	hdr->b_l2hdr.b_dev = dev;
	hdr->b_l2hdr.b_daddr = daddr;
	hdr->b_l2hdr.b_arcs_state = arcs_state;

	return (hdr);
}

/*
 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
 */
static uint64_t
arc_hdr_size(arc_buf_hdr_t *hdr)
{
	uint64_t size;

	if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
	    HDR_GET_PSIZE(hdr) > 0) {
		size = HDR_GET_PSIZE(hdr);
	} else {
		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
		size = HDR_GET_LSIZE(hdr);
	}
	return (size);
}

static int
arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
{
	int ret;
	uint64_t csize;
	uint64_t lsize = HDR_GET_LSIZE(hdr);
	uint64_t psize = HDR_GET_PSIZE(hdr);
	abd_t *abd = hdr->b_l1hdr.b_pabd;
	boolean_t free_abd = B_FALSE;

	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
	ASSERT(HDR_AUTHENTICATED(hdr));
	ASSERT3P(abd, !=, NULL);

	/*
	 * The MAC is calculated on the compressed data that is stored on disk.
	 * However, if compressed arc is disabled we will only have the
	 * decompressed data available to us now. Compress it into a temporary
	 * abd so we can verify the MAC. The performance overhead of this will
	 * be relatively low, since most objects in an encrypted objset will
	 * be encrypted (instead of authenticated) anyway.
	 */
	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
	    !HDR_COMPRESSION_ENABLED(hdr)) {
		abd = NULL;
		csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
		    hdr->b_l1hdr.b_pabd, &abd, lsize, MIN(lsize, psize),
		    hdr->b_complevel);
		if (csize >= lsize || csize > psize) {
			ret = SET_ERROR(EIO);
			return (ret);
		}
		ASSERT3P(abd, !=, NULL);
		abd_zero_off(abd, csize, psize - csize);
		free_abd = B_TRUE;
	}

	/*
	 * Authentication is best effort. We authenticate whenever the key is
	 * available. If we succeed we clear ARC_FLAG_NOAUTH.
	 */
	if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
		ASSERT3U(lsize, ==, psize);
		ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
		    psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
	} else {
		ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
		    hdr->b_crypt_hdr.b_mac);
	}

	if (ret == 0)
		arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
	else if (ret == ENOENT)
		ret = 0;

	if (free_abd)
		abd_free(abd);

	return (ret);
}

/*
 * This function will take a header that only has raw encrypted data in
 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
 * b_l1hdr.b_pabd. If designated in the header flags, this function will
 * also decompress the data.
 */
static int
arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
{
	int ret;
	abd_t *cabd = NULL;
	boolean_t no_crypt = B_FALSE;
	boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);

	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
	ASSERT(HDR_ENCRYPTED(hdr));

	arc_hdr_alloc_abd(hdr, 0);

	ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
	    B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
	    hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
	    hdr->b_crypt_hdr.b_rabd, &no_crypt);
	if (ret != 0)
		goto error;

	if (no_crypt) {
		abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
		    HDR_GET_PSIZE(hdr));
	}

	/*
	 * If this header has disabled arc compression but the b_pabd is
	 * compressed after decrypting it, we need to decompress the newly
	 * decrypted data.
	 */
	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
	    !HDR_COMPRESSION_ENABLED(hdr)) {
		/*
		 * We want to make sure that we are correctly honoring the
		 * zfs_abd_scatter_enabled setting, so we allocate an abd here
		 * and then loan a buffer from it, rather than allocating a
		 * linear buffer and wrapping it in an abd later.
		 */
		cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 0);

		ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
		    hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr),
		    HDR_GET_LSIZE(hdr), &hdr->b_complevel);
		if (ret != 0) {
			goto error;
		}

		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
		    arc_hdr_size(hdr), hdr);
		hdr->b_l1hdr.b_pabd = cabd;
	}

	return (0);

error:
	arc_hdr_free_abd(hdr, B_FALSE);
	if (cabd != NULL)
		arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);

	return (ret);
}

/*
 * This function is called during arc_buf_fill() to prepare the header's
 * abd plaintext pointer for use. This involves authenticated protected
 * data and decrypting encrypted data into the plaintext abd.
 */
static int
arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
    const zbookmark_phys_t *zb, boolean_t noauth)
{
	int ret;

	ASSERT(HDR_PROTECTED(hdr));

	if (hash_lock != NULL)
		mutex_enter(hash_lock);

	if (HDR_NOAUTH(hdr) && !noauth) {
		/*
		 * The caller requested authenticated data but our data has
		 * not been authenticated yet. Verify the MAC now if we can.
		 */
		ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
		if (ret != 0)
			goto error;
	} else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
		/*
		 * If we only have the encrypted version of the data, but the
		 * unencrypted version was requested we take this opportunity
		 * to store the decrypted version in the header for future use.
		 */
		ret = arc_hdr_decrypt(hdr, spa, zb);
		if (ret != 0)
			goto error;
	}

	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);

	if (hash_lock != NULL)
		mutex_exit(hash_lock);

	return (0);

error:
	if (hash_lock != NULL)
		mutex_exit(hash_lock);

	return (ret);
}

/*
 * This function is used by the dbuf code to decrypt bonus buffers in place.
 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
 * block, so we use the hash lock here to protect against concurrent calls to
 * arc_buf_fill().
 */
static void
arc_buf_untransform_in_place(arc_buf_t *buf)
{
	arc_buf_hdr_t *hdr = buf->b_hdr;

	ASSERT(HDR_ENCRYPTED(hdr));
	ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
	ASSERT3PF(hdr->b_l1hdr.b_pabd, !=, NULL, "hdr %px buf %px", hdr, buf);

	zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
	    arc_buf_size(buf));
	buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
	buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
}

/*
 * Given a buf that has a data buffer attached to it, this function will
 * efficiently fill the buf with data of the specified compression setting from
 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
 * are already sharing a data buf, no copy is performed.
 *
 * If the buf is marked as compressed but uncompressed data was requested, this
 * will allocate a new data buffer for the buf, remove that flag, and fill the
 * buf with uncompressed data. You can't request a compressed buf on a hdr with
 * uncompressed data, and (since we haven't added support for it yet) if you
 * want compressed data your buf must already be marked as compressed and have
 * the correct-sized data buffer.
 */
static int
arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
    arc_fill_flags_t flags)
{
	int error = 0;
	arc_buf_hdr_t *hdr = buf->b_hdr;
	boolean_t hdr_compressed =
	    (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
	boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
	boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
	kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);

	ASSERT3P(buf->b_data, !=, NULL);
	IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
	IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
	IMPLY(encrypted, HDR_ENCRYPTED(hdr));
	IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
	IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
	IMPLY(encrypted, !arc_buf_is_shared(buf));

	/*
	 * If the caller wanted encrypted data we just need to copy it from
	 * b_rabd and potentially byteswap it. We won't be able to do any
	 * further transforms on it.
	 */
	if (encrypted) {
		ASSERT(HDR_HAS_RABD(hdr));
		abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
		    HDR_GET_PSIZE(hdr));
		goto byteswap;
	}

	/*
	 * Adjust encrypted and authenticated headers to accommodate
	 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
	 * allowed to fail decryption due to keys not being loaded
	 * without being marked as an IO error.
	 */
	if (HDR_PROTECTED(hdr)) {
		error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
		    zb, !!(flags & ARC_FILL_NOAUTH));
		if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
			return (error);
		} else if (error != 0) {
			if (hash_lock != NULL)
				mutex_enter(hash_lock);
			arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
			if (hash_lock != NULL)
				mutex_exit(hash_lock);
			return (error);
		}
	}

	/*
	 * There is a special case here for dnode blocks which are
	 * decrypting their bonus buffers. These blocks may request to
	 * be decrypted in-place. This is necessary because there may
	 * be many dnodes pointing into this buffer and there is
	 * currently no method to synchronize replacing the backing
	 * b_data buffer and updating all of the pointers. Here we use
	 * the hash lock to ensure there are no races. If the need
	 * arises for other types to be decrypted in-place, they must
	 * add handling here as well.
	 */
	if ((flags & ARC_FILL_IN_PLACE) != 0) {
		ASSERT(!hdr_compressed);
		ASSERT(!compressed);
		ASSERT(!encrypted);

		if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
			ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);

			if (hash_lock != NULL)
				mutex_enter(hash_lock);
			arc_buf_untransform_in_place(buf);
			if (hash_lock != NULL)
				mutex_exit(hash_lock);

			/* Compute the hdr's checksum if necessary */
			arc_cksum_compute(buf);
		}

		return (0);
	}

	if (hdr_compressed == compressed) {
		if (ARC_BUF_SHARED(buf)) {
			ASSERT(arc_buf_is_shared(buf));
		} else {
			abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
			    arc_buf_size(buf));
		}
	} else {
		ASSERT(hdr_compressed);
		ASSERT(!compressed);

		/*
		 * If the buf is sharing its data with the hdr, unlink it and
		 * allocate a new data buffer for the buf.
		 */
		if (ARC_BUF_SHARED(buf)) {
			ASSERTF(ARC_BUF_COMPRESSED(buf),
			"buf %p was uncompressed", buf);

			/* We need to give the buf its own b_data */
			buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
			buf->b_data =
			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);

			/* Previously overhead was 0; just add new overhead */
			ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
		} else if (ARC_BUF_COMPRESSED(buf)) {
			ASSERT(!arc_buf_is_shared(buf));

			/* We need to reallocate the buf's b_data */
			arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
			    buf);
			buf->b_data =
			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);

			/* We increased the size of b_data; update overhead */
			ARCSTAT_INCR(arcstat_overhead_size,
			    HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
		}

		/*
		 * Regardless of the buf's previous compression settings, it
		 * should not be compressed at the end of this function.
		 */
		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;

		/*
		 * Try copying the data from another buf which already has a
		 * decompressed version. If that's not possible, it's time to
		 * bite the bullet and decompress the data from the hdr.
		 */
		if (arc_buf_try_copy_decompressed_data(buf)) {
			/* Skip byteswapping and checksumming (already done) */
			return (0);
		} else {
			abd_t dabd;
			abd_get_from_buf_struct(&dabd, buf->b_data,
			    HDR_GET_LSIZE(hdr));
			error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
			    hdr->b_l1hdr.b_pabd, &dabd,
			    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr),
			    &hdr->b_complevel);
			abd_free(&dabd);

			/*
			 * Absent hardware errors or software bugs, this should
			 * be impossible, but log it anyway so we can debug it.
			 */
			if (error != 0) {
				zfs_dbgmsg(
				    "hdr %px, compress %d, psize %d, lsize %d",
				    hdr, arc_hdr_get_compress(hdr),
				    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
				if (hash_lock != NULL)
					mutex_enter(hash_lock);
				arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
				if (hash_lock != NULL)
					mutex_exit(hash_lock);
				return (SET_ERROR(EIO));
			}
		}
	}

byteswap:
	/* Byteswap the buf's data if necessary */
	if (bswap != DMU_BSWAP_NUMFUNCS) {
		ASSERT(!HDR_SHARED_DATA(hdr));
		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
	}

	/* Compute the hdr's checksum if necessary */
	arc_cksum_compute(buf);

	return (0);
}

/*
 * If this function is being called to decrypt an encrypted buffer or verify an
 * authenticated one, the key must be loaded and a mapping must be made
 * available in the keystore via spa_keystore_create_mapping() or one of its
 * callers.
 */
int
arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
    boolean_t in_place)
{
	int ret;
	arc_fill_flags_t flags = 0;

	if (in_place)
		flags |= ARC_FILL_IN_PLACE;

	ret = arc_buf_fill(buf, spa, zb, flags);
	if (ret == ECKSUM) {
		/*
		 * Convert authentication and decryption errors to EIO
		 * (and generate an ereport) before leaving the ARC.
		 */
		ret = SET_ERROR(EIO);
		spa_log_error(spa, zb, buf->b_hdr->b_birth);
		(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
		    spa, NULL, zb, NULL, 0);
	}

	return (ret);
}

/*
 * Increment the amount of evictable space in the arc_state_t's refcount.
 * We account for the space used by the hdr and the arc buf individually
 * so that we can add and remove them from the refcount individually.
 */
static void
arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
{
	arc_buf_contents_t type = arc_buf_type(hdr);

	ASSERT(HDR_HAS_L1HDR(hdr));

	if (GHOST_STATE(state)) {
		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
		ASSERT(!HDR_HAS_RABD(hdr));
		(void) zfs_refcount_add_many(&state->arcs_esize[type],
		    HDR_GET_LSIZE(hdr), hdr);
		return;
	}

	if (hdr->b_l1hdr.b_pabd != NULL) {
		(void) zfs_refcount_add_many(&state->arcs_esize[type],
		    arc_hdr_size(hdr), hdr);
	}
	if (HDR_HAS_RABD(hdr)) {
		(void) zfs_refcount_add_many(&state->arcs_esize[type],
		    HDR_GET_PSIZE(hdr), hdr);
	}

	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
	    buf = buf->b_next) {
		if (ARC_BUF_SHARED(buf))
			continue;
		(void) zfs_refcount_add_many(&state->arcs_esize[type],
		    arc_buf_size(buf), buf);
	}
}

/*
 * Decrement the amount of evictable space in the arc_state_t's refcount.
 * We account for the space used by the hdr and the arc buf individually
 * so that we can add and remove them from the refcount individually.
 */
static void
arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
{
	arc_buf_contents_t type = arc_buf_type(hdr);

	ASSERT(HDR_HAS_L1HDR(hdr));

	if (GHOST_STATE(state)) {
		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
		ASSERT(!HDR_HAS_RABD(hdr));
		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
		    HDR_GET_LSIZE(hdr), hdr);
		return;
	}

	if (hdr->b_l1hdr.b_pabd != NULL) {
		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
		    arc_hdr_size(hdr), hdr);
	}
	if (HDR_HAS_RABD(hdr)) {
		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
		    HDR_GET_PSIZE(hdr), hdr);
	}

	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
	    buf = buf->b_next) {
		if (ARC_BUF_SHARED(buf))
			continue;
		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
		    arc_buf_size(buf), buf);
	}
}

/*
 * Add a reference to this hdr indicating that someone is actively
 * referencing that memory. When the refcount transitions from 0 to 1,
 * we remove it from the respective arc_state_t list to indicate that
 * it is not evictable.
 */
static void
add_reference(arc_buf_hdr_t *hdr, const void *tag)
{
	arc_state_t *state = hdr->b_l1hdr.b_state;

	ASSERT(HDR_HAS_L1HDR(hdr));
	if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
		ASSERT(state == arc_anon);
		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
	}

	if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
	    state != arc_anon && state != arc_l2c_only) {
		/* We don't use the L2-only state list. */
		multilist_remove(&state->arcs_list[arc_buf_type(hdr)], hdr);
		arc_evictable_space_decrement(hdr, state);
	}
}

/*
 * Remove a reference from this hdr. When the reference transitions from
 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
 * list making it eligible for eviction.
 */
static int
remove_reference(arc_buf_hdr_t *hdr, const void *tag)
{
	int cnt;
	arc_state_t *state = hdr->b_l1hdr.b_state;

	ASSERT(HDR_HAS_L1HDR(hdr));
	ASSERT(state == arc_anon || MUTEX_HELD(HDR_LOCK(hdr)));
	ASSERT(!GHOST_STATE(state));	/* arc_l2c_only counts as a ghost. */

	if ((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) != 0)
		return (cnt);

	if (state == arc_anon) {
		arc_hdr_destroy(hdr);
		return (0);
	}
	if (state == arc_uncached && !HDR_PREFETCH(hdr)) {
		arc_change_state(arc_anon, hdr);
		arc_hdr_destroy(hdr);
		return (0);
	}
	multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
	arc_evictable_space_increment(hdr, state);
	return (0);
}

/*
 * Returns detailed information about a specific arc buffer.  When the
 * state_index argument is set the function will calculate the arc header
 * list position for its arc state.  Since this requires a linear traversal
 * callers are strongly encourage not to do this.  However, it can be helpful
 * for targeted analysis so the functionality is provided.
 */
void
arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
{
	(void) state_index;
	arc_buf_hdr_t *hdr = ab->b_hdr;
	l1arc_buf_hdr_t *l1hdr = NULL;
	l2arc_buf_hdr_t *l2hdr = NULL;
	arc_state_t *state = NULL;

	memset(abi, 0, sizeof (arc_buf_info_t));

	if (hdr == NULL)
		return;

	abi->abi_flags = hdr->b_flags;

	if (HDR_HAS_L1HDR(hdr)) {
		l1hdr = &hdr->b_l1hdr;
		state = l1hdr->b_state;
	}
	if (HDR_HAS_L2HDR(hdr))
		l2hdr = &hdr->b_l2hdr;

	if (l1hdr) {
		abi->abi_bufcnt = 0;
		for (arc_buf_t *buf = l1hdr->b_buf; buf; buf = buf->b_next)
			abi->abi_bufcnt++;
		abi->abi_access = l1hdr->b_arc_access;
		abi->abi_mru_hits = l1hdr->b_mru_hits;
		abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
		abi->abi_mfu_hits = l1hdr->b_mfu_hits;
		abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
		abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt);
	}

	if (l2hdr) {
		abi->abi_l2arc_dattr = l2hdr->b_daddr;
		abi->abi_l2arc_hits = l2hdr->b_hits;
	}

	abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
	abi->abi_state_contents = arc_buf_type(hdr);
	abi->abi_size = arc_hdr_size(hdr);
}

/*
 * Move the supplied buffer to the indicated state. The hash lock
 * for the buffer must be held by the caller.
 */
static void
arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr)
{
	arc_state_t *old_state;
	int64_t refcnt;
	boolean_t update_old, update_new;
	arc_buf_contents_t type = arc_buf_type(hdr);

	/*
	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
	 * L1 hdr doesn't always exist when we change state to arc_anon before
	 * destroying a header, in which case reallocating to add the L1 hdr is
	 * pointless.
	 */
	if (HDR_HAS_L1HDR(hdr)) {
		old_state = hdr->b_l1hdr.b_state;
		refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
		update_old = (hdr->b_l1hdr.b_buf != NULL ||
		    hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));

		IMPLY(GHOST_STATE(old_state), hdr->b_l1hdr.b_buf == NULL);
		IMPLY(GHOST_STATE(new_state), hdr->b_l1hdr.b_buf == NULL);
		IMPLY(old_state == arc_anon, hdr->b_l1hdr.b_buf == NULL ||
		    ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
	} else {
		old_state = arc_l2c_only;
		refcnt = 0;
		update_old = B_FALSE;
	}
	update_new = update_old;
	if (GHOST_STATE(old_state))
		update_old = B_TRUE;
	if (GHOST_STATE(new_state))
		update_new = B_TRUE;

	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
	ASSERT3P(new_state, !=, old_state);

	/*
	 * If this buffer is evictable, transfer it from the
	 * old state list to the new state list.
	 */
	if (refcnt == 0) {
		if (old_state != arc_anon && old_state != arc_l2c_only) {
			ASSERT(HDR_HAS_L1HDR(hdr));
			/* remove_reference() saves on insert. */
			if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
				multilist_remove(&old_state->arcs_list[type],
				    hdr);
				arc_evictable_space_decrement(hdr, old_state);
			}
		}
		if (new_state != arc_anon && new_state != arc_l2c_only) {
			/*
			 * An L1 header always exists here, since if we're
			 * moving to some L1-cached state (i.e. not l2c_only or
			 * anonymous), we realloc the header to add an L1hdr
			 * beforehand.
			 */
			ASSERT(HDR_HAS_L1HDR(hdr));
			multilist_insert(&new_state->arcs_list[type], hdr);
			arc_evictable_space_increment(hdr, new_state);
		}
	}

	ASSERT(!HDR_EMPTY(hdr));
	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
		buf_hash_remove(hdr);

	/* adjust state sizes (ignore arc_l2c_only) */

	if (update_new && new_state != arc_l2c_only) {
		ASSERT(HDR_HAS_L1HDR(hdr));
		if (GHOST_STATE(new_state)) {

			/*
			 * When moving a header to a ghost state, we first
			 * remove all arc buffers. Thus, we'll have no arc
			 * buffer to use for the reference. As a result, we
			 * use the arc header pointer for the reference.
			 */
			(void) zfs_refcount_add_many(
			    &new_state->arcs_size[type],
			    HDR_GET_LSIZE(hdr), hdr);
			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
			ASSERT(!HDR_HAS_RABD(hdr));
		} else {

			/*
			 * Each individual buffer holds a unique reference,
			 * thus we must remove each of these references one
			 * at a time.
			 */
			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
			    buf = buf->b_next) {

				/*
				 * When the arc_buf_t is sharing the data
				 * block with the hdr, the owner of the
				 * reference belongs to the hdr. Only
				 * add to the refcount if the arc_buf_t is
				 * not shared.
				 */
				if (ARC_BUF_SHARED(buf))
					continue;

				(void) zfs_refcount_add_many(
				    &new_state->arcs_size[type],
				    arc_buf_size(buf), buf);
			}

			if (hdr->b_l1hdr.b_pabd != NULL) {
				(void) zfs_refcount_add_many(
				    &new_state->arcs_size[type],
				    arc_hdr_size(hdr), hdr);
			}

			if (HDR_HAS_RABD(hdr)) {
				(void) zfs_refcount_add_many(
				    &new_state->arcs_size[type],
				    HDR_GET_PSIZE(hdr), hdr);
			}
		}
	}

	if (update_old && old_state != arc_l2c_only) {
		ASSERT(HDR_HAS_L1HDR(hdr));
		if (GHOST_STATE(old_state)) {
			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
			ASSERT(!HDR_HAS_RABD(hdr));

			/*
			 * When moving a header off of a ghost state,
			 * the header will not contain any arc buffers.
			 * We use the arc header pointer for the reference
			 * which is exactly what we did when we put the
			 * header on the ghost state.
			 */

			(void) zfs_refcount_remove_many(
			    &old_state->arcs_size[type],
			    HDR_GET_LSIZE(hdr), hdr);
		} else {

			/*
			 * Each individual buffer holds a unique reference,
			 * thus we must remove each of these references one
			 * at a time.
			 */
			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
			    buf = buf->b_next) {

				/*
				 * When the arc_buf_t is sharing the data
				 * block with the hdr, the owner of the
				 * reference belongs to the hdr. Only
				 * add to the refcount if the arc_buf_t is
				 * not shared.
				 */
				if (ARC_BUF_SHARED(buf))
					continue;

				(void) zfs_refcount_remove_many(
				    &old_state->arcs_size[type],
				    arc_buf_size(buf), buf);
			}
			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
			    HDR_HAS_RABD(hdr));

			if (hdr->b_l1hdr.b_pabd != NULL) {
				(void) zfs_refcount_remove_many(
				    &old_state->arcs_size[type],
				    arc_hdr_size(hdr), hdr);
			}

			if (HDR_HAS_RABD(hdr)) {
				(void) zfs_refcount_remove_many(
				    &old_state->arcs_size[type],
				    HDR_GET_PSIZE(hdr), hdr);
			}
		}
	}

	if (HDR_HAS_L1HDR(hdr)) {
		hdr->b_l1hdr.b_state = new_state;

		if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) {
			l2arc_hdr_arcstats_decrement_state(hdr);
			hdr->b_l2hdr.b_arcs_state = new_state->arcs_state;
			l2arc_hdr_arcstats_increment_state(hdr);
		}
	}
}

void
arc_space_consume(uint64_t space, arc_space_type_t type)
{
	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);

	switch (type) {
	default:
		break;
	case ARC_SPACE_DATA:
		ARCSTAT_INCR(arcstat_data_size, space);
		break;
	case ARC_SPACE_META:
		ARCSTAT_INCR(arcstat_metadata_size, space);
		break;
	case ARC_SPACE_BONUS:
		ARCSTAT_INCR(arcstat_bonus_size, space);
		break;
	case ARC_SPACE_DNODE:
		ARCSTAT_INCR(arcstat_dnode_size, space);
		break;
	case ARC_SPACE_DBUF:
		ARCSTAT_INCR(arcstat_dbuf_size, space);
		break;
	case ARC_SPACE_HDRS:
		ARCSTAT_INCR(arcstat_hdr_size, space);
		break;
	case ARC_SPACE_L2HDRS:
		aggsum_add(&arc_sums.arcstat_l2_hdr_size, space);
		break;
	case ARC_SPACE_ABD_CHUNK_WASTE:
		/*
		 * Note: this includes space wasted by all scatter ABD's, not
		 * just those allocated by the ARC.  But the vast majority of
		 * scatter ABD's come from the ARC, because other users are
		 * very short-lived.
		 */
		ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space);
		break;
	}

	if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
		ARCSTAT_INCR(arcstat_meta_used, space);

	aggsum_add(&arc_sums.arcstat_size, space);
}

void
arc_space_return(uint64_t space, arc_space_type_t type)
{
	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);

	switch (type) {
	default:
		break;
	case ARC_SPACE_DATA:
		ARCSTAT_INCR(arcstat_data_size, -space);
		break;
	case ARC_SPACE_META:
		ARCSTAT_INCR(arcstat_metadata_size, -space);
		break;
	case ARC_SPACE_BONUS:
		ARCSTAT_INCR(arcstat_bonus_size, -space);
		break;
	case ARC_SPACE_DNODE:
		ARCSTAT_INCR(arcstat_dnode_size, -space);
		break;
	case ARC_SPACE_DBUF:
		ARCSTAT_INCR(arcstat_dbuf_size, -space);
		break;
	case ARC_SPACE_HDRS:
		ARCSTAT_INCR(arcstat_hdr_size, -space);
		break;
	case ARC_SPACE_L2HDRS:
		aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space);
		break;
	case ARC_SPACE_ABD_CHUNK_WASTE:
		ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space);
		break;
	}

	if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
		ARCSTAT_INCR(arcstat_meta_used, -space);

	ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0);
	aggsum_add(&arc_sums.arcstat_size, -space);
}

/*
 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
 * with the hdr's b_pabd.
 */
static boolean_t
arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
{
	/*
	 * The criteria for sharing a hdr's data are:
	 * 1. the buffer is not encrypted
	 * 2. the hdr's compression matches the buf's compression
	 * 3. the hdr doesn't need to be byteswapped
	 * 4. the hdr isn't already being shared
	 * 5. the buf is either compressed or it is the last buf in the hdr list
	 *
	 * Criterion #5 maintains the invariant that shared uncompressed
	 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
	 * might ask, "if a compressed buf is allocated first, won't that be the
	 * last thing in the list?", but in that case it's impossible to create
	 * a shared uncompressed buf anyway (because the hdr must be compressed
	 * to have the compressed buf). You might also think that #3 is
	 * sufficient to make this guarantee, however it's possible
	 * (specifically in the rare L2ARC write race mentioned in
	 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
	 * is shareable, but wasn't at the time of its allocation. Rather than
	 * allow a new shared uncompressed buf to be created and then shuffle
	 * the list around to make it the last element, this simply disallows
	 * sharing if the new buf isn't the first to be added.
	 */
	ASSERT3P(buf->b_hdr, ==, hdr);
	boolean_t hdr_compressed =
	    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
	boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
	return (!ARC_BUF_ENCRYPTED(buf) &&
	    buf_compressed == hdr_compressed &&
	    hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
	    !HDR_SHARED_DATA(hdr) &&
	    (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
}

/*
 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
 * copy was made successfully, or an error code otherwise.
 */
static int
arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
    const void *tag, boolean_t encrypted, boolean_t compressed,
    boolean_t noauth, boolean_t fill, arc_buf_t **ret)
{
	arc_buf_t *buf;
	arc_fill_flags_t flags = ARC_FILL_LOCKED;

	ASSERT(HDR_HAS_L1HDR(hdr));
	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
	    hdr->b_type == ARC_BUFC_METADATA);
	ASSERT3P(ret, !=, NULL);
	ASSERT3P(*ret, ==, NULL);
	IMPLY(encrypted, compressed);

	buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
	buf->b_hdr = hdr;
	buf->b_data = NULL;
	buf->b_next = hdr->b_l1hdr.b_buf;
	buf->b_flags = 0;

	add_reference(hdr, tag);

	/*
	 * We're about to change the hdr's b_flags. We must either
	 * hold the hash_lock or be undiscoverable.
	 */
	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));

	/*
	 * Only honor requests for compressed bufs if the hdr is actually
	 * compressed. This must be overridden if the buffer is encrypted since
	 * encrypted buffers cannot be decompressed.
	 */
	if (encrypted) {
		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
		buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
		flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
	} else if (compressed &&
	    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
		flags |= ARC_FILL_COMPRESSED;
	}

	if (noauth) {
		ASSERT0(encrypted);
		flags |= ARC_FILL_NOAUTH;
	}

	/*
	 * If the hdr's data can be shared then we share the data buffer and
	 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
	 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
	 * buffer to store the buf's data.
	 *
	 * There are two additional restrictions here because we're sharing
	 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
	 * actively involved in an L2ARC write, because if this buf is used by
	 * an arc_write() then the hdr's data buffer will be released when the
	 * write completes, even though the L2ARC write might still be using it.
	 * Second, the hdr's ABD must be linear so that the buf's user doesn't
	 * need to be ABD-aware.  It must be allocated via
	 * zio_[data_]buf_alloc(), not as a page, because we need to be able
	 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
	 * page" buffers because the ABD code needs to handle freeing them
	 * specially.
	 */
	boolean_t can_share = arc_can_share(hdr, buf) &&
	    !HDR_L2_WRITING(hdr) &&
	    hdr->b_l1hdr.b_pabd != NULL &&
	    abd_is_linear(hdr->b_l1hdr.b_pabd) &&
	    !abd_is_linear_page(hdr->b_l1hdr.b_pabd);

	/* Set up b_data and sharing */
	if (can_share) {
		buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
		buf->b_flags |= ARC_BUF_FLAG_SHARED;
		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
	} else {
		buf->b_data =
		    arc_get_data_buf(hdr, arc_buf_size(buf), buf);
		ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
	}
	VERIFY3P(buf->b_data, !=, NULL);

	hdr->b_l1hdr.b_buf = buf;

	/*
	 * If the user wants the data from the hdr, we need to either copy or
	 * decompress the data.
	 */
	if (fill) {
		ASSERT3P(zb, !=, NULL);
		return (arc_buf_fill(buf, spa, zb, flags));
	}

	return (0);
}

static const char *arc_onloan_tag = "onloan";

static inline void
arc_loaned_bytes_update(int64_t delta)
{
	atomic_add_64(&arc_loaned_bytes, delta);

	/* assert that it did not wrap around */
	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
}

/*
 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
 * flight data by arc_tempreserve_space() until they are "returned". Loaned
 * buffers must be returned to the arc before they can be used by the DMU or
 * freed.
 */
arc_buf_t *
arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
{
	arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
	    is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);

	arc_loaned_bytes_update(arc_buf_size(buf));

	return (buf);
}

arc_buf_t *
arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
    enum zio_compress compression_type, uint8_t complevel)
{
	arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
	    psize, lsize, compression_type, complevel);

	arc_loaned_bytes_update(arc_buf_size(buf));

	return (buf);
}

arc_buf_t *
arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
    const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
    dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
    enum zio_compress compression_type, uint8_t complevel)
{
	arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
	    byteorder, salt, iv, mac, ot, psize, lsize, compression_type,
	    complevel);

	atomic_add_64(&arc_loaned_bytes, psize);
	return (buf);
}


/*
 * Return a loaned arc buffer to the arc.
 */
void
arc_return_buf(arc_buf_t *buf, const void *tag)
{
	arc_buf_hdr_t *hdr = buf->b_hdr;

	ASSERT3P(buf->b_data, !=, NULL);
	ASSERT(HDR_HAS_L1HDR(hdr));
	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);

	arc_loaned_bytes_update(-arc_buf_size(buf));
}

/* Detach an arc_buf from a dbuf (tag) */
void
arc_loan_inuse_buf(arc_buf_t *buf, const void *tag)
{
	arc_buf_hdr_t *hdr = buf->b_hdr;

	ASSERT3P(buf->b_data, !=, NULL);
	ASSERT(HDR_HAS_L1HDR(hdr));
	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);

	arc_loaned_bytes_update(arc_buf_size(buf));
}

static void
l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
{
	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);

	df->l2df_abd = abd;
	df->l2df_size = size;
	df->l2df_type = type;
	mutex_enter(&l2arc_free_on_write_mtx);
	list_insert_head(l2arc_free_on_write, df);
	mutex_exit(&l2arc_free_on_write_mtx);
}

static void
arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
{
	arc_state_t *state = hdr->b_l1hdr.b_state;
	arc_buf_contents_t type = arc_buf_type(hdr);
	uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);

	/* protected by hash lock, if in the hash table */
	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
		ASSERT(state != arc_anon && state != arc_l2c_only);

		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
		    size, hdr);
	}
	(void) zfs_refcount_remove_many(&state->arcs_size[type], size, hdr);
	if (type == ARC_BUFC_METADATA) {
		arc_space_return(size, ARC_SPACE_META);
	} else {
		ASSERT(type == ARC_BUFC_DATA);
		arc_space_return(size, ARC_SPACE_DATA);
	}

	if (free_rdata) {
		l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
	} else {
		l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
	}
}

/*
 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
 * data buffer, we transfer the refcount ownership to the hdr and update
 * the appropriate kstats.
 */
static void
arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
{
	ASSERT(arc_can_share(hdr, buf));
	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
	ASSERT(!ARC_BUF_ENCRYPTED(buf));
	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));

	/*
	 * Start sharing the data buffer. We transfer the
	 * refcount ownership to the hdr since it always owns
	 * the refcount whenever an arc_buf_t is shared.
	 */
	zfs_refcount_transfer_ownership_many(
	    &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
	    arc_hdr_size(hdr), buf, hdr);
	hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
	abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
	    HDR_ISTYPE_METADATA(hdr));
	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
	buf->b_flags |= ARC_BUF_FLAG_SHARED;

	/*
	 * Since we've transferred ownership to the hdr we need
	 * to increment its compressed and uncompressed kstats and
	 * decrement the overhead size.
	 */
	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
	ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
}

static void
arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
{
	ASSERT(arc_buf_is_shared(buf));
	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));

	/*
	 * We are no longer sharing this buffer so we need
	 * to transfer its ownership to the rightful owner.
	 */
	zfs_refcount_transfer_ownership_many(
	    &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
	    arc_hdr_size(hdr), hdr, buf);
	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
	abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
	abd_free(hdr->b_l1hdr.b_pabd);
	hdr->b_l1hdr.b_pabd = NULL;
	buf->b_flags &= ~ARC_BUF_FLAG_SHARED;

	/*
	 * Since the buffer is no longer shared between
	 * the arc buf and the hdr, count it as overhead.
	 */
	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
	ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
}

/*
 * Remove an arc_buf_t from the hdr's buf list and return the last
 * arc_buf_t on the list. If no buffers remain on the list then return
 * NULL.
 */
static arc_buf_t *
arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
{
	ASSERT(HDR_HAS_L1HDR(hdr));
	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));

	arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
	arc_buf_t *lastbuf = NULL;

	/*
	 * Remove the buf from the hdr list and locate the last
	 * remaining buffer on the list.
	 */
	while (*bufp != NULL) {
		if (*bufp == buf)
			*bufp = buf->b_next;

		/*
		 * If we've removed a buffer in the middle of
		 * the list then update the lastbuf and update
		 * bufp.
		 */
		if (*bufp != NULL) {
			lastbuf = *bufp;
			bufp = &(*bufp)->b_next;
		}
	}
	buf->b_next = NULL;
	ASSERT3P(lastbuf, !=, buf);
	IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));

	return (lastbuf);
}

/*
 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
 * list and free it.
 */
static void
arc_buf_destroy_impl(arc_buf_t *buf)
{
	arc_buf_hdr_t *hdr = buf->b_hdr;

	/*
	 * Free up the data associated with the buf but only if we're not
	 * sharing this with the hdr. If we are sharing it with the hdr, the
	 * hdr is responsible for doing the free.
	 */
	if (buf->b_data != NULL) {
		/*
		 * We're about to change the hdr's b_flags. We must either
		 * hold the hash_lock or be undiscoverable.
		 */
		ASSERT(HDR_EMPTY_OR_LOCKED(hdr));

		arc_cksum_verify(buf);
		arc_buf_unwatch(buf);

		if (ARC_BUF_SHARED(buf)) {
			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
		} else {
			ASSERT(!arc_buf_is_shared(buf));
			uint64_t size = arc_buf_size(buf);
			arc_free_data_buf(hdr, buf->b_data, size, buf);
			ARCSTAT_INCR(arcstat_overhead_size, -size);
		}
		buf->b_data = NULL;

		/*
		 * If we have no more encrypted buffers and we've already
		 * gotten a copy of the decrypted data we can free b_rabd
		 * to save some space.
		 */
		if (ARC_BUF_ENCRYPTED(buf) && HDR_HAS_RABD(hdr) &&
		    hdr->b_l1hdr.b_pabd != NULL && !HDR_IO_IN_PROGRESS(hdr)) {
			arc_buf_t *b;
			for (b = hdr->b_l1hdr.b_buf; b; b = b->b_next) {
				if (b != buf && ARC_BUF_ENCRYPTED(b))
					break;
			}
			if (b == NULL)
				arc_hdr_free_abd(hdr, B_TRUE);
		}
	}

	arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);

	if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
		/*
		 * If the current arc_buf_t is sharing its data buffer with the
		 * hdr, then reassign the hdr's b_pabd to share it with the new
		 * buffer at the end of the list. The shared buffer is always
		 * the last one on the hdr's buffer list.
		 *
		 * There is an equivalent case for compressed bufs, but since
		 * they aren't guaranteed to be the last buf in the list and
		 * that is an exceedingly rare case, we just allow that space be
		 * wasted temporarily. We must also be careful not to share
		 * encrypted buffers, since they cannot be shared.
		 */
		if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
			/* Only one buf can be shared at once */
			ASSERT(!arc_buf_is_shared(lastbuf));
			/* hdr is uncompressed so can't have compressed buf */
			ASSERT(!ARC_BUF_COMPRESSED(lastbuf));

			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
			arc_hdr_free_abd(hdr, B_FALSE);

			/*
			 * We must setup a new shared block between the
			 * last buffer and the hdr. The data would have
			 * been allocated by the arc buf so we need to transfer
			 * ownership to the hdr since it's now being shared.
			 */
			arc_share_buf(hdr, lastbuf);
		}
	} else if (HDR_SHARED_DATA(hdr)) {
		/*
		 * Uncompressed shared buffers are always at the end
		 * of the list. Compressed buffers don't have the
		 * same requirements. This makes it hard to
		 * simply assert that the lastbuf is shared so
		 * we rely on the hdr's compression flags to determine
		 * if we have a compressed, shared buffer.
		 */
		ASSERT3P(lastbuf, !=, NULL);
		ASSERT(arc_buf_is_shared(lastbuf) ||
		    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
	}

	/*
	 * Free the checksum if we're removing the last uncompressed buf from
	 * this hdr.
	 */
	if (!arc_hdr_has_uncompressed_buf(hdr)) {
		arc_cksum_free(hdr);
	}

	/* clean up the buf */
	buf->b_hdr = NULL;
	kmem_cache_free(buf_cache, buf);
}

static void
arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags)
{
	uint64_t size;
	boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0);

	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
	ASSERT(HDR_HAS_L1HDR(hdr));
	ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
	IMPLY(alloc_rdata, HDR_PROTECTED(hdr));

	if (alloc_rdata) {
		size = HDR_GET_PSIZE(hdr);
		ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
		hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr,
		    alloc_flags);
		ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
		ARCSTAT_INCR(arcstat_raw_size, size);
	} else {
		size = arc_hdr_size(hdr);
		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
		hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr,
		    alloc_flags);
		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
	}

	ARCSTAT_INCR(arcstat_compressed_size, size);
	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
}

static void
arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
{
	uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);

	ASSERT(HDR_HAS_L1HDR(hdr));
	ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
	IMPLY(free_rdata, HDR_HAS_RABD(hdr));

	/*
	 * If the hdr is currently being written to the l2arc then
	 * we defer freeing the data by adding it to the l2arc_free_on_write
	 * list. The l2arc will free the data once it's finished
	 * writing it to the l2arc device.
	 */
	if (HDR_L2_WRITING(hdr)) {
		arc_hdr_free_on_write(hdr, free_rdata);
		ARCSTAT_BUMP(arcstat_l2_free_on_write);
	} else if (free_rdata) {
		arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
	} else {
		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
	}

	if (free_rdata) {
		hdr->b_crypt_hdr.b_rabd = NULL;
		ARCSTAT_INCR(arcstat_raw_size, -size);
	} else {
		hdr->b_l1hdr.b_pabd = NULL;
	}

	if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
		hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;

	ARCSTAT_INCR(arcstat_compressed_size, -size);
	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
}

/*
 * Allocate empty anonymous ARC header.  The header will get its identity
 * assigned and buffers attached later as part of read or write operations.
 *
 * In case of read arc_read() assigns header its identify (b_dva + b_birth),
 * inserts it into ARC hash to become globally visible and allocates physical
 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk.  On disk read
 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially
 * sharing one of them with the physical ABD buffer.
 *
 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with
 * data.  Then after compression and/or encryption arc_write_ready() allocates
 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD
 * buffer.  On disk write completion arc_write_done() assigns the header its
 * new identity (b_dva + b_birth) and inserts into ARC hash.
 *
 * In case of partial overwrite the old data is read first as described. Then
 * arc_release() either allocates new anonymous ARC header and moves the ARC
 * buffer to it, or reuses the old ARC header by discarding its identity and
 * removing it from ARC hash.  After buffer modification normal write process
 * follows as described.
 */
static arc_buf_hdr_t *
arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
    boolean_t protected, enum zio_compress compression_type, uint8_t complevel,
    arc_buf_contents_t type)
{
	arc_buf_hdr_t *hdr;

	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);

	ASSERT(HDR_EMPTY(hdr));
#ifdef ZFS_DEBUG
	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
#endif
	HDR_SET_PSIZE(hdr, psize);
	HDR_SET_LSIZE(hdr, lsize);
	hdr->b_spa = spa;
	hdr->b_type = type;
	hdr->b_flags = 0;
	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
	arc_hdr_set_compress(hdr, compression_type);
	hdr->b_complevel = complevel;
	if (protected)
		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);

	hdr->b_l1hdr.b_state = arc_anon;
	hdr->b_l1hdr.b_arc_access = 0;
	hdr->b_l1hdr.b_mru_hits = 0;
	hdr->b_l1hdr.b_mru_ghost_hits = 0;
	hdr->b_l1hdr.b_mfu_hits = 0;
	hdr->b_l1hdr.b_mfu_ghost_hits = 0;
	hdr->b_l1hdr.b_buf = NULL;

	ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));

	return (hdr);
}

/*
 * Transition between the two allocation states for the arc_buf_hdr struct.
 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
 * version is used when a cache buffer is only in the L2ARC in order to reduce
 * memory usage.
 */
static arc_buf_hdr_t *
arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
{
	ASSERT(HDR_HAS_L2HDR(hdr));

	arc_buf_hdr_t *nhdr;
	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;

	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
	    (old == hdr_l2only_cache && new == hdr_full_cache));

	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);

	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
	buf_hash_remove(hdr);

	memcpy(nhdr, hdr, HDR_L2ONLY_SIZE);

	if (new == hdr_full_cache) {
		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
		/*
		 * arc_access and arc_change_state need to be aware that a
		 * header has just come out of L2ARC, so we set its state to
		 * l2c_only even though it's about to change.
		 */
		nhdr->b_l1hdr.b_state = arc_l2c_only;

		/* Verify previous threads set to NULL before freeing */
		ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
		ASSERT(!HDR_HAS_RABD(hdr));
	} else {
		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
#ifdef ZFS_DEBUG
		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
#endif

		/*
		 * If we've reached here, We must have been called from
		 * arc_evict_hdr(), as such we should have already been
		 * removed from any ghost list we were previously on
		 * (which protects us from racing with arc_evict_state),
		 * thus no locking is needed during this check.
		 */
		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));

		/*
		 * A buffer must not be moved into the arc_l2c_only
		 * state if it's not finished being written out to the
		 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
		 * might try to be accessed, even though it was removed.
		 */
		VERIFY(!HDR_L2_WRITING(hdr));
		VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
		ASSERT(!HDR_HAS_RABD(hdr));

		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
	}
	/*
	 * The header has been reallocated so we need to re-insert it into any
	 * lists it was on.
	 */
	(void) buf_hash_insert(nhdr, NULL);

	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));

	mutex_enter(&dev->l2ad_mtx);

	/*
	 * We must place the realloc'ed header back into the list at
	 * the same spot. Otherwise, if it's placed earlier in the list,
	 * l2arc_write_buffers() could find it during the function's
	 * write phase, and try to write it out to the l2arc.
	 */
	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
	list_remove(&dev->l2ad_buflist, hdr);

	mutex_exit(&dev->l2ad_mtx);

	/*
	 * Since we're using the pointer address as the tag when
	 * incrementing and decrementing the l2ad_alloc refcount, we
	 * must remove the old pointer (that we're about to destroy) and
	 * add the new pointer to the refcount. Otherwise we'd remove
	 * the wrong pointer address when calling arc_hdr_destroy() later.
	 */

	(void) zfs_refcount_remove_many(&dev->l2ad_alloc,
	    arc_hdr_size(hdr), hdr);
	(void) zfs_refcount_add_many(&dev->l2ad_alloc,
	    arc_hdr_size(nhdr), nhdr);

	buf_discard_identity(hdr);
	kmem_cache_free(old, hdr);

	return (nhdr);
}

/*
 * This function is used by the send / receive code to convert a newly
 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
 * is also used to allow the root objset block to be updated without altering
 * its embedded MACs. Both block types will always be uncompressed so we do not
 * have to worry about compression type or psize.
 */
void
arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
    dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
    const uint8_t *mac)
{
	arc_buf_hdr_t *hdr = buf->b_hdr;

	ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
	ASSERT(HDR_HAS_L1HDR(hdr));
	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);

	buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
	arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
	hdr->b_crypt_hdr.b_dsobj = dsobj;
	hdr->b_crypt_hdr.b_ot = ot;
	hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
	    DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
	if (!arc_hdr_has_uncompressed_buf(hdr))
		arc_cksum_free(hdr);

	if (salt != NULL)
		memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
	if (iv != NULL)
		memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
	if (mac != NULL)
		memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
}

/*
 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
 * The buf is returned thawed since we expect the consumer to modify it.
 */
arc_buf_t *
arc_alloc_buf(spa_t *spa, const void *tag, arc_buf_contents_t type,
    int32_t size)
{
	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
	    B_FALSE, ZIO_COMPRESS_OFF, 0, type);

	arc_buf_t *buf = NULL;
	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
	    B_FALSE, B_FALSE, &buf));
	arc_buf_thaw(buf);

	return (buf);
}

/*
 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
 * for bufs containing metadata.
 */
arc_buf_t *
arc_alloc_compressed_buf(spa_t *spa, const void *tag, uint64_t psize,
    uint64_t lsize, enum zio_compress compression_type, uint8_t complevel)
{
	ASSERT3U(lsize, >, 0);
	ASSERT3U(lsize, >=, psize);
	ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
	ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);

	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
	    B_FALSE, compression_type, complevel, ARC_BUFC_DATA);

	arc_buf_t *buf = NULL;
	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
	    B_TRUE, B_FALSE, B_FALSE, &buf));
	arc_buf_thaw(buf);

	/*
	 * To ensure that the hdr has the correct data in it if we call
	 * arc_untransform() on this buf before it's been written to disk,
	 * it's easiest if we just set up sharing between the buf and the hdr.
	 */
	arc_share_buf(hdr, buf);

	return (buf);
}

arc_buf_t *
arc_alloc_raw_buf(spa_t *spa, const void *tag, uint64_t dsobj,
    boolean_t byteorder, const uint8_t *salt, const uint8_t *iv,
    const uint8_t *mac, dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
    enum zio_compress compression_type, uint8_t complevel)
{
	arc_buf_hdr_t *hdr;
	arc_buf_t *buf;
	arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
	    ARC_BUFC_METADATA : ARC_BUFC_DATA;

	ASSERT3U(lsize, >, 0);
	ASSERT3U(lsize, >=, psize);
	ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
	ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);

	hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
	    compression_type, complevel, type);

	hdr->b_crypt_hdr.b_dsobj = dsobj;
	hdr->b_crypt_hdr.b_ot = ot;
	hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
	    DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
	memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
	memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
	memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);

	/*
	 * This buffer will be considered encrypted even if the ot is not an
	 * encrypted type. It will become authenticated instead in
	 * arc_write_ready().
	 */
	buf = NULL;
	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
	    B_FALSE, B_FALSE, &buf));
	arc_buf_thaw(buf);

	return (buf);
}

static void
l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
    boolean_t state_only)
{
	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
	l2arc_dev_t *dev = l2hdr->b_dev;
	uint64_t lsize = HDR_GET_LSIZE(hdr);
	uint64_t psize = HDR_GET_PSIZE(hdr);
	uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
	arc_buf_contents_t type = hdr->b_type;
	int64_t lsize_s;
	int64_t psize_s;
	int64_t asize_s;

	if (incr) {
		lsize_s = lsize;
		psize_s = psize;
		asize_s = asize;
	} else {
		lsize_s = -lsize;
		psize_s = -psize;
		asize_s = -asize;
	}

	/* If the buffer is a prefetch, count it as such. */
	if (HDR_PREFETCH(hdr)) {
		ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s);
	} else {
		/*
		 * We use the value stored in the L2 header upon initial
		 * caching in L2ARC. This value will be updated in case
		 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
		 * metadata (log entry) cannot currently be updated. Having
		 * the ARC state in the L2 header solves the problem of a
		 * possibly absent L1 header (apparent in buffers restored
		 * from persistent L2ARC).
		 */
		switch (hdr->b_l2hdr.b_arcs_state) {
			case ARC_STATE_MRU_GHOST:
			case ARC_STATE_MRU:
				ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s);
				break;
			case ARC_STATE_MFU_GHOST:
			case ARC_STATE_MFU:
				ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s);
				break;
			default:
				break;
		}
	}

	if (state_only)
		return;

	ARCSTAT_INCR(arcstat_l2_psize, psize_s);
	ARCSTAT_INCR(arcstat_l2_lsize, lsize_s);

	switch (type) {
		case ARC_BUFC_DATA:
			ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s);
			break;
		case ARC_BUFC_METADATA:
			ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s);
			break;
		default:
			break;
	}
}


static void
arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
{
	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
	l2arc_dev_t *dev = l2hdr->b_dev;
	uint64_t psize = HDR_GET_PSIZE(hdr);
	uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);

	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
	ASSERT(HDR_HAS_L2HDR(hdr));

	list_remove(&dev->l2ad_buflist, hdr);

	l2arc_hdr_arcstats_decrement(hdr);
	vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);

	(void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
	    hdr);
	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
}

static void
arc_hdr_destroy(arc_buf_hdr_t *hdr)
{
	if (HDR_HAS_L1HDR(hdr)) {
		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
	}
	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
	ASSERT(!HDR_IN_HASH_TABLE(hdr));

	if (HDR_HAS_L2HDR(hdr)) {
		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);

		if (!buflist_held)
			mutex_enter(&dev->l2ad_mtx);

		/*
		 * Even though we checked this conditional above, we
		 * need to check this again now that we have the
		 * l2ad_mtx. This is because we could be racing with
		 * another thread calling l2arc_evict() which might have
		 * destroyed this header's L2 portion as we were waiting
		 * to acquire the l2ad_mtx. If that happens, we don't
		 * want to re-destroy the header's L2 portion.
		 */
		if (HDR_HAS_L2HDR(hdr)) {

			if (!HDR_EMPTY(hdr))
				buf_discard_identity(hdr);

			arc_hdr_l2hdr_destroy(hdr);
		}

		if (!buflist_held)
			mutex_exit(&dev->l2ad_mtx);
	}

	/*
	 * The header's identify can only be safely discarded once it is no
	 * longer discoverable.  This requires removing it from the hash table
	 * and the l2arc header list.  After this point the hash lock can not
	 * be used to protect the header.
	 */
	if (!HDR_EMPTY(hdr))
		buf_discard_identity(hdr);

	if (HDR_HAS_L1HDR(hdr)) {
		arc_cksum_free(hdr);

		while (hdr->b_l1hdr.b_buf != NULL)
			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);

		if (hdr->b_l1hdr.b_pabd != NULL)
			arc_hdr_free_abd(hdr, B_FALSE);

		if (HDR_HAS_RABD(hdr))
			arc_hdr_free_abd(hdr, B_TRUE);
	}

	ASSERT3P(hdr->b_hash_next, ==, NULL);
	if (HDR_HAS_L1HDR(hdr)) {
		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
#ifdef ZFS_DEBUG
		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
#endif
		kmem_cache_free(hdr_full_cache, hdr);
	} else {
		kmem_cache_free(hdr_l2only_cache, hdr);
	}
}

void
arc_buf_destroy(arc_buf_t *buf, const void *tag)
{
	arc_buf_hdr_t *hdr = buf->b_hdr;

	if (hdr->b_l1hdr.b_state == arc_anon) {
		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
		ASSERT(ARC_BUF_LAST(buf));
		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
		VERIFY0(remove_reference(hdr, tag));
		return;
	}

	kmutex_t *hash_lock = HDR_LOCK(hdr);
	mutex_enter(hash_lock);

	ASSERT3P(hdr, ==, buf->b_hdr);
	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
	ASSERT3P(buf->b_data, !=, NULL);

	arc_buf_destroy_impl(buf);
	(void) remove_reference(hdr, tag);
	mutex_exit(hash_lock);
}

/*
 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
 * state of the header is dependent on its state prior to entering this
 * function. The following transitions are possible:
 *
 *    - arc_mru -> arc_mru_ghost
 *    - arc_mfu -> arc_mfu_ghost
 *    - arc_mru_ghost -> arc_l2c_only
 *    - arc_mru_ghost -> deleted
 *    - arc_mfu_ghost -> arc_l2c_only
 *    - arc_mfu_ghost -> deleted
 *    - arc_uncached -> deleted
 *
 * Return total size of evicted data buffers for eviction progress tracking.
 * When evicting from ghost states return logical buffer size to make eviction
 * progress at the same (or at least comparable) rate as from non-ghost states.
 *
 * Return *real_evicted for actual ARC size reduction to wake up threads
 * waiting for it.  For non-ghost states it includes size of evicted data
 * buffers (the headers are not freed there).  For ghost states it includes
 * only the evicted headers size.
 */
static int64_t
arc_evict_hdr(arc_buf_hdr_t *hdr, uint64_t *real_evicted)
{
	arc_state_t *evicted_state, *state;
	int64_t bytes_evicted = 0;
	uint_t min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
	    arc_min_prescient_prefetch_ms : arc_min_prefetch_ms;

	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
	ASSERT(HDR_HAS_L1HDR(hdr));
	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
	ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
	ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));

	*real_evicted = 0;
	state = hdr->b_l1hdr.b_state;
	if (GHOST_STATE(state)) {

		/*
		 * l2arc_write_buffers() relies on a header's L1 portion
		 * (i.e. its b_pabd field) during it's write phase.
		 * Thus, we cannot push a header onto the arc_l2c_only
		 * state (removing its L1 piece) until the header is
		 * done being written to the l2arc.
		 */
		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
			ARCSTAT_BUMP(arcstat_evict_l2_skip);
			return (bytes_evicted);
		}

		ARCSTAT_BUMP(arcstat_deleted);
		bytes_evicted += HDR_GET_LSIZE(hdr);

		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);

		if (HDR_HAS_L2HDR(hdr)) {
			ASSERT(hdr->b_l1hdr.b_pabd == NULL);
			ASSERT(!HDR_HAS_RABD(hdr));
			/*
			 * This buffer is cached on the 2nd Level ARC;
			 * don't destroy the header.
			 */
			arc_change_state(arc_l2c_only, hdr);
			/*
			 * dropping from L1+L2 cached to L2-only,
			 * realloc to remove the L1 header.
			 */
			(void) arc_hdr_realloc(hdr, hdr_full_cache,
			    hdr_l2only_cache);
			*real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE;
		} else {
			arc_change_state(arc_anon, hdr);
			arc_hdr_destroy(hdr);
			*real_evicted += HDR_FULL_SIZE;
		}
		return (bytes_evicted);
	}

	ASSERT(state == arc_mru || state == arc_mfu || state == arc_uncached);
	evicted_state = (state == arc_uncached) ? arc_anon :
	    ((state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost);

	/* prefetch buffers have a minimum lifespan */
	if ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
	    MSEC_TO_TICK(min_lifetime)) {
		ARCSTAT_BUMP(arcstat_evict_skip);
		return (bytes_evicted);
	}

	if (HDR_HAS_L2HDR(hdr)) {
		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
	} else {
		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
			ARCSTAT_INCR(arcstat_evict_l2_eligible,
			    HDR_GET_LSIZE(hdr));

			switch (state->arcs_state) {
				case ARC_STATE_MRU:
					ARCSTAT_INCR(
					    arcstat_evict_l2_eligible_mru,
					    HDR_GET_LSIZE(hdr));
					break;
				case ARC_STATE_MFU:
					ARCSTAT_INCR(
					    arcstat_evict_l2_eligible_mfu,
					    HDR_GET_LSIZE(hdr));
					break;
				default:
					break;
			}
		} else {
			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
			    HDR_GET_LSIZE(hdr));
		}
	}

	bytes_evicted += arc_hdr_size(hdr);
	*real_evicted += arc_hdr_size(hdr);

	/*
	 * If this hdr is being evicted and has a compressed buffer then we
	 * discard it here before we change states.  This ensures that the
	 * accounting is updated correctly in arc_free_data_impl().
	 */
	if (hdr->b_l1hdr.b_pabd != NULL)
		arc_hdr_free_abd(hdr, B_FALSE);

	if (HDR_HAS_RABD(hdr))
		arc_hdr_free_abd(hdr, B_TRUE);

	arc_change_state(evicted_state, hdr);
	DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
	if (evicted_state == arc_anon) {
		arc_hdr_destroy(hdr);
		*real_evicted += HDR_FULL_SIZE;
	} else {
		ASSERT(HDR_IN_HASH_TABLE(hdr));
	}

	return (bytes_evicted);
}

static void
arc_set_need_free(void)
{
	ASSERT(MUTEX_HELD(&arc_evict_lock));
	int64_t remaining = arc_free_memory() - arc_sys_free / 2;
	arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters);
	if (aw == NULL) {
		arc_need_free = MAX(-remaining, 0);
	} else {
		arc_need_free =
		    MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count));
	}
}

static uint64_t
arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
    uint64_t spa, uint64_t bytes)
{
	multilist_sublist_t *mls;
	uint64_t bytes_evicted = 0, real_evicted = 0;
	arc_buf_hdr_t *hdr;
	kmutex_t *hash_lock;
	uint_t evict_count = zfs_arc_evict_batch_limit;

	ASSERT3P(marker, !=, NULL);

	mls = multilist_sublist_lock_idx(ml, idx);

	for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL);
	    hdr = multilist_sublist_prev(mls, marker)) {
		if ((evict_count == 0) || (bytes_evicted >= bytes))
			break;

		/*
		 * To keep our iteration location, move the marker
		 * forward. Since we're not holding hdr's hash lock, we
		 * must be very careful and not remove 'hdr' from the
		 * sublist. Otherwise, other consumers might mistake the
		 * 'hdr' as not being on a sublist when they call the
		 * multilist_link_active() function (they all rely on
		 * the hash lock protecting concurrent insertions and
		 * removals). multilist_sublist_move_forward() was
		 * specifically implemented to ensure this is the case
		 * (only 'marker' will be removed and re-inserted).
		 */
		multilist_sublist_move_forward(mls, marker);

		/*
		 * The only case where the b_spa field should ever be
		 * zero, is the marker headers inserted by
		 * arc_evict_state(). It's possible for multiple threads
		 * to be calling arc_evict_state() concurrently (e.g.
		 * dsl_pool_close() and zio_inject_fault()), so we must
		 * skip any markers we see from these other threads.
		 */
		if (hdr->b_spa == 0)
			continue;

		/* we're only interested in evicting buffers of a certain spa */
		if (spa != 0 && hdr->b_spa != spa) {
			ARCSTAT_BUMP(arcstat_evict_skip);
			continue;
		}

		hash_lock = HDR_LOCK(hdr);

		/*
		 * We aren't calling this function from any code path
		 * that would already be holding a hash lock, so we're
		 * asserting on this assumption to be defensive in case
		 * this ever changes. Without this check, it would be
		 * possible to incorrectly increment arcstat_mutex_miss
		 * below (e.g. if the code changed such that we called
		 * this function with a hash lock held).
		 */
		ASSERT(!MUTEX_HELD(hash_lock));

		if (mutex_tryenter(hash_lock)) {
			uint64_t revicted;
			uint64_t evicted = arc_evict_hdr(hdr, &revicted);
			mutex_exit(hash_lock);

			bytes_evicted += evicted;
			real_evicted += revicted;

			/*
			 * If evicted is zero, arc_evict_hdr() must have
			 * decided to skip this header, don't increment
			 * evict_count in this case.
			 */
			if (evicted != 0)
				evict_count--;

		} else {
			ARCSTAT_BUMP(arcstat_mutex_miss);
		}
	}

	multilist_sublist_unlock(mls);

	/*
	 * Increment the count of evicted bytes, and wake up any threads that
	 * are waiting for the count to reach this value.  Since the list is
	 * ordered by ascending aew_count, we pop off the beginning of the
	 * list until we reach the end, or a waiter that's past the current
	 * "count".  Doing this outside the loop reduces the number of times
	 * we need to acquire the global arc_evict_lock.
	 *
	 * Only wake when there's sufficient free memory in the system
	 * (specifically, arc_sys_free/2, which by default is a bit more than
	 * 1/64th of RAM).  See the comments in arc_wait_for_eviction().
	 */
	mutex_enter(&arc_evict_lock);
	arc_evict_count += real_evicted;

	if (arc_free_memory() > arc_sys_free / 2) {
		arc_evict_waiter_t *aw;
		while ((aw = list_head(&arc_evict_waiters)) != NULL &&
		    aw->aew_count <= arc_evict_count) {
			list_remove(&arc_evict_waiters, aw);
			cv_broadcast(&aw->aew_cv);
		}
	}
	arc_set_need_free();
	mutex_exit(&arc_evict_lock);

	/*
	 * If the ARC size is reduced from arc_c_max to arc_c_min (especially
	 * if the average cached block is small), eviction can be on-CPU for
	 * many seconds.  To ensure that other threads that may be bound to
	 * this CPU are able to make progress, make a voluntary preemption
	 * call here.
	 */
	kpreempt(KPREEMPT_SYNC);

	return (bytes_evicted);
}

static arc_buf_hdr_t *
arc_state_alloc_marker(void)
{
	arc_buf_hdr_t *marker = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);

	/*
	 * A b_spa of 0 is used to indicate that this header is
	 * a marker. This fact is used in arc_evict_state_impl().
	 */
	marker->b_spa = 0;

	return (marker);
}

static void
arc_state_free_marker(arc_buf_hdr_t *marker)
{
	kmem_cache_free(hdr_full_cache, marker);
}

/*
 * Allocate an array of buffer headers used as placeholders during arc state
 * eviction.
 */
static arc_buf_hdr_t **
arc_state_alloc_markers(int count)
{
	arc_buf_hdr_t **markers;

	markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP);
	for (int i = 0; i < count; i++)
		markers[i] = arc_state_alloc_marker();
	return (markers);
}

static void
arc_state_free_markers(arc_buf_hdr_t **markers, int count)
{
	for (int i = 0; i < count; i++)
		arc_state_free_marker(markers[i]);
	kmem_free(markers, sizeof (*markers) * count);
}

/*
 * Evict buffers from the given arc state, until we've removed the
 * specified number of bytes. Move the removed buffers to the
 * appropriate evict state.
 *
 * This function makes a "best effort". It skips over any buffers
 * it can't get a hash_lock on, and so, may not catch all candidates.
 * It may also return without evicting as much space as requested.
 *
 * If bytes is specified using the special value ARC_EVICT_ALL, this
 * will evict all available (i.e. unlocked and evictable) buffers from
 * the given arc state; which is used by arc_flush().
 */
static uint64_t
arc_evict_state(arc_state_t *state, arc_buf_contents_t type, uint64_t spa,
    uint64_t bytes)
{
	uint64_t total_evicted = 0;
	multilist_t *ml = &state->arcs_list[type];
	int num_sublists;
	arc_buf_hdr_t **markers;

	num_sublists = multilist_get_num_sublists(ml);

	/*
	 * If we've tried to evict from each sublist, made some
	 * progress, but still have not hit the target number of bytes
	 * to evict, we want to keep trying. The markers allow us to
	 * pick up where we left off for each individual sublist, rather
	 * than starting from the tail each time.
	 */
	if (zthr_iscurthread(arc_evict_zthr)) {
		markers = arc_state_evict_markers;
		ASSERT3S(num_sublists, <=, arc_state_evict_marker_count);
	} else {
		markers = arc_state_alloc_markers(num_sublists);
	}
	for (int i = 0; i < num_sublists; i++) {
		multilist_sublist_t *mls;

		mls = multilist_sublist_lock_idx(ml, i);
		multilist_sublist_insert_tail(mls, markers[i]);
		multilist_sublist_unlock(mls);
	}

	/*
	 * While we haven't hit our target number of bytes to evict, or
	 * we're evicting all available buffers.
	 */
	while (total_evicted < bytes) {
		int sublist_idx = multilist_get_random_index(ml);
		uint64_t scan_evicted = 0;

		/*
		 * Start eviction using a randomly selected sublist,
		 * this is to try and evenly balance eviction across all
		 * sublists. Always starting at the same sublist
		 * (e.g. index 0) would cause evictions to favor certain
		 * sublists over others.
		 */
		for (int i = 0; i < num_sublists; i++) {
			uint64_t bytes_remaining;
			uint64_t bytes_evicted;

			if (total_evicted < bytes)
				bytes_remaining = bytes - total_evicted;
			else
				break;

			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
			    markers[sublist_idx], spa, bytes_remaining);

			scan_evicted += bytes_evicted;
			total_evicted += bytes_evicted;

			/* we've reached the end, wrap to the beginning */
			if (++sublist_idx >= num_sublists)
				sublist_idx = 0;
		}

		/*
		 * If we didn't evict anything during this scan, we have
		 * no reason to believe we'll evict more during another
		 * scan, so break the loop.
		 */
		if (scan_evicted == 0) {
			/* This isn't possible, let's make that obvious */
			ASSERT3S(bytes, !=, 0);

			/*
			 * When bytes is ARC_EVICT_ALL, the only way to
			 * break the loop is when scan_evicted is zero.
			 * In that case, we actually have evicted enough,
			 * so we don't want to increment the kstat.
			 */
			if (bytes != ARC_EVICT_ALL) {
				ASSERT3S(total_evicted, <, bytes);
				ARCSTAT_BUMP(arcstat_evict_not_enough);
			}

			break;
		}
	}

	for (int i = 0; i < num_sublists; i++) {
		multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i);
		multilist_sublist_remove(mls, markers[i]);
		multilist_sublist_unlock(mls);
	}
	if (markers != arc_state_evict_markers)
		arc_state_free_markers(markers, num_sublists);

	return (total_evicted);
}

/*
 * Flush all "evictable" data of the given type from the arc state
 * specified. This will not evict any "active" buffers (i.e. referenced).
 *
 * When 'retry' is set to B_FALSE, the function will make a single pass
 * over the state and evict any buffers that it can. Since it doesn't
 * continually retry the eviction, it might end up leaving some buffers
 * in the ARC due to lock misses.
 *
 * When 'retry' is set to B_TRUE, the function will continually retry the
 * eviction until *all* evictable buffers have been removed from the
 * state. As a result, if concurrent insertions into the state are
 * allowed (e.g. if the ARC isn't shutting down), this function might
 * wind up in an infinite loop, continually trying to evict buffers.
 */
static uint64_t
arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
    boolean_t retry)
{
	uint64_t evicted = 0;

	while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
		evicted += arc_evict_state(state, type, spa, ARC_EVICT_ALL);

		if (!retry)
			break;
	}

	return (evicted);
}

/*
 * Evict the specified number of bytes from the state specified. This
 * function prevents us from trying to evict more from a state's list
 * than is "evictable", and to skip evicting altogether when passed a
 * negative value for "bytes". In contrast, arc_evict_state() will
 * evict everything it can, when passed a negative value for "bytes".
 */
static uint64_t
arc_evict_impl(arc_state_t *state, arc_buf_contents_t type, int64_t bytes)
{
	uint64_t delta;

	if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
		delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
		    bytes);
		return (arc_evict_state(state, type, 0, delta));
	}

	return (0);
}

/*
 * Adjust specified fraction, taking into account initial ghost state(s) size,
 * ghost hit bytes towards increasing the fraction, ghost hit bytes towards
 * decreasing it, plus a balance factor, controlling the decrease rate, used
 * to balance metadata vs data.
 */
static uint64_t
arc_evict_adj(uint64_t frac, uint64_t total, uint64_t up, uint64_t down,
    uint_t balance)
{
	if (total < 8 || up + down == 0)
		return (frac);

	/*
	 * We should not have more ghost hits than ghost size, but they
	 * may get close.  Restrict maximum adjustment in that case.
	 */
	if (up + down >= total / 4) {
		uint64_t scale = (up + down) / (total / 8);
		up /= scale;
		down /= scale;
	}

	/* Get maximal dynamic range by choosing optimal shifts. */
	int s = highbit64(total);
	s = MIN(64 - s, 32);

	uint64_t ofrac = (1ULL << 32) - frac;

	if (frac >= 4 * ofrac)
		up /= frac / (2 * ofrac + 1);
	up = (up << s) / (total >> (32 - s));
	if (ofrac >= 4 * frac)
		down /= ofrac / (2 * frac + 1);
	down = (down << s) / (total >> (32 - s));
	down = down * 100 / balance;

	return (frac + up - down);
}

/*
 * Calculate (x * multiplier / divisor) without unnecesary overflows.
 */
static uint64_t
arc_mf(uint64_t x, uint64_t multiplier, uint64_t divisor)
{
	uint64_t q = (x / divisor);
	uint64_t r = (x % divisor);

	return ((q * multiplier) + ((r * multiplier) / divisor));
}

/*
 * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
 */
static uint64_t
arc_evict(void)
{
	uint64_t bytes, total_evicted = 0;
	int64_t e, mrud, mrum, mfud, mfum, w;
	static uint64_t ogrd, ogrm, ogfd, ogfm;
	static uint64_t gsrd, gsrm, gsfd, gsfm;
	uint64_t ngrd, ngrm, ngfd, ngfm;

	/* Get current size of ARC states we can evict from. */
	mrud = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_DATA]) +
	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]);
	mrum = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) +
	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
	mfud = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
	mfum = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
	uint64_t d = mrud + mfud;
	uint64_t m = mrum + mfum;
	uint64_t t = d + m;

	/* Get ARC ghost hits since last eviction. */
	ngrd = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
	uint64_t grd = ngrd - ogrd;
	ogrd = ngrd;
	ngrm = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
	uint64_t grm = ngrm - ogrm;
	ogrm = ngrm;
	ngfd = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
	uint64_t gfd = ngfd - ogfd;
	ogfd = ngfd;
	ngfm = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
	uint64_t gfm = ngfm - ogfm;
	ogfm = ngfm;

	/* Adjust ARC states balance based on ghost hits. */
	arc_meta = arc_evict_adj(arc_meta, gsrd + gsrm + gsfd + gsfm,
	    grm + gfm, grd + gfd, zfs_arc_meta_balance);
	arc_pd = arc_evict_adj(arc_pd, gsrd + gsfd, grd, gfd, 100);
	arc_pm = arc_evict_adj(arc_pm, gsrm + gsfm, grm, gfm, 100);

	uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
	uint64_t ac = arc_c;
	int64_t wt = t - (asize - ac);

	/*
	 * Try to reduce pinned dnodes if more than 3/4 of wanted metadata
	 * target is not evictable or if they go over arc_dnode_limit.
	 */
	int64_t prune = 0;
	int64_t dn = wmsum_value(&arc_sums.arcstat_dnode_size);
	int64_t nem = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA])
	    + zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA])
	    - zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA])
	    - zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
	w = wt * (int64_t)(arc_meta >> 16) >> 16;
	if (nem > w * 3 / 4) {
		prune = dn / sizeof (dnode_t) *
		    zfs_arc_dnode_reduce_percent / 100;
		if (nem < w && w > 4)
			prune = arc_mf(prune, nem - w * 3 / 4, w / 4);
	}
	if (dn > arc_dnode_limit) {
		prune = MAX(prune, (dn - arc_dnode_limit) / sizeof (dnode_t) *
		    zfs_arc_dnode_reduce_percent / 100);
	}
	if (prune > 0)
		arc_prune_async(prune);

	/* Evict MRU metadata. */
	w = wt * (int64_t)(arc_meta * arc_pm >> 48) >> 16;
	e = MIN((int64_t)(asize - ac), (int64_t)(mrum - w));
	bytes = arc_evict_impl(arc_mru, ARC_BUFC_METADATA, e);
	total_evicted += bytes;
	mrum -= bytes;
	asize -= bytes;

	/* Evict MFU metadata. */
	w = wt * (int64_t)(arc_meta >> 16) >> 16;
	e = MIN((int64_t)(asize - ac), (int64_t)(m - bytes - w));
	bytes = arc_evict_impl(arc_mfu, ARC_BUFC_METADATA, e);
	total_evicted += bytes;
	mfum -= bytes;
	asize -= bytes;

	/* Evict MRU data. */
	wt -= m - total_evicted;
	w = wt * (int64_t)(arc_pd >> 16) >> 16;
	e = MIN((int64_t)(asize - ac), (int64_t)(mrud - w));
	bytes = arc_evict_impl(arc_mru, ARC_BUFC_DATA, e);
	total_evicted += bytes;
	mrud -= bytes;
	asize -= bytes;

	/* Evict MFU data. */
	e = asize - ac;
	bytes = arc_evict_impl(arc_mfu, ARC_BUFC_DATA, e);
	mfud -= bytes;
	total_evicted += bytes;

	/*
	 * Evict ghost lists
	 *
	 * Size of each state's ghost list represents how much that state
	 * may grow by shrinking the other states.  Would it need to shrink
	 * other states to zero (that is unlikely), its ghost size would be
	 * equal to sum of other three state sizes.  But excessive ghost
	 * size may result in false ghost hits (too far back), that may
	 * never result in real cache hits if several states are competing.
	 * So choose some arbitraty point of 1/2 of other state sizes.
	 */
	gsrd = (mrum + mfud + mfum) / 2;
	e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]) -
	    gsrd;
	(void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_DATA, e);

	gsrm = (mrud + mfud + mfum) / 2;
	e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]) -
	    gsrm;
	(void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_METADATA, e);

	gsfd = (mrud + mrum + mfum) / 2;
	e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]) -
	    gsfd;
	(void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_DATA, e);

	gsfm = (mrud + mrum + mfud) / 2;
	e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]) -
	    gsfm;
	(void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_METADATA, e);

	return (total_evicted);
}

void
arc_flush(spa_t *spa, boolean_t retry)
{
	uint64_t guid = 0;

	/*
	 * If retry is B_TRUE, a spa must not be specified since we have
	 * no good way to determine if all of a spa's buffers have been
	 * evicted from an arc state.
	 */
	ASSERT(!retry || spa == NULL);

	if (spa != NULL)
		guid = spa_load_guid(spa);

	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);

	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);

	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);

	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);

	(void) arc_flush_state(arc_uncached, guid, ARC_BUFC_DATA, retry);
	(void) arc_flush_state(arc_uncached, guid, ARC_BUFC_METADATA, retry);
}

uint64_t
arc_reduce_target_size(uint64_t to_free)
{
	/*
	 * Get the actual arc size.  Even if we don't need it, this updates
	 * the aggsum lower bound estimate for arc_is_overflowing().
	 */
	uint64_t asize = aggsum_value(&arc_sums.arcstat_size);

	/*
	 * All callers want the ARC to actually evict (at least) this much
	 * memory.  Therefore we reduce from the lower of the current size and
	 * the target size.  This way, even if arc_c is much higher than
	 * arc_size (as can be the case after many calls to arc_freed(), we will
	 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
	 * will evict.
	 */
	uint64_t c = arc_c;
	if (c > arc_c_min) {
		c = MIN(c, MAX(asize, arc_c_min));
		to_free = MIN(to_free, c - arc_c_min);
		arc_c = c - to_free;
	} else {
		to_free = 0;
	}

	/*
	 * Whether or not we reduced the target size, request eviction if the
	 * current size is over it now, since caller obviously wants some RAM.
	 */
	if (asize > arc_c) {
		/* See comment in arc_evict_cb_check() on why lock+flag */
		mutex_enter(&arc_evict_lock);
		arc_evict_needed = B_TRUE;
		mutex_exit(&arc_evict_lock);
		zthr_wakeup(arc_evict_zthr);
	}

	return (to_free);
}

/*
 * Determine if the system is under memory pressure and is asking
 * to reclaim memory. A return value of B_TRUE indicates that the system
 * is under memory pressure and that the arc should adjust accordingly.
 */
boolean_t
arc_reclaim_needed(void)
{
	return (arc_available_memory() < 0);
}

void
arc_kmem_reap_soon(void)
{
	size_t			i;
	kmem_cache_t		*prev_cache = NULL;
	kmem_cache_t		*prev_data_cache = NULL;

#ifdef _KERNEL
#if defined(_ILP32)
	/*
	 * Reclaim unused memory from all kmem caches.
	 */
	kmem_reap();
#endif
#endif

	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
#if defined(_ILP32)
		/* reach upper limit of cache size on 32-bit */
		if (zio_buf_cache[i] == NULL)
			break;
#endif
		if (zio_buf_cache[i] != prev_cache) {
			prev_cache = zio_buf_cache[i];
			kmem_cache_reap_now(zio_buf_cache[i]);
		}
		if (zio_data_buf_cache[i] != prev_data_cache) {
			prev_data_cache = zio_data_buf_cache[i];
			kmem_cache_reap_now(zio_data_buf_cache[i]);
		}
	}
	kmem_cache_reap_now(buf_cache);
	kmem_cache_reap_now(hdr_full_cache);
	kmem_cache_reap_now(hdr_l2only_cache);
	kmem_cache_reap_now(zfs_btree_leaf_cache);
	abd_cache_reap_now();
}

static boolean_t
arc_evict_cb_check(void *arg, zthr_t *zthr)
{
	(void) arg, (void) zthr;

#ifdef ZFS_DEBUG
	/*
	 * This is necessary in order to keep the kstat information
	 * up to date for tools that display kstat data such as the
	 * mdb ::arc dcmd and the Linux crash utility.  These tools
	 * typically do not call kstat's update function, but simply
	 * dump out stats from the most recent update.  Without
	 * this call, these commands may show stale stats for the
	 * anon, mru, mru_ghost, mfu, and mfu_ghost lists.  Even
	 * with this call, the data might be out of date if the
	 * evict thread hasn't been woken recently; but that should
	 * suffice.  The arc_state_t structures can be queried
	 * directly if more accurate information is needed.
	 */
	if (arc_ksp != NULL)
		arc_ksp->ks_update(arc_ksp, KSTAT_READ);
#endif

	/*
	 * We have to rely on arc_wait_for_eviction() to tell us when to
	 * evict, rather than checking if we are overflowing here, so that we
	 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
	 * If we have become "not overflowing" since arc_wait_for_eviction()
	 * checked, we need to wake it up.  We could broadcast the CV here,
	 * but arc_wait_for_eviction() may have not yet gone to sleep.  We
	 * would need to use a mutex to ensure that this function doesn't
	 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
	 * the arc_evict_lock).  However, the lock ordering of such a lock
	 * would necessarily be incorrect with respect to the zthr_lock,
	 * which is held before this function is called, and is held by
	 * arc_wait_for_eviction() when it calls zthr_wakeup().
	 */
	if (arc_evict_needed)
		return (B_TRUE);

	/*
	 * If we have buffers in uncached state, evict them periodically.
	 */
	return ((zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_DATA]) +
	    zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]) &&
	    ddi_get_lbolt() - arc_last_uncached_flush >
	    MSEC_TO_TICK(arc_min_prefetch_ms / 2)));
}

/*
 * Keep arc_size under arc_c by running arc_evict which evicts data
 * from the ARC.
 */
static void
arc_evict_cb(void *arg, zthr_t *zthr)
{
	(void) arg;

	uint64_t evicted = 0;
	fstrans_cookie_t cookie = spl_fstrans_mark();

	/* Always try to evict from uncached state. */
	arc_last_uncached_flush = ddi_get_lbolt();
	evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_DATA, B_FALSE);
	evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_METADATA, B_FALSE);

	/* Evict from other states only if told to. */
	if (arc_evict_needed)
		evicted += arc_evict();

	/*
	 * If evicted is zero, we couldn't evict anything
	 * via arc_evict(). This could be due to hash lock
	 * collisions, but more likely due to the majority of
	 * arc buffers being unevictable. Therefore, even if
	 * arc_size is above arc_c, another pass is unlikely to
	 * be helpful and could potentially cause us to enter an
	 * infinite loop.  Additionally, zthr_iscancelled() is
	 * checked here so that if the arc is shutting down, the
	 * broadcast will wake any remaining arc evict waiters.
	 *
	 * Note we cancel using zthr instead of arc_evict_zthr
	 * because the latter may not yet be initializd when the
	 * callback is first invoked.
	 */
	mutex_enter(&arc_evict_lock);
	arc_evict_needed = !zthr_iscancelled(zthr) &&
	    evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0;
	if (!arc_evict_needed) {
		/*
		 * We're either no longer overflowing, or we
		 * can't evict anything more, so we should wake
		 * arc_get_data_impl() sooner.
		 */
		arc_evict_waiter_t *aw;
		while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) {
			cv_broadcast(&aw->aew_cv);
		}
		arc_set_need_free();
	}
	mutex_exit(&arc_evict_lock);
	spl_fstrans_unmark(cookie);
}

static boolean_t
arc_reap_cb_check(void *arg, zthr_t *zthr)
{
	(void) arg, (void) zthr;

	int64_t free_memory = arc_available_memory();
	static int reap_cb_check_counter = 0;

	/*
	 * If a kmem reap is already active, don't schedule more.  We must
	 * check for this because kmem_cache_reap_soon() won't actually
	 * block on the cache being reaped (this is to prevent callers from
	 * becoming implicitly blocked by a system-wide kmem reap -- which,
	 * on a system with many, many full magazines, can take minutes).
	 */
	if (!kmem_cache_reap_active() && free_memory < 0) {

		arc_no_grow = B_TRUE;
		arc_warm = B_TRUE;
		/*
		 * Wait at least zfs_grow_retry (default 5) seconds
		 * before considering growing.
		 */
		arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
		return (B_TRUE);
	} else if (free_memory < arc_c >> arc_no_grow_shift) {
		arc_no_grow = B_TRUE;
	} else if (gethrtime() >= arc_growtime) {
		arc_no_grow = B_FALSE;
	}

	/*
	 * Called unconditionally every 60 seconds to reclaim unused
	 * zstd compression and decompression context. This is done
	 * here to avoid the need for an independent thread.
	 */
	if (!((reap_cb_check_counter++) % 60))
		zfs_zstd_cache_reap_now();

	return (B_FALSE);
}

/*
 * Keep enough free memory in the system by reaping the ARC's kmem
 * caches.  To cause more slabs to be reapable, we may reduce the
 * target size of the cache (arc_c), causing the arc_evict_cb()
 * to free more buffers.
 */
static void
arc_reap_cb(void *arg, zthr_t *zthr)
{
	int64_t can_free, free_memory, to_free;

	(void) arg, (void) zthr;
	fstrans_cookie_t cookie = spl_fstrans_mark();

	/*
	 * Kick off asynchronous kmem_reap()'s of all our caches.
	 */
	arc_kmem_reap_soon();

	/*
	 * Wait at least arc_kmem_cache_reap_retry_ms between
	 * arc_kmem_reap_soon() calls. Without this check it is possible to
	 * end up in a situation where we spend lots of time reaping
	 * caches, while we're near arc_c_min.  Waiting here also gives the
	 * subsequent free memory check a chance of finding that the
	 * asynchronous reap has already freed enough memory, and we don't
	 * need to call arc_reduce_target_size().
	 */
	delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);

	/*
	 * Reduce the target size as needed to maintain the amount of free
	 * memory in the system at a fraction of the arc_size (1/128th by
	 * default).  If oversubscribed (free_memory < 0) then reduce the
	 * target arc_size by the deficit amount plus the fractional
	 * amount.  If free memory is positive but less than the fractional
	 * amount, reduce by what is needed to hit the fractional amount.
	 */
	free_memory = arc_available_memory();
	can_free = arc_c - arc_c_min;
	to_free = (MAX(can_free, 0) >> arc_shrink_shift) - free_memory;
	if (to_free > 0)
		arc_reduce_target_size(to_free);
	spl_fstrans_unmark(cookie);
}

#ifdef _KERNEL
/*
 * Determine the amount of memory eligible for eviction contained in the
 * ARC. All clean data reported by the ghost lists can always be safely
 * evicted. Due to arc_c_min, the same does not hold for all clean data
 * contained by the regular mru and mfu lists.
 *
 * In the case of the regular mru and mfu lists, we need to report as
 * much clean data as possible, such that evicting that same reported
 * data will not bring arc_size below arc_c_min. Thus, in certain
 * circumstances, the total amount of clean data in the mru and mfu
 * lists might not actually be evictable.
 *
 * The following two distinct cases are accounted for:
 *
 * 1. The sum of the amount of dirty data contained by both the mru and
 *    mfu lists, plus the ARC's other accounting (e.g. the anon list),
 *    is greater than or equal to arc_c_min.
 *    (i.e. amount of dirty data >= arc_c_min)
 *
 *    This is the easy case; all clean data contained by the mru and mfu
 *    lists is evictable. Evicting all clean data can only drop arc_size
 *    to the amount of dirty data, which is greater than arc_c_min.
 *
 * 2. The sum of the amount of dirty data contained by both the mru and
 *    mfu lists, plus the ARC's other accounting (e.g. the anon list),
 *    is less than arc_c_min.
 *    (i.e. arc_c_min > amount of dirty data)
 *
 *    2.1. arc_size is greater than or equal arc_c_min.
 *         (i.e. arc_size >= arc_c_min > amount of dirty data)
 *
 *         In this case, not all clean data from the regular mru and mfu
 *         lists is actually evictable; we must leave enough clean data
 *         to keep arc_size above arc_c_min. Thus, the maximum amount of
 *         evictable data from the two lists combined, is exactly the
 *         difference between arc_size and arc_c_min.
 *
 *    2.2. arc_size is less than arc_c_min
 *         (i.e. arc_c_min > arc_size > amount of dirty data)
 *
 *         In this case, none of the data contained in the mru and mfu
 *         lists is evictable, even if it's clean. Since arc_size is
 *         already below arc_c_min, evicting any more would only
 *         increase this negative difference.
 */

#endif /* _KERNEL */

/*
 * Adapt arc info given the number of bytes we are trying to add and
 * the state that we are coming from.  This function is only called
 * when we are adding new content to the cache.
 */
static void
arc_adapt(uint64_t bytes)
{
	/*
	 * Wake reap thread if we do not have any available memory
	 */
	if (arc_reclaim_needed()) {
		zthr_wakeup(arc_reap_zthr);
		return;
	}

	if (arc_no_grow)
		return;

	if (arc_c >= arc_c_max)
		return;

	/*
	 * If we're within (2 * maxblocksize) bytes of the target
	 * cache size, increment the target cache size
	 */
	if (aggsum_upper_bound(&arc_sums.arcstat_size) +
	    2 * SPA_MAXBLOCKSIZE >= arc_c) {
		uint64_t dc = MAX(bytes, SPA_OLD_MAXBLOCKSIZE);
		if (atomic_add_64_nv(&arc_c, dc) > arc_c_max)
			arc_c = arc_c_max;
	}
}

/*
 * Check if ARC current size has grown past our upper thresholds.
 */
static arc_ovf_level_t
arc_is_overflowing(boolean_t lax, boolean_t use_reserve)
{
	/*
	 * We just compare the lower bound here for performance reasons. Our
	 * primary goals are to make sure that the arc never grows without
	 * bound, and that it can reach its maximum size. This check
	 * accomplishes both goals. The maximum amount we could run over by is
	 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
	 * in the ARC. In practice, that's in the tens of MB, which is low
	 * enough to be safe.
	 */
	int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) - arc_c -
	    zfs_max_recordsize;

	/* Always allow at least one block of overflow. */
	if (over < 0)
		return (ARC_OVF_NONE);

	/* If we are under memory pressure, report severe overflow. */
	if (!lax)
		return (ARC_OVF_SEVERE);

	/* We are not under pressure, so be more or less relaxed. */
	int64_t overflow = (arc_c >> zfs_arc_overflow_shift) / 2;
	if (use_reserve)
		overflow *= 3;
	return (over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE);
}

static abd_t *
arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
    int alloc_flags)
{
	arc_buf_contents_t type = arc_buf_type(hdr);

	arc_get_data_impl(hdr, size, tag, alloc_flags);
	if (alloc_flags & ARC_HDR_ALLOC_LINEAR)
		return (abd_alloc_linear(size, type == ARC_BUFC_METADATA));
	else
		return (abd_alloc(size, type == ARC_BUFC_METADATA));
}

static void *
arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
{
	arc_buf_contents_t type = arc_buf_type(hdr);

	arc_get_data_impl(hdr, size, tag, 0);
	if (type == ARC_BUFC_METADATA) {
		return (zio_buf_alloc(size));
	} else {
		ASSERT(type == ARC_BUFC_DATA);
		return (zio_data_buf_alloc(size));
	}
}

/*
 * Wait for the specified amount of data (in bytes) to be evicted from the
 * ARC, and for there to be sufficient free memory in the system.
 * The lax argument specifies that caller does not have a specific reason
 * to wait, not aware of any memory pressure.  Low memory handlers though
 * should set it to B_FALSE to wait for all required evictions to complete.
 * The use_reserve argument allows some callers to wait less than others
 * to not block critical code paths, possibly blocking other resources.
 */
void
arc_wait_for_eviction(uint64_t amount, boolean_t lax, boolean_t use_reserve)
{
	switch (arc_is_overflowing(lax, use_reserve)) {
	case ARC_OVF_NONE:
		return;
	case ARC_OVF_SOME:
		/*
		 * This is a bit racy without taking arc_evict_lock, but the
		 * worst that can happen is we either call zthr_wakeup() extra
		 * time due to race with other thread here, or the set flag
		 * get cleared by arc_evict_cb(), which is unlikely due to
		 * big hysteresis, but also not important since at this level
		 * of overflow the eviction is purely advisory.  Same time
		 * taking the global lock here every time without waiting for
		 * the actual eviction creates a significant lock contention.
		 */
		if (!arc_evict_needed) {
			arc_evict_needed = B_TRUE;
			zthr_wakeup(arc_evict_zthr);
		}
		return;
	case ARC_OVF_SEVERE:
	default:
	{
		arc_evict_waiter_t aw;
		list_link_init(&aw.aew_node);
		cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL);

		uint64_t last_count = 0;
		mutex_enter(&arc_evict_lock);
		if (!list_is_empty(&arc_evict_waiters)) {
			arc_evict_waiter_t *last =
			    list_tail(&arc_evict_waiters);
			last_count = last->aew_count;
		} else if (!arc_evict_needed) {
			arc_evict_needed = B_TRUE;
			zthr_wakeup(arc_evict_zthr);
		}
		/*
		 * Note, the last waiter's count may be less than
		 * arc_evict_count if we are low on memory in which
		 * case arc_evict_state_impl() may have deferred
		 * wakeups (but still incremented arc_evict_count).
		 */
		aw.aew_count = MAX(last_count, arc_evict_count) + amount;

		list_insert_tail(&arc_evict_waiters, &aw);

		arc_set_need_free();

		DTRACE_PROBE3(arc__wait__for__eviction,
		    uint64_t, amount,
		    uint64_t, arc_evict_count,
		    uint64_t, aw.aew_count);

		/*
		 * We will be woken up either when arc_evict_count reaches
		 * aew_count, or when the ARC is no longer overflowing and
		 * eviction completes.
		 * In case of "false" wakeup, we will still be on the list.
		 */
		do {
			cv_wait(&aw.aew_cv, &arc_evict_lock);
		} while (list_link_active(&aw.aew_node));
		mutex_exit(&arc_evict_lock);

		cv_destroy(&aw.aew_cv);
	}
	}
}

/*
 * Allocate a block and return it to the caller. If we are hitting the
 * hard limit for the cache size, we must sleep, waiting for the eviction
 * thread to catch up. If we're past the target size but below the hard
 * limit, we'll only signal the reclaim thread and continue on.
 */
static void
arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
    int alloc_flags)
{
	arc_adapt(size);

	/*
	 * If arc_size is currently overflowing, we must be adding data
	 * faster than we are evicting.  To ensure we don't compound the
	 * problem by adding more data and forcing arc_size to grow even
	 * further past it's target size, we wait for the eviction thread to
	 * make some progress.  We also wait for there to be sufficient free
	 * memory in the system, as measured by arc_free_memory().
	 *
	 * Specifically, we wait for zfs_arc_eviction_pct percent of the
	 * requested size to be evicted.  This should be more than 100%, to
	 * ensure that that progress is also made towards getting arc_size
	 * under arc_c.  See the comment above zfs_arc_eviction_pct.
	 */
	arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100,
	    B_TRUE, alloc_flags & ARC_HDR_USE_RESERVE);

	arc_buf_contents_t type = arc_buf_type(hdr);
	if (type == ARC_BUFC_METADATA) {
		arc_space_consume(size, ARC_SPACE_META);
	} else {
		arc_space_consume(size, ARC_SPACE_DATA);
	}

	/*
	 * Update the state size.  Note that ghost states have a
	 * "ghost size" and so don't need to be updated.
	 */
	arc_state_t *state = hdr->b_l1hdr.b_state;
	if (!GHOST_STATE(state)) {

		(void) zfs_refcount_add_many(&state->arcs_size[type], size,
		    tag);

		/*
		 * If this is reached via arc_read, the link is
		 * protected by the hash lock. If reached via
		 * arc_buf_alloc, the header should not be accessed by
		 * any other thread. And, if reached via arc_read_done,
		 * the hash lock will protect it if it's found in the
		 * hash table; otherwise no other thread should be
		 * trying to [add|remove]_reference it.
		 */
		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
			ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
			(void) zfs_refcount_add_many(&state->arcs_esize[type],
			    size, tag);
		}
	}
}

static void
arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size,
    const void *tag)
{
	arc_free_data_impl(hdr, size, tag);
	abd_free(abd);
}

static void
arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, const void *tag)
{
	arc_buf_contents_t type = arc_buf_type(hdr);

	arc_free_data_impl(hdr, size, tag);
	if (type == ARC_BUFC_METADATA) {
		zio_buf_free(buf, size);
	} else {
		ASSERT(type == ARC_BUFC_DATA);
		zio_data_buf_free(buf, size);
	}
}

/*
 * Free the arc data buffer.
 */
static void
arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
{
	arc_state_t *state = hdr->b_l1hdr.b_state;
	arc_buf_contents_t type = arc_buf_type(hdr);

	/* protected by hash lock, if in the hash table */
	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
		ASSERT(state != arc_anon && state != arc_l2c_only);

		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
		    size, tag);
	}
	(void) zfs_refcount_remove_many(&state->arcs_size[type], size, tag);

	VERIFY3U(hdr->b_type, ==, type);
	if (type == ARC_BUFC_METADATA) {
		arc_space_return(size, ARC_SPACE_META);
	} else {
		ASSERT(type == ARC_BUFC_DATA);
		arc_space_return(size, ARC_SPACE_DATA);
	}
}

/*
 * This routine is called whenever a buffer is accessed.
 */
static void
arc_access(arc_buf_hdr_t *hdr, arc_flags_t arc_flags, boolean_t hit)
{
	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
	ASSERT(HDR_HAS_L1HDR(hdr));

	/*
	 * Update buffer prefetch status.
	 */
	boolean_t was_prefetch = HDR_PREFETCH(hdr);
	boolean_t now_prefetch = arc_flags & ARC_FLAG_PREFETCH;
	if (was_prefetch != now_prefetch) {
		if (was_prefetch) {
			ARCSTAT_CONDSTAT(hit, demand_hit, demand_iohit,
			    HDR_PRESCIENT_PREFETCH(hdr), prescient, predictive,
			    prefetch);
		}
		if (HDR_HAS_L2HDR(hdr))
			l2arc_hdr_arcstats_decrement_state(hdr);
		if (was_prefetch) {
			arc_hdr_clear_flags(hdr,
			    ARC_FLAG_PREFETCH | ARC_FLAG_PRESCIENT_PREFETCH);
		} else {
			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
		}
		if (HDR_HAS_L2HDR(hdr))
			l2arc_hdr_arcstats_increment_state(hdr);
	}
	if (now_prefetch) {
		if (arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
			arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
			ARCSTAT_BUMP(arcstat_prescient_prefetch);
		} else {
			ARCSTAT_BUMP(arcstat_predictive_prefetch);
		}
	}
	if (arc_flags & ARC_FLAG_L2CACHE)
		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);

	clock_t now = ddi_get_lbolt();
	if (hdr->b_l1hdr.b_state == arc_anon) {
		arc_state_t	*new_state;
		/*
		 * This buffer is not in the cache, and does not appear in
		 * our "ghost" lists.  Add it to the MRU or uncached state.
		 */
		ASSERT0(hdr->b_l1hdr.b_arc_access);
		hdr->b_l1hdr.b_arc_access = now;
		if (HDR_UNCACHED(hdr)) {
			new_state = arc_uncached;
			DTRACE_PROBE1(new_state__uncached, arc_buf_hdr_t *,
			    hdr);
		} else {
			new_state = arc_mru;
			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
		}
		arc_change_state(new_state, hdr);
	} else if (hdr->b_l1hdr.b_state == arc_mru) {
		/*
		 * This buffer has been accessed once recently and either
		 * its read is still in progress or it is in the cache.
		 */
		if (HDR_IO_IN_PROGRESS(hdr)) {
			hdr->b_l1hdr.b_arc_access = now;
			return;
		}
		hdr->b_l1hdr.b_mru_hits++;
		ARCSTAT_BUMP(arcstat_mru_hits);

		/*
		 * If the previous access was a prefetch, then it already
		 * handled possible promotion, so nothing more to do for now.
		 */
		if (was_prefetch) {
			hdr->b_l1hdr.b_arc_access = now;
			return;
		}

		/*
		 * If more than ARC_MINTIME have passed from the previous
		 * hit, promote the buffer to the MFU state.
		 */
		if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
		    ARC_MINTIME)) {
			hdr->b_l1hdr.b_arc_access = now;
			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
			arc_change_state(arc_mfu, hdr);
		}
	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
		arc_state_t	*new_state;
		/*
		 * This buffer has been accessed once recently, but was
		 * evicted from the cache.  Would we have bigger MRU, it
		 * would be an MRU hit, so handle it the same way, except
		 * we don't need to check the previous access time.
		 */
		hdr->b_l1hdr.b_mru_ghost_hits++;
		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
		hdr->b_l1hdr.b_arc_access = now;
		wmsum_add(&arc_mru_ghost->arcs_hits[arc_buf_type(hdr)],
		    arc_hdr_size(hdr));
		if (was_prefetch) {
			new_state = arc_mru;
			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
		} else {
			new_state = arc_mfu;
			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
		}
		arc_change_state(new_state, hdr);
	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
		/*
		 * This buffer has been accessed more than once and either
		 * still in the cache or being restored from one of ghosts.
		 */
		if (!HDR_IO_IN_PROGRESS(hdr)) {
			hdr->b_l1hdr.b_mfu_hits++;
			ARCSTAT_BUMP(arcstat_mfu_hits);
		}
		hdr->b_l1hdr.b_arc_access = now;
	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
		/*
		 * This buffer has been accessed more than once recently, but
		 * has been evicted from the cache.  Would we have bigger MFU
		 * it would stay in cache, so move it back to MFU state.
		 */
		hdr->b_l1hdr.b_mfu_ghost_hits++;
		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
		hdr->b_l1hdr.b_arc_access = now;
		wmsum_add(&arc_mfu_ghost->arcs_hits[arc_buf_type(hdr)],
		    arc_hdr_size(hdr));
		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
		arc_change_state(arc_mfu, hdr);
	} else if (hdr->b_l1hdr.b_state == arc_uncached) {
		/*
		 * This buffer is uncacheable, but we got a hit.  Probably
		 * a demand read after prefetch.  Nothing more to do here.
		 */
		if (!HDR_IO_IN_PROGRESS(hdr))
			ARCSTAT_BUMP(arcstat_uncached_hits);
		hdr->b_l1hdr.b_arc_access = now;
	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
		/*
		 * This buffer is on the 2nd Level ARC and was not accessed
		 * for a long time, so treat it as new and put into MRU.
		 */
		hdr->b_l1hdr.b_arc_access = now;
		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
		arc_change_state(arc_mru, hdr);
	} else {
		cmn_err(CE_PANIC, "invalid arc state 0x%p",
		    hdr->b_l1hdr.b_state);
	}
}

/*
 * This routine is called by dbuf_hold() to update the arc_access() state
 * which otherwise would be skipped for entries in the dbuf cache.
 */
void
arc_buf_access(arc_buf_t *buf)
{
	arc_buf_hdr_t *hdr = buf->b_hdr;

	/*
	 * Avoid taking the hash_lock when possible as an optimization.
	 * The header must be checked again under the hash_lock in order
	 * to handle the case where it is concurrently being released.
	 */
	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr))
		return;

	kmutex_t *hash_lock = HDR_LOCK(hdr);
	mutex_enter(hash_lock);

	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
		mutex_exit(hash_lock);
		ARCSTAT_BUMP(arcstat_access_skip);
		return;
	}

	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
	    hdr->b_l1hdr.b_state == arc_mfu ||
	    hdr->b_l1hdr.b_state == arc_uncached);

	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
	arc_access(hdr, 0, B_TRUE);
	mutex_exit(hash_lock);

	ARCSTAT_BUMP(arcstat_hits);
	ARCSTAT_CONDSTAT(B_TRUE /* demand */, demand, prefetch,
	    !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
}

/* a generic arc_read_done_func_t which you can use */
void
arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
    arc_buf_t *buf, void *arg)
{
	(void) zio, (void) zb, (void) bp;

	if (buf == NULL)
		return;

	memcpy(arg, buf->b_data, arc_buf_size(buf));
	arc_buf_destroy(buf, arg);
}

/* a generic arc_read_done_func_t */
void
arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
    arc_buf_t *buf, void *arg)
{
	(void) zb, (void) bp;
	arc_buf_t **bufp = arg;

	if (buf == NULL) {
		ASSERT(zio == NULL || zio->io_error != 0);
		*bufp = NULL;
	} else {
		ASSERT(zio == NULL || zio->io_error == 0);
		*bufp = buf;
		ASSERT(buf->b_data != NULL);
	}
}

static void
arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
{
	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
		ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
	} else {
		if (HDR_COMPRESSION_ENABLED(hdr)) {
			ASSERT3U(arc_hdr_get_compress(hdr), ==,
			    BP_GET_COMPRESS(bp));
		}
		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
		ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
	}
}

static void
arc_read_done(zio_t *zio)
{
	blkptr_t 	*bp = zio->io_bp;
	arc_buf_hdr_t	*hdr = zio->io_private;
	kmutex_t	*hash_lock = NULL;
	arc_callback_t	*callback_list;
	arc_callback_t	*acb;

	/*
	 * The hdr was inserted into hash-table and removed from lists
	 * prior to starting I/O.  We should find this header, since
	 * it's in the hash table, and it should be legit since it's
	 * not possible to evict it during the I/O.  The only possible
	 * reason for it not to be found is if we were freed during the
	 * read.
	 */
	if (HDR_IN_HASH_TABLE(hdr)) {
		arc_buf_hdr_t *found;

		ASSERT3U(hdr->b_birth, ==, BP_GET_BIRTH(zio->io_bp));
		ASSERT3U(hdr->b_dva.dva_word[0], ==,
		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
		ASSERT3U(hdr->b_dva.dva_word[1], ==,
		    BP_IDENTITY(zio->io_bp)->dva_word[1]);

		found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);

		ASSERT((found == hdr &&
		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
		    (found == hdr && HDR_L2_READING(hdr)));
		ASSERT3P(hash_lock, !=, NULL);
	}

	if (BP_IS_PROTECTED(bp)) {
		hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
		hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
		zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
		    hdr->b_crypt_hdr.b_iv);

		if (zio->io_error == 0) {
			if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
				void *tmpbuf;

				tmpbuf = abd_borrow_buf_copy(zio->io_abd,
				    sizeof (zil_chain_t));
				zio_crypt_decode_mac_zil(tmpbuf,
				    hdr->b_crypt_hdr.b_mac);
				abd_return_buf(zio->io_abd, tmpbuf,
				    sizeof (zil_chain_t));
			} else {
				zio_crypt_decode_mac_bp(bp,
				    hdr->b_crypt_hdr.b_mac);
			}
		}
	}

	if (zio->io_error == 0) {
		/* byteswap if necessary */
		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
			if (BP_GET_LEVEL(zio->io_bp) > 0) {
				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
			} else {
				hdr->b_l1hdr.b_byteswap =
				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
			}
		} else {
			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
		}
		if (!HDR_L2_READING(hdr)) {
			hdr->b_complevel = zio->io_prop.zp_complevel;
		}
	}

	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);

	callback_list = hdr->b_l1hdr.b_acb;
	ASSERT3P(callback_list, !=, NULL);
	hdr->b_l1hdr.b_acb = NULL;

	/*
	 * If a read request has a callback (i.e. acb_done is not NULL), then we
	 * make a buf containing the data according to the parameters which were
	 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
	 * aren't needlessly decompressing the data multiple times.
	 */
	int callback_cnt = 0;
	for (acb = callback_list; acb != NULL; acb = acb->acb_next) {

		/* We need the last one to call below in original order. */
		callback_list = acb;

		if (!acb->acb_done || acb->acb_nobuf)
			continue;

		callback_cnt++;

		if (zio->io_error != 0)
			continue;

		int error = arc_buf_alloc_impl(hdr, zio->io_spa,
		    &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
		    acb->acb_compressed, acb->acb_noauth, B_TRUE,
		    &acb->acb_buf);

		/*
		 * Assert non-speculative zios didn't fail because an
		 * encryption key wasn't loaded
		 */
		ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
		    error != EACCES);

		/*
		 * If we failed to decrypt, report an error now (as the zio
		 * layer would have done if it had done the transforms).
		 */
		if (error == ECKSUM) {
			ASSERT(BP_IS_PROTECTED(bp));
			error = SET_ERROR(EIO);
			if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
				spa_log_error(zio->io_spa, &acb->acb_zb,
				    BP_GET_LOGICAL_BIRTH(zio->io_bp));
				(void) zfs_ereport_post(
				    FM_EREPORT_ZFS_AUTHENTICATION,
				    zio->io_spa, NULL, &acb->acb_zb, zio, 0);
			}
		}

		if (error != 0) {
			/*
			 * Decompression or decryption failed.  Set
			 * io_error so that when we call acb_done
			 * (below), we will indicate that the read
			 * failed. Note that in the unusual case
			 * where one callback is compressed and another
			 * uncompressed, we will mark all of them
			 * as failed, even though the uncompressed
			 * one can't actually fail.  In this case,
			 * the hdr will not be anonymous, because
			 * if there are multiple callbacks, it's
			 * because multiple threads found the same
			 * arc buf in the hash table.
			 */
			zio->io_error = error;
		}
	}

	/*
	 * If there are multiple callbacks, we must have the hash lock,
	 * because the only way for multiple threads to find this hdr is
	 * in the hash table.  This ensures that if there are multiple
	 * callbacks, the hdr is not anonymous.  If it were anonymous,
	 * we couldn't use arc_buf_destroy() in the error case below.
	 */
	ASSERT(callback_cnt < 2 || hash_lock != NULL);

	if (zio->io_error == 0) {
		arc_hdr_verify(hdr, zio->io_bp);
	} else {
		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
		if (hdr->b_l1hdr.b_state != arc_anon)
			arc_change_state(arc_anon, hdr);
		if (HDR_IN_HASH_TABLE(hdr))
			buf_hash_remove(hdr);
	}

	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
	(void) remove_reference(hdr, hdr);

	if (hash_lock != NULL)
		mutex_exit(hash_lock);

	/* execute each callback and free its structure */
	while ((acb = callback_list) != NULL) {
		if (acb->acb_done != NULL) {
			if (zio->io_error != 0 && acb->acb_buf != NULL) {
				/*
				 * If arc_buf_alloc_impl() fails during
				 * decompression, the buf will still be
				 * allocated, and needs to be freed here.
				 */
				arc_buf_destroy(acb->acb_buf,
				    acb->acb_private);
				acb->acb_buf = NULL;
			}
			acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
			    acb->acb_buf, acb->acb_private);
		}

		if (acb->acb_zio_dummy != NULL) {
			acb->acb_zio_dummy->io_error = zio->io_error;
			zio_nowait(acb->acb_zio_dummy);
		}

		callback_list = acb->acb_prev;
		if (acb->acb_wait) {
			mutex_enter(&acb->acb_wait_lock);
			acb->acb_wait_error = zio->io_error;
			acb->acb_wait = B_FALSE;
			cv_signal(&acb->acb_wait_cv);
			mutex_exit(&acb->acb_wait_lock);
			/* acb will be freed by the waiting thread. */
		} else {
			kmem_free(acb, sizeof (arc_callback_t));
		}
	}
}

/*
 * Lookup the block at the specified DVA (in bp), and return the manner in
 * which the block is cached. A zero return indicates not cached.
 */
int
arc_cached(spa_t *spa, const blkptr_t *bp)
{
	arc_buf_hdr_t *hdr = NULL;
	kmutex_t *hash_lock = NULL;
	uint64_t guid = spa_load_guid(spa);
	int flags = 0;

	if (BP_IS_EMBEDDED(bp))
		return (ARC_CACHED_EMBEDDED);

	hdr = buf_hash_find(guid, bp, &hash_lock);
	if (hdr == NULL)
		return (0);

	if (HDR_HAS_L1HDR(hdr)) {
		arc_state_t *state = hdr->b_l1hdr.b_state;
		/*
		 * We switch to ensure that any future arc_state_type_t
		 * changes are handled. This is just a shift to promote
		 * more compile-time checking.
		 */
		switch (state->arcs_state) {
		case ARC_STATE_ANON:
			break;
		case ARC_STATE_MRU:
			flags |= ARC_CACHED_IN_MRU | ARC_CACHED_IN_L1;
			break;
		case ARC_STATE_MFU:
			flags |= ARC_CACHED_IN_MFU | ARC_CACHED_IN_L1;
			break;
		case ARC_STATE_UNCACHED:
			/* The header is still in L1, probably not for long */
			flags |= ARC_CACHED_IN_L1;
			break;
		default:
			break;
		}
	}
	if (HDR_HAS_L2HDR(hdr))
		flags |= ARC_CACHED_IN_L2;

	mutex_exit(hash_lock);

	return (flags);
}

/*
 * "Read" the block at the specified DVA (in bp) via the
 * cache.  If the block is found in the cache, invoke the provided
 * callback immediately and return.  Note that the `zio' parameter
 * in the callback will be NULL in this case, since no IO was
 * required.  If the block is not in the cache pass the read request
 * on to the spa with a substitute callback function, so that the
 * requested block will be added to the cache.
 *
 * If a read request arrives for a block that has a read in-progress,
 * either wait for the in-progress read to complete (and return the
 * results); or, if this is a read with a "done" func, add a record
 * to the read to invoke the "done" func when the read completes,
 * and return; or just return.
 *
 * arc_read_done() will invoke all the requested "done" functions
 * for readers of this block.
 */
int
arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
    arc_read_done_func_t *done, void *private, zio_priority_t priority,
    int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
{
	arc_buf_hdr_t *hdr = NULL;
	kmutex_t *hash_lock = NULL;
	zio_t *rzio;
	uint64_t guid = spa_load_guid(spa);
	boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
	boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
	    (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
	boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
	    (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
	boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp);
	boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF;
	arc_buf_t *buf = NULL;
	int rc = 0;

	ASSERT(!embedded_bp ||
	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
	ASSERT(!BP_IS_HOLE(bp));
	ASSERT(!BP_IS_REDACTED(bp));

	/*
	 * Normally SPL_FSTRANS will already be set since kernel threads which
	 * expect to call the DMU interfaces will set it when created.  System
	 * calls are similarly handled by setting/cleaning the bit in the
	 * registered callback (module/os/.../zfs/zpl_*).
	 *
	 * External consumers such as Lustre which call the exported DMU
	 * interfaces may not have set SPL_FSTRANS.  To avoid a deadlock
	 * on the hash_lock always set and clear the bit.
	 */
	fstrans_cookie_t cookie = spl_fstrans_mark();
top:
	if (!embedded_bp) {
		/*
		 * Embedded BP's have no DVA and require no I/O to "read".
		 * Create an anonymous arc buf to back it.
		 */
		hdr = buf_hash_find(guid, bp, &hash_lock);
	}

	/*
	 * Determine if we have an L1 cache hit or a cache miss. For simplicity
	 * we maintain encrypted data separately from compressed / uncompressed
	 * data. If the user is requesting raw encrypted data and we don't have
	 * that in the header we will read from disk to guarantee that we can
	 * get it even if the encryption keys aren't loaded.
	 */
	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
	    (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
		boolean_t is_data = !HDR_ISTYPE_METADATA(hdr);

		/*
		 * Verify the block pointer contents are reasonable.  This
		 * should always be the case since the blkptr is protected by
		 * a checksum.
		 */
		if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_SKIP,
		    BLK_VERIFY_LOG)) {
			mutex_exit(hash_lock);
			rc = SET_ERROR(ECKSUM);
			goto done;
		}

		if (HDR_IO_IN_PROGRESS(hdr)) {
			if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
				mutex_exit(hash_lock);
				ARCSTAT_BUMP(arcstat_cached_only_in_progress);
				rc = SET_ERROR(ENOENT);
				goto done;
			}

			zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
			ASSERT3P(head_zio, !=, NULL);
			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
			    priority == ZIO_PRIORITY_SYNC_READ) {
				/*
				 * This is a sync read that needs to wait for
				 * an in-flight async read. Request that the
				 * zio have its priority upgraded.
				 */
				zio_change_priority(head_zio, priority);
				DTRACE_PROBE1(arc__async__upgrade__sync,
				    arc_buf_hdr_t *, hdr);
				ARCSTAT_BUMP(arcstat_async_upgrade_sync);
			}

			DTRACE_PROBE1(arc__iohit, arc_buf_hdr_t *, hdr);
			arc_access(hdr, *arc_flags, B_FALSE);

			/*
			 * If there are multiple threads reading the same block
			 * and that block is not yet in the ARC, then only one
			 * thread will do the physical I/O and all other
			 * threads will wait until that I/O completes.
			 * Synchronous reads use the acb_wait_cv whereas nowait
			 * reads register a callback. Both are signalled/called
			 * in arc_read_done.
			 *
			 * Errors of the physical I/O may need to be propagated.
			 * Synchronous read errors are returned here from
			 * arc_read_done via acb_wait_error.  Nowait reads
			 * attach the acb_zio_dummy zio to pio and
			 * arc_read_done propagates the physical I/O's io_error
			 * to acb_zio_dummy, and thereby to pio.
			 */
			arc_callback_t *acb = NULL;
			if (done || pio || *arc_flags & ARC_FLAG_WAIT) {
				acb = kmem_zalloc(sizeof (arc_callback_t),
				    KM_SLEEP);
				acb->acb_done = done;
				acb->acb_private = private;
				acb->acb_compressed = compressed_read;
				acb->acb_encrypted = encrypted_read;
				acb->acb_noauth = noauth_read;
				acb->acb_nobuf = no_buf;
				if (*arc_flags & ARC_FLAG_WAIT) {
					acb->acb_wait = B_TRUE;
					mutex_init(&acb->acb_wait_lock, NULL,
					    MUTEX_DEFAULT, NULL);
					cv_init(&acb->acb_wait_cv, NULL,
					    CV_DEFAULT, NULL);
				}
				acb->acb_zb = *zb;
				if (pio != NULL) {
					acb->acb_zio_dummy = zio_null(pio,
					    spa, NULL, NULL, NULL, zio_flags);
				}
				acb->acb_zio_head = head_zio;
				acb->acb_next = hdr->b_l1hdr.b_acb;
				hdr->b_l1hdr.b_acb->acb_prev = acb;
				hdr->b_l1hdr.b_acb = acb;
			}
			mutex_exit(hash_lock);

			ARCSTAT_BUMP(arcstat_iohits);
			ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
			    demand, prefetch, is_data, data, metadata, iohits);

			if (*arc_flags & ARC_FLAG_WAIT) {
				mutex_enter(&acb->acb_wait_lock);
				while (acb->acb_wait) {
					cv_wait(&acb->acb_wait_cv,
					    &acb->acb_wait_lock);
				}
				rc = acb->acb_wait_error;
				mutex_exit(&acb->acb_wait_lock);
				mutex_destroy(&acb->acb_wait_lock);
				cv_destroy(&acb->acb_wait_cv);
				kmem_free(acb, sizeof (arc_callback_t));
			}
			goto out;
		}

		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
		    hdr->b_l1hdr.b_state == arc_mfu ||
		    hdr->b_l1hdr.b_state == arc_uncached);

		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
		arc_access(hdr, *arc_flags, B_TRUE);

		if (done && !no_buf) {
			ASSERT(!embedded_bp || !BP_IS_HOLE(bp));

			/* Get a buf with the desired data in it. */
			rc = arc_buf_alloc_impl(hdr, spa, zb, private,
			    encrypted_read, compressed_read, noauth_read,
			    B_TRUE, &buf);
			if (rc == ECKSUM) {
				/*
				 * Convert authentication and decryption errors
				 * to EIO (and generate an ereport if needed)
				 * before leaving the ARC.
				 */
				rc = SET_ERROR(EIO);
				if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
					spa_log_error(spa, zb, hdr->b_birth);
					(void) zfs_ereport_post(
					    FM_EREPORT_ZFS_AUTHENTICATION,
					    spa, NULL, zb, NULL, 0);
				}
			}
			if (rc != 0) {
				arc_buf_destroy_impl(buf);
				buf = NULL;
				(void) remove_reference(hdr, private);
			}

			/* assert any errors weren't due to unloaded keys */
			ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
			    rc != EACCES);
		}
		mutex_exit(hash_lock);
		ARCSTAT_BUMP(arcstat_hits);
		ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
		    demand, prefetch, is_data, data, metadata, hits);
		*arc_flags |= ARC_FLAG_CACHED;
		goto done;
	} else {
		uint64_t lsize = BP_GET_LSIZE(bp);
		uint64_t psize = BP_GET_PSIZE(bp);
		arc_callback_t *acb;
		vdev_t *vd = NULL;
		uint64_t addr = 0;
		boolean_t devw = B_FALSE;
		uint64_t size;
		abd_t *hdr_abd;
		int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0;
		arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);

		if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
			if (hash_lock != NULL)
				mutex_exit(hash_lock);
			rc = SET_ERROR(ENOENT);
			goto done;
		}

		/*
		 * Verify the block pointer contents are reasonable.  This
		 * should always be the case since the blkptr is protected by
		 * a checksum.
		 */
		if (!zfs_blkptr_verify(spa, bp,
		    (zio_flags & ZIO_FLAG_CONFIG_WRITER) ?
		    BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
			if (hash_lock != NULL)
				mutex_exit(hash_lock);
			rc = SET_ERROR(ECKSUM);
			goto done;
		}

		if (hdr == NULL) {
			/*
			 * This block is not in the cache or it has
			 * embedded data.
			 */
			arc_buf_hdr_t *exists = NULL;
			hdr = arc_hdr_alloc(guid, psize, lsize,
			    BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type);

			if (!embedded_bp) {
				hdr->b_dva = *BP_IDENTITY(bp);
				hdr->b_birth = BP_GET_BIRTH(bp);
				exists = buf_hash_insert(hdr, &hash_lock);
			}
			if (exists != NULL) {
				/* somebody beat us to the hash insert */
				mutex_exit(hash_lock);
				buf_discard_identity(hdr);
				arc_hdr_destroy(hdr);
				goto top; /* restart the IO request */
			}
		} else {
			/*
			 * This block is in the ghost cache or encrypted data
			 * was requested and we didn't have it. If it was
			 * L2-only (and thus didn't have an L1 hdr),
			 * we realloc the header to add an L1 hdr.
			 */
			if (!HDR_HAS_L1HDR(hdr)) {
				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
				    hdr_full_cache);
			}

			if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
				ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
				ASSERT(!HDR_HAS_RABD(hdr));
				ASSERT(!HDR_IO_IN_PROGRESS(hdr));
				ASSERT0(zfs_refcount_count(
				    &hdr->b_l1hdr.b_refcnt));
				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
#ifdef ZFS_DEBUG
				ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
#endif
			} else if (HDR_IO_IN_PROGRESS(hdr)) {
				/*
				 * If this header already had an IO in progress
				 * and we are performing another IO to fetch
				 * encrypted data we must wait until the first
				 * IO completes so as not to confuse
				 * arc_read_done(). This should be very rare
				 * and so the performance impact shouldn't
				 * matter.
				 */
				arc_callback_t *acb = kmem_zalloc(
				    sizeof (arc_callback_t), KM_SLEEP);
				acb->acb_wait = B_TRUE;
				mutex_init(&acb->acb_wait_lock, NULL,
				    MUTEX_DEFAULT, NULL);
				cv_init(&acb->acb_wait_cv, NULL, CV_DEFAULT,
				    NULL);
				acb->acb_zio_head =
				    hdr->b_l1hdr.b_acb->acb_zio_head;
				acb->acb_next = hdr->b_l1hdr.b_acb;
				hdr->b_l1hdr.b_acb->acb_prev = acb;
				hdr->b_l1hdr.b_acb = acb;
				mutex_exit(hash_lock);
				mutex_enter(&acb->acb_wait_lock);
				while (acb->acb_wait) {
					cv_wait(&acb->acb_wait_cv,
					    &acb->acb_wait_lock);
				}
				mutex_exit(&acb->acb_wait_lock);
				mutex_destroy(&acb->acb_wait_lock);
				cv_destroy(&acb->acb_wait_cv);
				kmem_free(acb, sizeof (arc_callback_t));
				goto top;
			}
		}
		if (*arc_flags & ARC_FLAG_UNCACHED) {
			arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
			if (!encrypted_read)
				alloc_flags |= ARC_HDR_ALLOC_LINEAR;
		}

		/*
		 * Take additional reference for IO_IN_PROGRESS.  It stops
		 * arc_access() from putting this header without any buffers
		 * and so other references but obviously nonevictable onto
		 * the evictable list of MRU or MFU state.
		 */
		add_reference(hdr, hdr);
		if (!embedded_bp)
			arc_access(hdr, *arc_flags, B_FALSE);
		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
		arc_hdr_alloc_abd(hdr, alloc_flags);
		if (encrypted_read) {
			ASSERT(HDR_HAS_RABD(hdr));
			size = HDR_GET_PSIZE(hdr);
			hdr_abd = hdr->b_crypt_hdr.b_rabd;
			zio_flags |= ZIO_FLAG_RAW;
		} else {
			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
			size = arc_hdr_size(hdr);
			hdr_abd = hdr->b_l1hdr.b_pabd;

			if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
				zio_flags |= ZIO_FLAG_RAW_COMPRESS;
			}

			/*
			 * For authenticated bp's, we do not ask the ZIO layer
			 * to authenticate them since this will cause the entire
			 * IO to fail if the key isn't loaded. Instead, we
			 * defer authentication until arc_buf_fill(), which will
			 * verify the data when the key is available.
			 */
			if (BP_IS_AUTHENTICATED(bp))
				zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
		}

		if (BP_IS_AUTHENTICATED(bp))
			arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
		if (BP_GET_LEVEL(bp) > 0)
			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));

		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
		acb->acb_done = done;
		acb->acb_private = private;
		acb->acb_compressed = compressed_read;
		acb->acb_encrypted = encrypted_read;
		acb->acb_noauth = noauth_read;
		acb->acb_zb = *zb;

		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
		hdr->b_l1hdr.b_acb = acb;

		if (HDR_HAS_L2HDR(hdr) &&
		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
			addr = hdr->b_l2hdr.b_daddr;
			/*
			 * Lock out L2ARC device removal.
			 */
			if (vdev_is_dead(vd) ||
			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
				vd = NULL;
		}

		/*
		 * We count both async reads and scrub IOs as asynchronous so
		 * that both can be upgraded in the event of a cache hit while
		 * the read IO is still in-flight.
		 */
		if (priority == ZIO_PRIORITY_ASYNC_READ ||
		    priority == ZIO_PRIORITY_SCRUB)
			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
		else
			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);

		/*
		 * At this point, we have a level 1 cache miss or a blkptr
		 * with embedded data.  Try again in L2ARC if possible.
		 */
		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);

		/*
		 * Skip ARC stat bump for block pointers with embedded
		 * data. The data are read from the blkptr itself via
		 * decode_embedded_bp_compressed().
		 */
		if (!embedded_bp) {
			DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr,
			    blkptr_t *, bp, uint64_t, lsize,
			    zbookmark_phys_t *, zb);
			ARCSTAT_BUMP(arcstat_misses);
			ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
			    demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data,
			    metadata, misses);
			zfs_racct_read(spa, size, 1, 0);
		}

		/* Check if the spa even has l2 configured */
		const boolean_t spa_has_l2 = l2arc_ndev != 0 &&
		    spa->spa_l2cache.sav_count > 0;

		if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) {
			/*
			 * Read from the L2ARC if the following are true:
			 * 1. The L2ARC vdev was previously cached.
			 * 2. This buffer still has L2ARC metadata.
			 * 3. This buffer isn't currently writing to the L2ARC.
			 * 4. The L2ARC entry wasn't evicted, which may
			 *    also have invalidated the vdev.
			 */
			if (HDR_HAS_L2HDR(hdr) &&
			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) {
				l2arc_read_callback_t *cb;
				abd_t *abd;
				uint64_t asize;

				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
				ARCSTAT_BUMP(arcstat_l2_hits);
				hdr->b_l2hdr.b_hits++;

				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
				    KM_SLEEP);
				cb->l2rcb_hdr = hdr;
				cb->l2rcb_bp = *bp;
				cb->l2rcb_zb = *zb;
				cb->l2rcb_flags = zio_flags;

				/*
				 * When Compressed ARC is disabled, but the
				 * L2ARC block is compressed, arc_hdr_size()
				 * will have returned LSIZE rather than PSIZE.
				 */
				if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
				    !HDR_COMPRESSION_ENABLED(hdr) &&
				    HDR_GET_PSIZE(hdr) != 0) {
					size = HDR_GET_PSIZE(hdr);
				}

				asize = vdev_psize_to_asize(vd, size);
				if (asize != size) {
					abd = abd_alloc_for_io(asize,
					    HDR_ISTYPE_METADATA(hdr));
					cb->l2rcb_abd = abd;
				} else {
					abd = hdr_abd;
				}

				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
				    addr + asize <= vd->vdev_psize -
				    VDEV_LABEL_END_SIZE);

				/*
				 * l2arc read.  The SCL_L2ARC lock will be
				 * released by l2arc_read_done().
				 * Issue a null zio if the underlying buffer
				 * was squashed to zero size by compression.
				 */
				ASSERT3U(arc_hdr_get_compress(hdr), !=,
				    ZIO_COMPRESS_EMPTY);
				rzio = zio_read_phys(pio, vd, addr,
				    asize, abd,
				    ZIO_CHECKSUM_OFF,
				    l2arc_read_done, cb, priority,
				    zio_flags | ZIO_FLAG_CANFAIL |
				    ZIO_FLAG_DONT_PROPAGATE |
				    ZIO_FLAG_DONT_RETRY, B_FALSE);
				acb->acb_zio_head = rzio;

				if (hash_lock != NULL)
					mutex_exit(hash_lock);

				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
				    zio_t *, rzio);
				ARCSTAT_INCR(arcstat_l2_read_bytes,
				    HDR_GET_PSIZE(hdr));

				if (*arc_flags & ARC_FLAG_NOWAIT) {
					zio_nowait(rzio);
					goto out;
				}

				ASSERT(*arc_flags & ARC_FLAG_WAIT);
				if (zio_wait(rzio) == 0)
					goto out;

				/* l2arc read error; goto zio_read() */
				if (hash_lock != NULL)
					mutex_enter(hash_lock);
			} else {
				DTRACE_PROBE1(l2arc__miss,
				    arc_buf_hdr_t *, hdr);
				ARCSTAT_BUMP(arcstat_l2_misses);
				if (HDR_L2_WRITING(hdr))
					ARCSTAT_BUMP(arcstat_l2_rw_clash);
				spa_config_exit(spa, SCL_L2ARC, vd);
			}
		} else {
			if (vd != NULL)
				spa_config_exit(spa, SCL_L2ARC, vd);

			/*
			 * Only a spa with l2 should contribute to l2
			 * miss stats.  (Including the case of having a
			 * faulted cache device - that's also a miss.)
			 */
			if (spa_has_l2) {
				/*
				 * Skip ARC stat bump for block pointers with
				 * embedded data. The data are read from the
				 * blkptr itself via
				 * decode_embedded_bp_compressed().
				 */
				if (!embedded_bp) {
					DTRACE_PROBE1(l2arc__miss,
					    arc_buf_hdr_t *, hdr);
					ARCSTAT_BUMP(arcstat_l2_misses);
				}
			}
		}

		rzio = zio_read(pio, spa, bp, hdr_abd, size,
		    arc_read_done, hdr, priority, zio_flags, zb);
		acb->acb_zio_head = rzio;

		if (hash_lock != NULL)
			mutex_exit(hash_lock);

		if (*arc_flags & ARC_FLAG_WAIT) {
			rc = zio_wait(rzio);
			goto out;
		}

		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
		zio_nowait(rzio);
	}

out:
	/* embedded bps don't actually go to disk */
	if (!embedded_bp)
		spa_read_history_add(spa, zb, *arc_flags);
	spl_fstrans_unmark(cookie);
	return (rc);

done:
	if (done)
		done(NULL, zb, bp, buf, private);
	if (pio && rc != 0) {
		zio_t *zio = zio_null(pio, spa, NULL, NULL, NULL, zio_flags);
		zio->io_error = rc;
		zio_nowait(zio);
	}
	goto out;
}

arc_prune_t *
arc_add_prune_callback(arc_prune_func_t *func, void *private)
{
	arc_prune_t *p;

	p = kmem_alloc(sizeof (*p), KM_SLEEP);
	p->p_pfunc = func;
	p->p_private = private;
	list_link_init(&p->p_node);
	zfs_refcount_create(&p->p_refcnt);

	mutex_enter(&arc_prune_mtx);
	zfs_refcount_add(&p->p_refcnt, &arc_prune_list);
	list_insert_head(&arc_prune_list, p);
	mutex_exit(&arc_prune_mtx);

	return (p);
}

void
arc_remove_prune_callback(arc_prune_t *p)
{
	boolean_t wait = B_FALSE;
	mutex_enter(&arc_prune_mtx);
	list_remove(&arc_prune_list, p);
	if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
		wait = B_TRUE;
	mutex_exit(&arc_prune_mtx);

	/* wait for arc_prune_task to finish */
	if (wait)
		taskq_wait_outstanding(arc_prune_taskq, 0);
	ASSERT0(zfs_refcount_count(&p->p_refcnt));
	zfs_refcount_destroy(&p->p_refcnt);
	kmem_free(p, sizeof (*p));
}

/*
 * Helper function for arc_prune_async() it is responsible for safely
 * handling the execution of a registered arc_prune_func_t.
 */
static void
arc_prune_task(void *ptr)
{
	arc_prune_t *ap = (arc_prune_t *)ptr;
	arc_prune_func_t *func = ap->p_pfunc;

	if (func != NULL)
		func(ap->p_adjust, ap->p_private);

	(void) zfs_refcount_remove(&ap->p_refcnt, func);
}

/*
 * Notify registered consumers they must drop holds on a portion of the ARC
 * buffers they reference.  This provides a mechanism to ensure the ARC can
 * honor the metadata limit and reclaim otherwise pinned ARC buffers.
 *
 * This operation is performed asynchronously so it may be safely called
 * in the context of the arc_reclaim_thread().  A reference is taken here
 * for each registered arc_prune_t and the arc_prune_task() is responsible
 * for releasing it once the registered arc_prune_func_t has completed.
 */
static void
arc_prune_async(uint64_t adjust)
{
	arc_prune_t *ap;

	mutex_enter(&arc_prune_mtx);
	for (ap = list_head(&arc_prune_list); ap != NULL;
	    ap = list_next(&arc_prune_list, ap)) {

		if (zfs_refcount_count(&ap->p_refcnt) >= 2)
			continue;

		zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc);
		ap->p_adjust = adjust;
		if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
		    ap, TQ_SLEEP) == TASKQID_INVALID) {
			(void) zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc);
			continue;
		}
		ARCSTAT_BUMP(arcstat_prune);
	}
	mutex_exit(&arc_prune_mtx);
}

/*
 * Notify the arc that a block was freed, and thus will never be used again.
 */
void
arc_freed(spa_t *spa, const blkptr_t *bp)
{
	arc_buf_hdr_t *hdr;
	kmutex_t *hash_lock;
	uint64_t guid = spa_load_guid(spa);

	ASSERT(!BP_IS_EMBEDDED(bp));

	hdr = buf_hash_find(guid, bp, &hash_lock);
	if (hdr == NULL)
		return;

	/*
	 * We might be trying to free a block that is still doing I/O
	 * (i.e. prefetch) or has some other reference (i.e. a dedup-ed,
	 * dmu_sync-ed block). A block may also have a reference if it is
	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
	 * have written the new block to its final resting place on disk but
	 * without the dedup flag set. This would have left the hdr in the MRU
	 * state and discoverable. When the txg finally syncs it detects that
	 * the block was overridden in open context and issues an override I/O.
	 * Since this is a dedup block, the override I/O will determine if the
	 * block is already in the DDT. If so, then it will replace the io_bp
	 * with the bp from the DDT and allow the I/O to finish. When the I/O
	 * reaches the done callback, dbuf_write_override_done, it will
	 * check to see if the io_bp and io_bp_override are identical.
	 * If they are not, then it indicates that the bp was replaced with
	 * the bp in the DDT and the override bp is freed. This allows
	 * us to arrive here with a reference on a block that is being
	 * freed. So if we have an I/O in progress, or a reference to
	 * this hdr, then we don't destroy the hdr.
	 */
	if (!HDR_HAS_L1HDR(hdr) ||
	    zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
		arc_change_state(arc_anon, hdr);
		arc_hdr_destroy(hdr);
		mutex_exit(hash_lock);
	} else {
		mutex_exit(hash_lock);
	}

}

/*
 * Release this buffer from the cache, making it an anonymous buffer.  This
 * must be done after a read and prior to modifying the buffer contents.
 * If the buffer has more than one reference, we must make
 * a new hdr for the buffer.
 */
void
arc_release(arc_buf_t *buf, const void *tag)
{
	arc_buf_hdr_t *hdr = buf->b_hdr;

	/*
	 * It would be nice to assert that if its DMU metadata (level >
	 * 0 || it's the dnode file), then it must be syncing context.
	 * But we don't know that information at this level.
	 */

	ASSERT(HDR_HAS_L1HDR(hdr));

	/*
	 * We don't grab the hash lock prior to this check, because if
	 * the buffer's header is in the arc_anon state, it won't be
	 * linked into the hash table.
	 */
	if (hdr->b_l1hdr.b_state == arc_anon) {
		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
		ASSERT(!HDR_IN_HASH_TABLE(hdr));
		ASSERT(!HDR_HAS_L2HDR(hdr));

		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
		ASSERT(ARC_BUF_LAST(buf));
		ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));

		hdr->b_l1hdr.b_arc_access = 0;

		/*
		 * If the buf is being overridden then it may already
		 * have a hdr that is not empty.
		 */
		buf_discard_identity(hdr);
		arc_buf_thaw(buf);

		return;
	}

	kmutex_t *hash_lock = HDR_LOCK(hdr);
	mutex_enter(hash_lock);

	/*
	 * This assignment is only valid as long as the hash_lock is
	 * held, we must be careful not to reference state or the
	 * b_state field after dropping the lock.
	 */
	arc_state_t *state = hdr->b_l1hdr.b_state;
	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
	ASSERT3P(state, !=, arc_anon);

	/* this buffer is not on any list */
	ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);

	if (HDR_HAS_L2HDR(hdr)) {
		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);

		/*
		 * We have to recheck this conditional again now that
		 * we're holding the l2ad_mtx to prevent a race with
		 * another thread which might be concurrently calling
		 * l2arc_evict(). In that case, l2arc_evict() might have
		 * destroyed the header's L2 portion as we were waiting
		 * to acquire the l2ad_mtx.
		 */
		if (HDR_HAS_L2HDR(hdr))
			arc_hdr_l2hdr_destroy(hdr);

		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
	}

	/*
	 * Do we have more than one buf?
	 */
	if (hdr->b_l1hdr.b_buf != buf || !ARC_BUF_LAST(buf)) {
		arc_buf_hdr_t *nhdr;
		uint64_t spa = hdr->b_spa;
		uint64_t psize = HDR_GET_PSIZE(hdr);
		uint64_t lsize = HDR_GET_LSIZE(hdr);
		boolean_t protected = HDR_PROTECTED(hdr);
		enum zio_compress compress = arc_hdr_get_compress(hdr);
		arc_buf_contents_t type = arc_buf_type(hdr);
		VERIFY3U(hdr->b_type, ==, type);

		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
		VERIFY3S(remove_reference(hdr, tag), >, 0);

		if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
			ASSERT(ARC_BUF_LAST(buf));
		}

		/*
		 * Pull the data off of this hdr and attach it to
		 * a new anonymous hdr. Also find the last buffer
		 * in the hdr's buffer list.
		 */
		arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
		ASSERT3P(lastbuf, !=, NULL);

		/*
		 * If the current arc_buf_t and the hdr are sharing their data
		 * buffer, then we must stop sharing that block.
		 */
		if (ARC_BUF_SHARED(buf)) {
			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
			ASSERT(!arc_buf_is_shared(lastbuf));

			/*
			 * First, sever the block sharing relationship between
			 * buf and the arc_buf_hdr_t.
			 */
			arc_unshare_buf(hdr, buf);

			/*
			 * Now we need to recreate the hdr's b_pabd. Since we
			 * have lastbuf handy, we try to share with it, but if
			 * we can't then we allocate a new b_pabd and copy the
			 * data from buf into it.
			 */
			if (arc_can_share(hdr, lastbuf)) {
				arc_share_buf(hdr, lastbuf);
			} else {
				arc_hdr_alloc_abd(hdr, 0);
				abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
				    buf->b_data, psize);
			}
			VERIFY3P(lastbuf->b_data, !=, NULL);
		} else if (HDR_SHARED_DATA(hdr)) {
			/*
			 * Uncompressed shared buffers are always at the end
			 * of the list. Compressed buffers don't have the
			 * same requirements. This makes it hard to
			 * simply assert that the lastbuf is shared so
			 * we rely on the hdr's compression flags to determine
			 * if we have a compressed, shared buffer.
			 */
			ASSERT(arc_buf_is_shared(lastbuf) ||
			    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
			ASSERT(!arc_buf_is_shared(buf));
		}

		ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
		ASSERT3P(state, !=, arc_l2c_only);

		(void) zfs_refcount_remove_many(&state->arcs_size[type],
		    arc_buf_size(buf), buf);

		if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
			ASSERT3P(state, !=, arc_l2c_only);
			(void) zfs_refcount_remove_many(
			    &state->arcs_esize[type],
			    arc_buf_size(buf), buf);
		}

		arc_cksum_verify(buf);
		arc_buf_unwatch(buf);

		/* if this is the last uncompressed buf free the checksum */
		if (!arc_hdr_has_uncompressed_buf(hdr))
			arc_cksum_free(hdr);

		mutex_exit(hash_lock);

		nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
		    compress, hdr->b_complevel, type);
		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
		ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
		VERIFY3U(nhdr->b_type, ==, type);
		ASSERT(!HDR_SHARED_DATA(nhdr));

		nhdr->b_l1hdr.b_buf = buf;
		(void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
		buf->b_hdr = nhdr;

		(void) zfs_refcount_add_many(&arc_anon->arcs_size[type],
		    arc_buf_size(buf), buf);
	} else {
		ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
		/* protected by hash lock, or hdr is on arc_anon */
		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
		hdr->b_l1hdr.b_mru_hits = 0;
		hdr->b_l1hdr.b_mru_ghost_hits = 0;
		hdr->b_l1hdr.b_mfu_hits = 0;
		hdr->b_l1hdr.b_mfu_ghost_hits = 0;
		arc_change_state(arc_anon, hdr);
		hdr->b_l1hdr.b_arc_access = 0;

		mutex_exit(hash_lock);
		buf_discard_identity(hdr);
		arc_buf_thaw(buf);
	}
}

int
arc_released(arc_buf_t *buf)
{
	return (buf->b_data != NULL &&
	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
}

#ifdef ZFS_DEBUG
int
arc_referenced(arc_buf_t *buf)
{
	return (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
}
#endif

static void
arc_write_ready(zio_t *zio)
{
	arc_write_callback_t *callback = zio->io_private;
	arc_buf_t *buf = callback->awcb_buf;
	arc_buf_hdr_t *hdr = buf->b_hdr;
	blkptr_t *bp = zio->io_bp;
	uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
	fstrans_cookie_t cookie = spl_fstrans_mark();

	ASSERT(HDR_HAS_L1HDR(hdr));
	ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);

	/*
	 * If we're reexecuting this zio because the pool suspended, then
	 * cleanup any state that was previously set the first time the
	 * callback was invoked.
	 */
	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
		arc_cksum_free(hdr);
		arc_buf_unwatch(buf);
		if (hdr->b_l1hdr.b_pabd != NULL) {
			if (ARC_BUF_SHARED(buf)) {
				arc_unshare_buf(hdr, buf);
			} else {
				ASSERT(!arc_buf_is_shared(buf));
				arc_hdr_free_abd(hdr, B_FALSE);
			}
		}

		if (HDR_HAS_RABD(hdr))
			arc_hdr_free_abd(hdr, B_TRUE);
	}
	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
	ASSERT(!HDR_HAS_RABD(hdr));
	ASSERT(!HDR_SHARED_DATA(hdr));
	ASSERT(!arc_buf_is_shared(buf));

	callback->awcb_ready(zio, buf, callback->awcb_private);

	if (HDR_IO_IN_PROGRESS(hdr)) {
		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
	} else {
		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
		add_reference(hdr, hdr); /* For IO_IN_PROGRESS. */
	}

	if (BP_IS_PROTECTED(bp)) {
		/* ZIL blocks are written through zio_rewrite */
		ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);

		if (BP_SHOULD_BYTESWAP(bp)) {
			if (BP_GET_LEVEL(bp) > 0) {
				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
			} else {
				hdr->b_l1hdr.b_byteswap =
				    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
			}
		} else {
			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
		}

		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
		hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
		hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
		zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
		    hdr->b_crypt_hdr.b_iv);
		zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
	} else {
		arc_hdr_clear_flags(hdr, ARC_FLAG_PROTECTED);
	}

	/*
	 * If this block was written for raw encryption but the zio layer
	 * ended up only authenticating it, adjust the buffer flags now.
	 */
	if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
		arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
		buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
		if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
			buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
	} else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
		buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
	}

	/* this must be done after the buffer flags are adjusted */
	arc_cksum_compute(buf);

	enum zio_compress compress;
	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
		compress = ZIO_COMPRESS_OFF;
	} else {
		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
		compress = BP_GET_COMPRESS(bp);
	}
	HDR_SET_PSIZE(hdr, psize);
	arc_hdr_set_compress(hdr, compress);
	hdr->b_complevel = zio->io_prop.zp_complevel;

	if (zio->io_error != 0 || psize == 0)
		goto out;

	/*
	 * Fill the hdr with data. If the buffer is encrypted we have no choice
	 * but to copy the data into b_radb. If the hdr is compressed, the data
	 * we want is available from the zio, otherwise we can take it from
	 * the buf.
	 *
	 * We might be able to share the buf's data with the hdr here. However,
	 * doing so would cause the ARC to be full of linear ABDs if we write a
	 * lot of shareable data. As a compromise, we check whether scattered
	 * ABDs are allowed, and assume that if they are then the user wants
	 * the ARC to be primarily filled with them regardless of the data being
	 * written. Therefore, if they're allowed then we allocate one and copy
	 * the data into it; otherwise, we share the data directly if we can.
	 */
	if (ARC_BUF_ENCRYPTED(buf)) {
		ASSERT3U(psize, >, 0);
		ASSERT(ARC_BUF_COMPRESSED(buf));
		arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
		    ARC_HDR_USE_RESERVE);
		abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
	} else if (!(HDR_UNCACHED(hdr) ||
	    abd_size_alloc_linear(arc_buf_size(buf))) ||
	    !arc_can_share(hdr, buf)) {
		/*
		 * Ideally, we would always copy the io_abd into b_pabd, but the
		 * user may have disabled compressed ARC, thus we must check the
		 * hdr's compression setting rather than the io_bp's.
		 */
		if (BP_IS_ENCRYPTED(bp)) {
			ASSERT3U(psize, >, 0);
			arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
			    ARC_HDR_USE_RESERVE);
			abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
		} else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
		    !ARC_BUF_COMPRESSED(buf)) {
			ASSERT3U(psize, >, 0);
			arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
			abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
		} else {
			ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
			arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
			abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
			    arc_buf_size(buf));
		}
	} else {
		ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
		ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
		ASSERT(ARC_BUF_LAST(buf));

		arc_share_buf(hdr, buf);
	}

out:
	arc_hdr_verify(hdr, bp);
	spl_fstrans_unmark(cookie);
}

static void
arc_write_children_ready(zio_t *zio)
{
	arc_write_callback_t *callback = zio->io_private;
	arc_buf_t *buf = callback->awcb_buf;

	callback->awcb_children_ready(zio, buf, callback->awcb_private);
}

static void
arc_write_done(zio_t *zio)
{
	arc_write_callback_t *callback = zio->io_private;
	arc_buf_t *buf = callback->awcb_buf;
	arc_buf_hdr_t *hdr = buf->b_hdr;

	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);

	if (zio->io_error == 0) {
		arc_hdr_verify(hdr, zio->io_bp);

		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
			buf_discard_identity(hdr);
		} else {
			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
			hdr->b_birth = BP_GET_BIRTH(zio->io_bp);
		}
	} else {
		ASSERT(HDR_EMPTY(hdr));
	}

	/*
	 * If the block to be written was all-zero or compressed enough to be
	 * embedded in the BP, no write was performed so there will be no
	 * dva/birth/checksum.  The buffer must therefore remain anonymous
	 * (and uncached).
	 */
	if (!HDR_EMPTY(hdr)) {
		arc_buf_hdr_t *exists;
		kmutex_t *hash_lock;

		ASSERT3U(zio->io_error, ==, 0);

		arc_cksum_verify(buf);

		exists = buf_hash_insert(hdr, &hash_lock);
		if (exists != NULL) {
			/*
			 * This can only happen if we overwrite for
			 * sync-to-convergence, because we remove
			 * buffers from the hash table when we arc_free().
			 */
			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
					panic("bad overwrite, hdr=%p exists=%p",
					    (void *)hdr, (void *)exists);
				ASSERT(zfs_refcount_is_zero(
				    &exists->b_l1hdr.b_refcnt));
				arc_change_state(arc_anon, exists);
				arc_hdr_destroy(exists);
				mutex_exit(hash_lock);
				exists = buf_hash_insert(hdr, &hash_lock);
				ASSERT3P(exists, ==, NULL);
			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
				/* nopwrite */
				ASSERT(zio->io_prop.zp_nopwrite);
				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
					panic("bad nopwrite, hdr=%p exists=%p",
					    (void *)hdr, (void *)exists);
			} else {
				/* Dedup */
				ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
				ASSERT(ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
				ASSERT(BP_GET_DEDUP(zio->io_bp));
				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
			}
		}
		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
		VERIFY3S(remove_reference(hdr, hdr), >, 0);
		/* if it's not anon, we are doing a scrub */
		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
			arc_access(hdr, 0, B_FALSE);
		mutex_exit(hash_lock);
	} else {
		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
		VERIFY3S(remove_reference(hdr, hdr), >, 0);
	}

	callback->awcb_done(zio, buf, callback->awcb_private);

	abd_free(zio->io_abd);
	kmem_free(callback, sizeof (arc_write_callback_t));
}

zio_t *
arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
    blkptr_t *bp, arc_buf_t *buf, boolean_t uncached, boolean_t l2arc,
    const zio_prop_t *zp, arc_write_done_func_t *ready,
    arc_write_done_func_t *children_ready, arc_write_done_func_t *done,
    void *private, zio_priority_t priority, int zio_flags,
    const zbookmark_phys_t *zb)
{
	arc_buf_hdr_t *hdr = buf->b_hdr;
	arc_write_callback_t *callback;
	zio_t *zio;
	zio_prop_t localprop = *zp;

	ASSERT3P(ready, !=, NULL);
	ASSERT3P(done, !=, NULL);
	ASSERT(!HDR_IO_ERROR(hdr));
	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
	if (uncached)
		arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
	else if (l2arc)
		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);

	if (ARC_BUF_ENCRYPTED(buf)) {
		ASSERT(ARC_BUF_COMPRESSED(buf));
		localprop.zp_encrypt = B_TRUE;
		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
		localprop.zp_complevel = hdr->b_complevel;
		localprop.zp_byteorder =
		    (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
		    ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
		memcpy(localprop.zp_salt, hdr->b_crypt_hdr.b_salt,
		    ZIO_DATA_SALT_LEN);
		memcpy(localprop.zp_iv, hdr->b_crypt_hdr.b_iv,
		    ZIO_DATA_IV_LEN);
		memcpy(localprop.zp_mac, hdr->b_crypt_hdr.b_mac,
		    ZIO_DATA_MAC_LEN);
		if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
			localprop.zp_nopwrite = B_FALSE;
			localprop.zp_copies =
			    MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
		}
		zio_flags |= ZIO_FLAG_RAW;
	} else if (ARC_BUF_COMPRESSED(buf)) {
		ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
		localprop.zp_complevel = hdr->b_complevel;
		zio_flags |= ZIO_FLAG_RAW_COMPRESS;
	}
	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
	callback->awcb_ready = ready;
	callback->awcb_children_ready = children_ready;
	callback->awcb_done = done;
	callback->awcb_private = private;
	callback->awcb_buf = buf;

	/*
	 * The hdr's b_pabd is now stale, free it now. A new data block
	 * will be allocated when the zio pipeline calls arc_write_ready().
	 */
	if (hdr->b_l1hdr.b_pabd != NULL) {
		/*
		 * If the buf is currently sharing the data block with
		 * the hdr then we need to break that relationship here.
		 * The hdr will remain with a NULL data pointer and the
		 * buf will take sole ownership of the block.
		 */
		if (ARC_BUF_SHARED(buf)) {
			arc_unshare_buf(hdr, buf);
		} else {
			ASSERT(!arc_buf_is_shared(buf));
			arc_hdr_free_abd(hdr, B_FALSE);
		}
		VERIFY3P(buf->b_data, !=, NULL);
	}

	if (HDR_HAS_RABD(hdr))
		arc_hdr_free_abd(hdr, B_TRUE);

	if (!(zio_flags & ZIO_FLAG_RAW))
		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);

	ASSERT(!arc_buf_is_shared(buf));
	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);

	zio = zio_write(pio, spa, txg, bp,
	    abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
	    HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
	    (children_ready != NULL) ? arc_write_children_ready : NULL,
	    arc_write_done, callback, priority, zio_flags, zb);

	return (zio);
}

void
arc_tempreserve_clear(uint64_t reserve)
{
	atomic_add_64(&arc_tempreserve, -reserve);
	ASSERT((int64_t)arc_tempreserve >= 0);
}

int
arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
{
	int error;
	uint64_t anon_size;

	if (!arc_no_grow &&
	    reserve > arc_c/4 &&
	    reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
		arc_c = MIN(arc_c_max, reserve * 4);

	/*
	 * Throttle when the calculated memory footprint for the TXG
	 * exceeds the target ARC size.
	 */
	if (reserve > arc_c) {
		DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
		return (SET_ERROR(ERESTART));
	}

	/*
	 * Don't count loaned bufs as in flight dirty data to prevent long
	 * network delays from blocking transactions that are ready to be
	 * assigned to a txg.
	 */

	/* assert that it has not wrapped around */
	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);

	anon_size = MAX((int64_t)
	    (zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]) +
	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]) -
	    arc_loaned_bytes), 0);

	/*
	 * Writes will, almost always, require additional memory allocations
	 * in order to compress/encrypt/etc the data.  We therefore need to
	 * make sure that there is sufficient available memory for this.
	 */
	error = arc_memory_throttle(spa, reserve, txg);
	if (error != 0)
		return (error);

	/*
	 * Throttle writes when the amount of dirty data in the cache
	 * gets too large.  We try to keep the cache less than half full
	 * of dirty blocks so that our sync times don't grow too large.
	 *
	 * In the case of one pool being built on another pool, we want
	 * to make sure we don't end up throttling the lower (backing)
	 * pool when the upper pool is the majority contributor to dirty
	 * data. To insure we make forward progress during throttling, we
	 * also check the current pool's net dirty data and only throttle
	 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
	 * data in the cache.
	 *
	 * Note: if two requests come in concurrently, we might let them
	 * both succeed, when one of them should fail.  Not a huge deal.
	 */
	uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
	uint64_t spa_dirty_anon = spa_dirty_data(spa);
	uint64_t rarc_c = arc_warm ? arc_c : arc_c_max;
	if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 &&
	    anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 &&
	    spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
#ifdef ZFS_DEBUG
		uint64_t meta_esize = zfs_refcount_count(
		    &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
		uint64_t data_esize =
		    zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
		    "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
		    (u_longlong_t)arc_tempreserve >> 10,
		    (u_longlong_t)meta_esize >> 10,
		    (u_longlong_t)data_esize >> 10,
		    (u_longlong_t)reserve >> 10,
		    (u_longlong_t)rarc_c >> 10);
#endif
		DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
		return (SET_ERROR(ERESTART));
	}
	atomic_add_64(&arc_tempreserve, reserve);
	return (0);
}

static void
arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
    kstat_named_t *data, kstat_named_t *metadata,
    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
{
	data->value.ui64 =
	    zfs_refcount_count(&state->arcs_size[ARC_BUFC_DATA]);
	metadata->value.ui64 =
	    zfs_refcount_count(&state->arcs_size[ARC_BUFC_METADATA]);
	size->value.ui64 = data->value.ui64 + metadata->value.ui64;
	evict_data->value.ui64 =
	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
	evict_metadata->value.ui64 =
	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
}

static int
arc_kstat_update(kstat_t *ksp, int rw)
{
	arc_stats_t *as = ksp->ks_data;

	if (rw == KSTAT_WRITE)
		return (SET_ERROR(EACCES));

	as->arcstat_hits.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_hits);
	as->arcstat_iohits.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_iohits);
	as->arcstat_misses.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_misses);
	as->arcstat_demand_data_hits.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_demand_data_hits);
	as->arcstat_demand_data_iohits.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_demand_data_iohits);
	as->arcstat_demand_data_misses.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_demand_data_misses);
	as->arcstat_demand_metadata_hits.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_demand_metadata_hits);
	as->arcstat_demand_metadata_iohits.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_demand_metadata_iohits);
	as->arcstat_demand_metadata_misses.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_demand_metadata_misses);
	as->arcstat_prefetch_data_hits.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_prefetch_data_hits);
	as->arcstat_prefetch_data_iohits.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_prefetch_data_iohits);
	as->arcstat_prefetch_data_misses.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_prefetch_data_misses);
	as->arcstat_prefetch_metadata_hits.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits);
	as->arcstat_prefetch_metadata_iohits.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_iohits);
	as->arcstat_prefetch_metadata_misses.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses);
	as->arcstat_mru_hits.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_mru_hits);
	as->arcstat_mru_ghost_hits.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_mru_ghost_hits);
	as->arcstat_mfu_hits.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_mfu_hits);
	as->arcstat_mfu_ghost_hits.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_mfu_ghost_hits);
	as->arcstat_uncached_hits.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_uncached_hits);
	as->arcstat_deleted.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_deleted);
	as->arcstat_mutex_miss.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_mutex_miss);
	as->arcstat_access_skip.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_access_skip);
	as->arcstat_evict_skip.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_evict_skip);
	as->arcstat_evict_not_enough.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_evict_not_enough);
	as->arcstat_evict_l2_cached.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_evict_l2_cached);
	as->arcstat_evict_l2_eligible.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible);
	as->arcstat_evict_l2_eligible_mfu.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu);
	as->arcstat_evict_l2_eligible_mru.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru);
	as->arcstat_evict_l2_ineligible.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_evict_l2_ineligible);
	as->arcstat_evict_l2_skip.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_evict_l2_skip);
	as->arcstat_hash_elements.value.ui64 =
	    as->arcstat_hash_elements_max.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_hash_elements);
	as->arcstat_hash_collisions.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_hash_collisions);
	as->arcstat_hash_chains.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_hash_chains);
	as->arcstat_size.value.ui64 =
	    aggsum_value(&arc_sums.arcstat_size);
	as->arcstat_compressed_size.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_compressed_size);
	as->arcstat_uncompressed_size.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_uncompressed_size);
	as->arcstat_overhead_size.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_overhead_size);
	as->arcstat_hdr_size.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_hdr_size);
	as->arcstat_data_size.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_data_size);
	as->arcstat_metadata_size.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_metadata_size);
	as->arcstat_dbuf_size.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_dbuf_size);
#if defined(COMPAT_FREEBSD11)
	as->arcstat_other_size.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_bonus_size) +
	    wmsum_value(&arc_sums.arcstat_dnode_size) +
	    wmsum_value(&arc_sums.arcstat_dbuf_size);
#endif

	arc_kstat_update_state(arc_anon,
	    &as->arcstat_anon_size,
	    &as->arcstat_anon_data,
	    &as->arcstat_anon_metadata,
	    &as->arcstat_anon_evictable_data,
	    &as->arcstat_anon_evictable_metadata);
	arc_kstat_update_state(arc_mru,
	    &as->arcstat_mru_size,
	    &as->arcstat_mru_data,
	    &as->arcstat_mru_metadata,
	    &as->arcstat_mru_evictable_data,
	    &as->arcstat_mru_evictable_metadata);
	arc_kstat_update_state(arc_mru_ghost,
	    &as->arcstat_mru_ghost_size,
	    &as->arcstat_mru_ghost_data,
	    &as->arcstat_mru_ghost_metadata,
	    &as->arcstat_mru_ghost_evictable_data,
	    &as->arcstat_mru_ghost_evictable_metadata);
	arc_kstat_update_state(arc_mfu,
	    &as->arcstat_mfu_size,
	    &as->arcstat_mfu_data,
	    &as->arcstat_mfu_metadata,
	    &as->arcstat_mfu_evictable_data,
	    &as->arcstat_mfu_evictable_metadata);
	arc_kstat_update_state(arc_mfu_ghost,
	    &as->arcstat_mfu_ghost_size,
	    &as->arcstat_mfu_ghost_data,
	    &as->arcstat_mfu_ghost_metadata,
	    &as->arcstat_mfu_ghost_evictable_data,
	    &as->arcstat_mfu_ghost_evictable_metadata);
	arc_kstat_update_state(arc_uncached,
	    &as->arcstat_uncached_size,
	    &as->arcstat_uncached_data,
	    &as->arcstat_uncached_metadata,
	    &as->arcstat_uncached_evictable_data,
	    &as->arcstat_uncached_evictable_metadata);

	as->arcstat_dnode_size.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_dnode_size);
	as->arcstat_bonus_size.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_bonus_size);
	as->arcstat_l2_hits.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_hits);
	as->arcstat_l2_misses.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_misses);
	as->arcstat_l2_prefetch_asize.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_prefetch_asize);
	as->arcstat_l2_mru_asize.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_mru_asize);
	as->arcstat_l2_mfu_asize.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_mfu_asize);
	as->arcstat_l2_bufc_data_asize.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize);
	as->arcstat_l2_bufc_metadata_asize.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize);
	as->arcstat_l2_feeds.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_feeds);
	as->arcstat_l2_rw_clash.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_rw_clash);
	as->arcstat_l2_read_bytes.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_read_bytes);
	as->arcstat_l2_write_bytes.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_write_bytes);
	as->arcstat_l2_writes_sent.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_writes_sent);
	as->arcstat_l2_writes_done.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_writes_done);
	as->arcstat_l2_writes_error.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_writes_error);
	as->arcstat_l2_writes_lock_retry.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry);
	as->arcstat_l2_evict_lock_retry.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry);
	as->arcstat_l2_evict_reading.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_evict_reading);
	as->arcstat_l2_evict_l1cached.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_evict_l1cached);
	as->arcstat_l2_free_on_write.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_free_on_write);
	as->arcstat_l2_abort_lowmem.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_abort_lowmem);
	as->arcstat_l2_cksum_bad.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_cksum_bad);
	as->arcstat_l2_io_error.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_io_error);
	as->arcstat_l2_lsize.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_lsize);
	as->arcstat_l2_psize.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_psize);
	as->arcstat_l2_hdr_size.value.ui64 =
	    aggsum_value(&arc_sums.arcstat_l2_hdr_size);
	as->arcstat_l2_log_blk_writes.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_log_blk_writes);
	as->arcstat_l2_log_blk_asize.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_log_blk_asize);
	as->arcstat_l2_log_blk_count.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_log_blk_count);
	as->arcstat_l2_rebuild_success.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_rebuild_success);
	as->arcstat_l2_rebuild_abort_unsupported.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
	as->arcstat_l2_rebuild_abort_io_errors.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
	as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
	as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
	as->arcstat_l2_rebuild_abort_lowmem.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
	as->arcstat_l2_rebuild_size.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_rebuild_size);
	as->arcstat_l2_rebuild_asize.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_rebuild_asize);
	as->arcstat_l2_rebuild_bufs.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs);
	as->arcstat_l2_rebuild_bufs_precached.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached);
	as->arcstat_l2_rebuild_log_blks.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks);
	as->arcstat_memory_throttle_count.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_memory_throttle_count);
	as->arcstat_memory_direct_count.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_memory_direct_count);
	as->arcstat_memory_indirect_count.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_memory_indirect_count);

	as->arcstat_memory_all_bytes.value.ui64 =
	    arc_all_memory();
	as->arcstat_memory_free_bytes.value.ui64 =
	    arc_free_memory();
	as->arcstat_memory_available_bytes.value.i64 =
	    arc_available_memory();

	as->arcstat_prune.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_prune);
	as->arcstat_meta_used.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_meta_used);
	as->arcstat_async_upgrade_sync.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_async_upgrade_sync);
	as->arcstat_predictive_prefetch.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_predictive_prefetch);
	as->arcstat_demand_hit_predictive_prefetch.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch);
	as->arcstat_demand_iohit_predictive_prefetch.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
	as->arcstat_prescient_prefetch.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_prescient_prefetch);
	as->arcstat_demand_hit_prescient_prefetch.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch);
	as->arcstat_demand_iohit_prescient_prefetch.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
	as->arcstat_raw_size.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_raw_size);
	as->arcstat_cached_only_in_progress.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_cached_only_in_progress);
	as->arcstat_abd_chunk_waste_size.value.ui64 =
	    wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size);

	return (0);
}

/*
 * This function *must* return indices evenly distributed between all
 * sublists of the multilist. This is needed due to how the ARC eviction
 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
 * distributed between all sublists and uses this assumption when
 * deciding which sublist to evict from and how much to evict from it.
 */
static unsigned int
arc_state_multilist_index_func(multilist_t *ml, void *obj)
{
	arc_buf_hdr_t *hdr = obj;

	/*
	 * We rely on b_dva to generate evenly distributed index
	 * numbers using buf_hash below. So, as an added precaution,
	 * let's make sure we never add empty buffers to the arc lists.
	 */
	ASSERT(!HDR_EMPTY(hdr));

	/*
	 * The assumption here, is the hash value for a given
	 * arc_buf_hdr_t will remain constant throughout its lifetime
	 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
	 * Thus, we don't need to store the header's sublist index
	 * on insertion, as this index can be recalculated on removal.
	 *
	 * Also, the low order bits of the hash value are thought to be
	 * distributed evenly. Otherwise, in the case that the multilist
	 * has a power of two number of sublists, each sublists' usage
	 * would not be evenly distributed. In this context full 64bit
	 * division would be a waste of time, so limit it to 32 bits.
	 */
	return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
	    multilist_get_num_sublists(ml));
}

static unsigned int
arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj)
{
	panic("Header %p insert into arc_l2c_only %p", obj, ml);
}

#define	WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do {	\
	if ((do_warn) && (tuning) && ((tuning) != (value))) {	\
		cmn_err(CE_WARN,				\
		    "ignoring tunable %s (using %llu instead)",	\
		    (#tuning), (u_longlong_t)(value));	\
	}							\
} while (0)

/*
 * Called during module initialization and periodically thereafter to
 * apply reasonable changes to the exposed performance tunings.  Can also be
 * called explicitly by param_set_arc_*() functions when ARC tunables are
 * updated manually.  Non-zero zfs_* values which differ from the currently set
 * values will be applied.
 */
void
arc_tuning_update(boolean_t verbose)
{
	uint64_t allmem = arc_all_memory();

	/* Valid range: 32M - <arc_c_max> */
	if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
	    (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
	    (zfs_arc_min <= arc_c_max)) {
		arc_c_min = zfs_arc_min;
		arc_c = MAX(arc_c, arc_c_min);
	}
	WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose);

	/* Valid range: 64M - <all physical memory> */
	if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
	    (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) &&
	    (zfs_arc_max > arc_c_min)) {
		arc_c_max = zfs_arc_max;
		arc_c = MIN(arc_c, arc_c_max);
		if (arc_dnode_limit > arc_c_max)
			arc_dnode_limit = arc_c_max;
	}
	WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose);

	/* Valid range: 0 - <all physical memory> */
	arc_dnode_limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
	    MIN(zfs_arc_dnode_limit_percent, 100) * arc_c_max / 100;
	WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_limit, verbose);

	/* Valid range: 1 - N */
	if (zfs_arc_grow_retry)
		arc_grow_retry = zfs_arc_grow_retry;

	/* Valid range: 1 - N */
	if (zfs_arc_shrink_shift) {
		arc_shrink_shift = zfs_arc_shrink_shift;
		arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
	}

	/* Valid range: 1 - N ms */
	if (zfs_arc_min_prefetch_ms)
		arc_min_prefetch_ms = zfs_arc_min_prefetch_ms;

	/* Valid range: 1 - N ms */
	if (zfs_arc_min_prescient_prefetch_ms) {
		arc_min_prescient_prefetch_ms =
		    zfs_arc_min_prescient_prefetch_ms;
	}

	/* Valid range: 0 - 100 */
	if (zfs_arc_lotsfree_percent <= 100)
		arc_lotsfree_percent = zfs_arc_lotsfree_percent;
	WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent,
	    verbose);

	/* Valid range: 0 - <all physical memory> */
	if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
		arc_sys_free = MIN(zfs_arc_sys_free, allmem);
	WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose);
}

static void
arc_state_multilist_init(multilist_t *ml,
    multilist_sublist_index_func_t *index_func, int *maxcountp)
{
	multilist_create(ml, sizeof (arc_buf_hdr_t),
	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func);
	*maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml));
}

static void
arc_state_init(void)
{
	int num_sublists = 0;

	arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA],
	    arc_state_multilist_index_func, &num_sublists);
	arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA],
	    arc_state_multilist_index_func, &num_sublists);
	arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
	    arc_state_multilist_index_func, &num_sublists);
	arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
	    arc_state_multilist_index_func, &num_sublists);
	arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
	    arc_state_multilist_index_func, &num_sublists);
	arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA],
	    arc_state_multilist_index_func, &num_sublists);
	arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
	    arc_state_multilist_index_func, &num_sublists);
	arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
	    arc_state_multilist_index_func, &num_sublists);
	arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_METADATA],
	    arc_state_multilist_index_func, &num_sublists);
	arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_DATA],
	    arc_state_multilist_index_func, &num_sublists);

	/*
	 * L2 headers should never be on the L2 state list since they don't
	 * have L1 headers allocated.  Special index function asserts that.
	 */
	arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
	    arc_state_l2c_multilist_index_func, &num_sublists);
	arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
	    arc_state_l2c_multilist_index_func, &num_sublists);

	/*
	 * Keep track of the number of markers needed to reclaim buffers from
	 * any ARC state.  The markers will be pre-allocated so as to minimize
	 * the number of memory allocations performed by the eviction thread.
	 */
	arc_state_evict_marker_count = num_sublists;

	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
	zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
	zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);

	zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_DATA]);
	zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
	zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_DATA]);
	zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
	zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
	zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
	zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
	zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
	zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
	zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
	zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
	zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
	zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
	zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);

	wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA], 0);
	wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
	wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA], 0);
	wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA], 0);

	wmsum_init(&arc_sums.arcstat_hits, 0);
	wmsum_init(&arc_sums.arcstat_iohits, 0);
	wmsum_init(&arc_sums.arcstat_misses, 0);
	wmsum_init(&arc_sums.arcstat_demand_data_hits, 0);
	wmsum_init(&arc_sums.arcstat_demand_data_iohits, 0);
	wmsum_init(&arc_sums.arcstat_demand_data_misses, 0);
	wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0);
	wmsum_init(&arc_sums.arcstat_demand_metadata_iohits, 0);
	wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0);
	wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0);
	wmsum_init(&arc_sums.arcstat_prefetch_data_iohits, 0);
	wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0);
	wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0);
	wmsum_init(&arc_sums.arcstat_prefetch_metadata_iohits, 0);
	wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0);
	wmsum_init(&arc_sums.arcstat_mru_hits, 0);
	wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0);
	wmsum_init(&arc_sums.arcstat_mfu_hits, 0);
	wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0);
	wmsum_init(&arc_sums.arcstat_uncached_hits, 0);
	wmsum_init(&arc_sums.arcstat_deleted, 0);
	wmsum_init(&arc_sums.arcstat_mutex_miss, 0);
	wmsum_init(&arc_sums.arcstat_access_skip, 0);
	wmsum_init(&arc_sums.arcstat_evict_skip, 0);
	wmsum_init(&arc_sums.arcstat_evict_not_enough, 0);
	wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0);
	wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0);
	wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0);
	wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0);
	wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0);
	wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0);
	wmsum_init(&arc_sums.arcstat_hash_elements, 0);
	wmsum_init(&arc_sums.arcstat_hash_collisions, 0);
	wmsum_init(&arc_sums.arcstat_hash_chains, 0);
	aggsum_init(&arc_sums.arcstat_size, 0);
	wmsum_init(&arc_sums.arcstat_compressed_size, 0);
	wmsum_init(&arc_sums.arcstat_uncompressed_size, 0);
	wmsum_init(&arc_sums.arcstat_overhead_size, 0);
	wmsum_init(&arc_sums.arcstat_hdr_size, 0);
	wmsum_init(&arc_sums.arcstat_data_size, 0);
	wmsum_init(&arc_sums.arcstat_metadata_size, 0);
	wmsum_init(&arc_sums.arcstat_dbuf_size, 0);
	wmsum_init(&arc_sums.arcstat_dnode_size, 0);
	wmsum_init(&arc_sums.arcstat_bonus_size, 0);
	wmsum_init(&arc_sums.arcstat_l2_hits, 0);
	wmsum_init(&arc_sums.arcstat_l2_misses, 0);
	wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0);
	wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0);
	wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0);
	wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0);
	wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0);
	wmsum_init(&arc_sums.arcstat_l2_feeds, 0);
	wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0);
	wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0);
	wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0);
	wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0);
	wmsum_init(&arc_sums.arcstat_l2_writes_done, 0);
	wmsum_init(&arc_sums.arcstat_l2_writes_error, 0);
	wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0);
	wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0);
	wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0);
	wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0);
	wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0);
	wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0);
	wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0);
	wmsum_init(&arc_sums.arcstat_l2_io_error, 0);
	wmsum_init(&arc_sums.arcstat_l2_lsize, 0);
	wmsum_init(&arc_sums.arcstat_l2_psize, 0);
	aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0);
	wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0);
	wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0);
	wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0);
	wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0);
	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0);
	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0);
	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0);
	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0);
	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0);
	wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0);
	wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0);
	wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0);
	wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0);
	wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0);
	wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0);
	wmsum_init(&arc_sums.arcstat_memory_direct_count, 0);
	wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0);
	wmsum_init(&arc_sums.arcstat_prune, 0);
	wmsum_init(&arc_sums.arcstat_meta_used, 0);
	wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0);
	wmsum_init(&arc_sums.arcstat_predictive_prefetch, 0);
	wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0);
	wmsum_init(&arc_sums.arcstat_demand_iohit_predictive_prefetch, 0);
	wmsum_init(&arc_sums.arcstat_prescient_prefetch, 0);
	wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0);
	wmsum_init(&arc_sums.arcstat_demand_iohit_prescient_prefetch, 0);
	wmsum_init(&arc_sums.arcstat_raw_size, 0);
	wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0);
	wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0);

	arc_anon->arcs_state = ARC_STATE_ANON;
	arc_mru->arcs_state = ARC_STATE_MRU;
	arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
	arc_mfu->arcs_state = ARC_STATE_MFU;
	arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
	arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
	arc_uncached->arcs_state = ARC_STATE_UNCACHED;
}

static void
arc_state_fini(void)
{
	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
	zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
	zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);

	zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_DATA]);
	zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
	zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_DATA]);
	zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
	zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
	zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
	zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
	zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
	zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
	zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
	zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
	zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
	zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
	zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);

	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
	multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_METADATA]);
	multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_DATA]);

	wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
	wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
	wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
	wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);

	wmsum_fini(&arc_sums.arcstat_hits);
	wmsum_fini(&arc_sums.arcstat_iohits);
	wmsum_fini(&arc_sums.arcstat_misses);
	wmsum_fini(&arc_sums.arcstat_demand_data_hits);
	wmsum_fini(&arc_sums.arcstat_demand_data_iohits);
	wmsum_fini(&arc_sums.arcstat_demand_data_misses);
	wmsum_fini(&arc_sums.arcstat_demand_metadata_hits);
	wmsum_fini(&arc_sums.arcstat_demand_metadata_iohits);
	wmsum_fini(&arc_sums.arcstat_demand_metadata_misses);
	wmsum_fini(&arc_sums.arcstat_prefetch_data_hits);
	wmsum_fini(&arc_sums.arcstat_prefetch_data_iohits);
	wmsum_fini(&arc_sums.arcstat_prefetch_data_misses);
	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits);
	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_iohits);
	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses);
	wmsum_fini(&arc_sums.arcstat_mru_hits);
	wmsum_fini(&arc_sums.arcstat_mru_ghost_hits);
	wmsum_fini(&arc_sums.arcstat_mfu_hits);
	wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits);
	wmsum_fini(&arc_sums.arcstat_uncached_hits);
	wmsum_fini(&arc_sums.arcstat_deleted);
	wmsum_fini(&arc_sums.arcstat_mutex_miss);
	wmsum_fini(&arc_sums.arcstat_access_skip);
	wmsum_fini(&arc_sums.arcstat_evict_skip);
	wmsum_fini(&arc_sums.arcstat_evict_not_enough);
	wmsum_fini(&arc_sums.arcstat_evict_l2_cached);
	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible);
	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu);
	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru);
	wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible);
	wmsum_fini(&arc_sums.arcstat_evict_l2_skip);
	wmsum_fini(&arc_sums.arcstat_hash_elements);
	wmsum_fini(&arc_sums.arcstat_hash_collisions);
	wmsum_fini(&arc_sums.arcstat_hash_chains);
	aggsum_fini(&arc_sums.arcstat_size);
	wmsum_fini(&arc_sums.arcstat_compressed_size);
	wmsum_fini(&arc_sums.arcstat_uncompressed_size);
	wmsum_fini(&arc_sums.arcstat_overhead_size);
	wmsum_fini(&arc_sums.arcstat_hdr_size);
	wmsum_fini(&arc_sums.arcstat_data_size);
	wmsum_fini(&arc_sums.arcstat_metadata_size);
	wmsum_fini(&arc_sums.arcstat_dbuf_size);
	wmsum_fini(&arc_sums.arcstat_dnode_size);
	wmsum_fini(&arc_sums.arcstat_bonus_size);
	wmsum_fini(&arc_sums.arcstat_l2_hits);
	wmsum_fini(&arc_sums.arcstat_l2_misses);
	wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize);
	wmsum_fini(&arc_sums.arcstat_l2_mru_asize);
	wmsum_fini(&arc_sums.arcstat_l2_mfu_asize);
	wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize);
	wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize);
	wmsum_fini(&arc_sums.arcstat_l2_feeds);
	wmsum_fini(&arc_sums.arcstat_l2_rw_clash);
	wmsum_fini(&arc_sums.arcstat_l2_read_bytes);
	wmsum_fini(&arc_sums.arcstat_l2_write_bytes);
	wmsum_fini(&arc_sums.arcstat_l2_writes_sent);
	wmsum_fini(&arc_sums.arcstat_l2_writes_done);
	wmsum_fini(&arc_sums.arcstat_l2_writes_error);
	wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry);
	wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry);
	wmsum_fini(&arc_sums.arcstat_l2_evict_reading);
	wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached);
	wmsum_fini(&arc_sums.arcstat_l2_free_on_write);
	wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem);
	wmsum_fini(&arc_sums.arcstat_l2_cksum_bad);
	wmsum_fini(&arc_sums.arcstat_l2_io_error);
	wmsum_fini(&arc_sums.arcstat_l2_lsize);
	wmsum_fini(&arc_sums.arcstat_l2_psize);
	aggsum_fini(&arc_sums.arcstat_l2_hdr_size);
	wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes);
	wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize);
	wmsum_fini(&arc_sums.arcstat_l2_log_blk_count);
	wmsum_fini(&arc_sums.arcstat_l2_rebuild_success);
	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
	wmsum_fini(&arc_sums.arcstat_l2_rebuild_size);
	wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize);
	wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs);
	wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached);
	wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks);
	wmsum_fini(&arc_sums.arcstat_memory_throttle_count);
	wmsum_fini(&arc_sums.arcstat_memory_direct_count);
	wmsum_fini(&arc_sums.arcstat_memory_indirect_count);
	wmsum_fini(&arc_sums.arcstat_prune);
	wmsum_fini(&arc_sums.arcstat_meta_used);
	wmsum_fini(&arc_sums.arcstat_async_upgrade_sync);
	wmsum_fini(&arc_sums.arcstat_predictive_prefetch);
	wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch);
	wmsum_fini(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
	wmsum_fini(&arc_sums.arcstat_prescient_prefetch);
	wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch);
	wmsum_fini(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
	wmsum_fini(&arc_sums.arcstat_raw_size);
	wmsum_fini(&arc_sums.arcstat_cached_only_in_progress);
	wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size);
}

uint64_t
arc_target_bytes(void)
{
	return (arc_c);
}

void
arc_set_limits(uint64_t allmem)
{
	/* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
	arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);

	/* How to set default max varies by platform. */
	arc_c_max = arc_default_max(arc_c_min, allmem);
}
void
arc_init(void)
{
	uint64_t percent, allmem = arc_all_memory();
	mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL);
	list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t),
	    offsetof(arc_evict_waiter_t, aew_node));

	arc_min_prefetch_ms = 1000;
	arc_min_prescient_prefetch_ms = 6000;

#if defined(_KERNEL)
	arc_lowmem_init();
#endif

	arc_set_limits(allmem);

#ifdef _KERNEL
	/*
	 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel
	 * environment before the module was loaded, don't block setting the
	 * maximum because it is less than arc_c_min, instead, reset arc_c_min
	 * to a lower value.
	 * zfs_arc_min will be handled by arc_tuning_update().
	 */
	if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX &&
	    zfs_arc_max < allmem) {
		arc_c_max = zfs_arc_max;
		if (arc_c_min >= arc_c_max) {
			arc_c_min = MAX(zfs_arc_max / 2,
			    2ULL << SPA_MAXBLOCKSHIFT);
		}
	}
#else
	/*
	 * In userland, there's only the memory pressure that we artificially
	 * create (see arc_available_memory()).  Don't let arc_c get too
	 * small, because it can cause transactions to be larger than
	 * arc_c, causing arc_tempreserve_space() to fail.
	 */
	arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
#endif

	arc_c = arc_c_min;
	/*
	 * 32-bit fixed point fractions of metadata from total ARC size,
	 * MRU data from all data and MRU metadata from all metadata.
	 */
	arc_meta = (1ULL << 32) / 4;	/* Metadata is 25% of arc_c. */
	arc_pd = (1ULL << 32) / 2;	/* Data MRU is 50% of data. */
	arc_pm = (1ULL << 32) / 2;	/* Metadata MRU is 50% of metadata. */

	percent = MIN(zfs_arc_dnode_limit_percent, 100);
	arc_dnode_limit = arc_c_max * percent / 100;

	/* Apply user specified tunings */
	arc_tuning_update(B_TRUE);

	/* if kmem_flags are set, lets try to use less memory */
	if (kmem_debugging())
		arc_c = arc_c / 2;
	if (arc_c < arc_c_min)
		arc_c = arc_c_min;

	arc_register_hotplug();

	arc_state_init();

	buf_init();

	list_create(&arc_prune_list, sizeof (arc_prune_t),
	    offsetof(arc_prune_t, p_node));
	mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);

	arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads,
	    defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);

	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);

	if (arc_ksp != NULL) {
		arc_ksp->ks_data = &arc_stats;
		arc_ksp->ks_update = arc_kstat_update;
		kstat_install(arc_ksp);
	}

	arc_state_evict_markers =
	    arc_state_alloc_markers(arc_state_evict_marker_count);
	arc_evict_zthr = zthr_create_timer("arc_evict",
	    arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1), defclsyspri);
	arc_reap_zthr = zthr_create_timer("arc_reap",
	    arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri);

	arc_warm = B_FALSE;

	/*
	 * Calculate maximum amount of dirty data per pool.
	 *
	 * If it has been set by a module parameter, take that.
	 * Otherwise, use a percentage of physical memory defined by
	 * zfs_dirty_data_max_percent (default 10%) with a cap at
	 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
	 */
#ifdef __LP64__
	if (zfs_dirty_data_max_max == 0)
		zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
		    allmem * zfs_dirty_data_max_max_percent / 100);
#else
	if (zfs_dirty_data_max_max == 0)
		zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
		    allmem * zfs_dirty_data_max_max_percent / 100);
#endif

	if (zfs_dirty_data_max == 0) {
		zfs_dirty_data_max = allmem *
		    zfs_dirty_data_max_percent / 100;
		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
		    zfs_dirty_data_max_max);
	}

	if (zfs_wrlog_data_max == 0) {

		/*
		 * dp_wrlog_total is reduced for each txg at the end of
		 * spa_sync(). However, dp_dirty_total is reduced every time
		 * a block is written out. Thus under normal operation,
		 * dp_wrlog_total could grow 2 times as big as
		 * zfs_dirty_data_max.
		 */
		zfs_wrlog_data_max = zfs_dirty_data_max * 2;
	}
}

void
arc_fini(void)
{
	arc_prune_t *p;

#ifdef _KERNEL
	arc_lowmem_fini();
#endif /* _KERNEL */

	/* Use B_TRUE to ensure *all* buffers are evicted */
	arc_flush(NULL, B_TRUE);

	if (arc_ksp != NULL) {
		kstat_delete(arc_ksp);
		arc_ksp = NULL;
	}

	taskq_wait(arc_prune_taskq);
	taskq_destroy(arc_prune_taskq);

	mutex_enter(&arc_prune_mtx);
	while ((p = list_remove_head(&arc_prune_list)) != NULL) {
		(void) zfs_refcount_remove(&p->p_refcnt, &arc_prune_list);
		zfs_refcount_destroy(&p->p_refcnt);
		kmem_free(p, sizeof (*p));
	}
	mutex_exit(&arc_prune_mtx);

	list_destroy(&arc_prune_list);
	mutex_destroy(&arc_prune_mtx);

	(void) zthr_cancel(arc_evict_zthr);
	(void) zthr_cancel(arc_reap_zthr);
	arc_state_free_markers(arc_state_evict_markers,
	    arc_state_evict_marker_count);

	mutex_destroy(&arc_evict_lock);
	list_destroy(&arc_evict_waiters);

	/*
	 * Free any buffers that were tagged for destruction.  This needs
	 * to occur before arc_state_fini() runs and destroys the aggsum
	 * values which are updated when freeing scatter ABDs.
	 */
	l2arc_do_free_on_write();

	/*
	 * buf_fini() must proceed arc_state_fini() because buf_fin() may
	 * trigger the release of kmem magazines, which can callback to
	 * arc_space_return() which accesses aggsums freed in act_state_fini().
	 */
	buf_fini();
	arc_state_fini();

	arc_unregister_hotplug();

	/*
	 * We destroy the zthrs after all the ARC state has been
	 * torn down to avoid the case of them receiving any
	 * wakeup() signals after they are destroyed.
	 */
	zthr_destroy(arc_evict_zthr);
	zthr_destroy(arc_reap_zthr);

	ASSERT0(arc_loaned_bytes);
}

/*
 * Level 2 ARC
 *
 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
 * It uses dedicated storage devices to hold cached data, which are populated
 * using large infrequent writes.  The main role of this cache is to boost
 * the performance of random read workloads.  The intended L2ARC devices
 * include short-stroked disks, solid state disks, and other media with
 * substantially faster read latency than disk.
 *
 *                 +-----------------------+
 *                 |         ARC           |
 *                 +-----------------------+
 *                    |         ^     ^
 *                    |         |     |
 *      l2arc_feed_thread()    arc_read()
 *                    |         |     |
 *                    |  l2arc read   |
 *                    V         |     |
 *               +---------------+    |
 *               |     L2ARC     |    |
 *               +---------------+    |
 *                   |    ^           |
 *          l2arc_write() |           |
 *                   |    |           |
 *                   V    |           |
 *                 +-------+      +-------+
 *                 | vdev  |      | vdev  |
 *                 | cache |      | cache |
 *                 +-------+      +-------+
 *                 +=========+     .-----.
 *                 :  L2ARC  :    |-_____-|
 *                 : devices :    | Disks |
 *                 +=========+    `-_____-'
 *
 * Read requests are satisfied from the following sources, in order:
 *
 *	1) ARC
 *	2) vdev cache of L2ARC devices
 *	3) L2ARC devices
 *	4) vdev cache of disks
 *	5) disks
 *
 * Some L2ARC device types exhibit extremely slow write performance.
 * To accommodate for this there are some significant differences between
 * the L2ARC and traditional cache design:
 *
 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
 * the ARC behave as usual, freeing buffers and placing headers on ghost
 * lists.  The ARC does not send buffers to the L2ARC during eviction as
 * this would add inflated write latencies for all ARC memory pressure.
 *
 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
 * It does this by periodically scanning buffers from the eviction-end of
 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
 * not already there. It scans until a headroom of buffers is satisfied,
 * which itself is a buffer for ARC eviction. If a compressible buffer is
 * found during scanning and selected for writing to an L2ARC device, we
 * temporarily boost scanning headroom during the next scan cycle to make
 * sure we adapt to compression effects (which might significantly reduce
 * the data volume we write to L2ARC). The thread that does this is
 * l2arc_feed_thread(), illustrated below; example sizes are included to
 * provide a better sense of ratio than this diagram:
 *
 *	       head -->                        tail
 *	        +---------------------+----------+
 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
 *	        +---------------------+----------+   |   o L2ARC eligible
 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
 *	        +---------------------+----------+   |
 *	             15.9 Gbytes      ^ 32 Mbytes    |
 *	                           headroom          |
 *	                                      l2arc_feed_thread()
 *	                                             |
 *	                 l2arc write hand <--[oooo]--'
 *	                         |           8 Mbyte
 *	                         |          write max
 *	                         V
 *		  +==============================+
 *	L2ARC dev |####|#|###|###|    |####| ... |
 *	          +==============================+
 *	                     32 Gbytes
 *
 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
 * evicted, then the L2ARC has cached a buffer much sooner than it probably
 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
 * safe to say that this is an uncommon case, since buffers at the end of
 * the ARC lists have moved there due to inactivity.
 *
 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
 * then the L2ARC simply misses copying some buffers.  This serves as a
 * pressure valve to prevent heavy read workloads from both stalling the ARC
 * with waits and clogging the L2ARC with writes.  This also helps prevent
 * the potential for the L2ARC to churn if it attempts to cache content too
 * quickly, such as during backups of the entire pool.
 *
 * 5. After system boot and before the ARC has filled main memory, there are
 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
 * lists can remain mostly static.  Instead of searching from tail of these
 * lists as pictured, the l2arc_feed_thread() will search from the list heads
 * for eligible buffers, greatly increasing its chance of finding them.
 *
 * The L2ARC device write speed is also boosted during this time so that
 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
 * there are no L2ARC reads, and no fear of degrading read performance
 * through increased writes.
 *
 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
 * the vdev queue can aggregate them into larger and fewer writes.  Each
 * device is written to in a rotor fashion, sweeping writes through
 * available space then repeating.
 *
 * 7. The L2ARC does not store dirty content.  It never needs to flush
 * write buffers back to disk based storage.
 *
 * 8. If an ARC buffer is written (and dirtied) which also exists in the
 * L2ARC, the now stale L2ARC buffer is immediately dropped.
 *
 * The performance of the L2ARC can be tweaked by a number of tunables, which
 * may be necessary for different workloads:
 *
 *	l2arc_write_max		max write bytes per interval
 *	l2arc_write_boost	extra write bytes during device warmup
 *	l2arc_noprefetch	skip caching prefetched buffers
 *	l2arc_headroom		number of max device writes to precache
 *	l2arc_headroom_boost	when we find compressed buffers during ARC
 *				scanning, we multiply headroom by this
 *				percentage factor for the next scan cycle,
 *				since more compressed buffers are likely to
 *				be present
 *	l2arc_feed_secs		seconds between L2ARC writing
 *
 * Tunables may be removed or added as future performance improvements are
 * integrated, and also may become zpool properties.
 *
 * There are three key functions that control how the L2ARC warms up:
 *
 *	l2arc_write_eligible()	check if a buffer is eligible to cache
 *	l2arc_write_size()	calculate how much to write
 *	l2arc_write_interval()	calculate sleep delay between writes
 *
 * These three functions determine what to write, how much, and how quickly
 * to send writes.
 *
 * L2ARC persistence:
 *
 * When writing buffers to L2ARC, we periodically add some metadata to
 * make sure we can pick them up after reboot, thus dramatically reducing
 * the impact that any downtime has on the performance of storage systems
 * with large caches.
 *
 * The implementation works fairly simply by integrating the following two
 * modifications:
 *
 * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
 *    which is an additional piece of metadata which describes what's been
 *    written. This allows us to rebuild the arc_buf_hdr_t structures of the
 *    main ARC buffers. There are 2 linked-lists of log blocks headed by
 *    dh_start_lbps[2]. We alternate which chain we append to, so they are
 *    time-wise and offset-wise interleaved, but that is an optimization rather
 *    than for correctness. The log block also includes a pointer to the
 *    previous block in its chain.
 *
 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
 *    for our header bookkeeping purposes. This contains a device header,
 *    which contains our top-level reference structures. We update it each
 *    time we write a new log block, so that we're able to locate it in the
 *    L2ARC device. If this write results in an inconsistent device header
 *    (e.g. due to power failure), we detect this by verifying the header's
 *    checksum and simply fail to reconstruct the L2ARC after reboot.
 *
 * Implementation diagram:
 *
 * +=== L2ARC device (not to scale) ======================================+
 * |       ___two newest log block pointers__.__________                  |
 * |      /                                   \dh_start_lbps[1]           |
 * |	 /				       \         \dh_start_lbps[0]|
 * |.___/__.                                    V         V               |
 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
 * ||   hdr|      ^         /^       /^        /         /                |
 * |+------+  ...--\-------/  \-----/--\------/         /                 |
 * |                \--------------/    \--------------/                  |
 * +======================================================================+
 *
 * As can be seen on the diagram, rather than using a simple linked list,
 * we use a pair of linked lists with alternating elements. This is a
 * performance enhancement due to the fact that we only find out the
 * address of the next log block access once the current block has been
 * completely read in. Obviously, this hurts performance, because we'd be
 * keeping the device's I/O queue at only a 1 operation deep, thus
 * incurring a large amount of I/O round-trip latency. Having two lists
 * allows us to fetch two log blocks ahead of where we are currently
 * rebuilding L2ARC buffers.
 *
 * On-device data structures:
 *
 * L2ARC device header:	l2arc_dev_hdr_phys_t
 * L2ARC log block:	l2arc_log_blk_phys_t
 *
 * L2ARC reconstruction:
 *
 * When writing data, we simply write in the standard rotary fashion,
 * evicting buffers as we go and simply writing new data over them (writing
 * a new log block every now and then). This obviously means that once we
 * loop around the end of the device, we will start cutting into an already
 * committed log block (and its referenced data buffers), like so:
 *
 *    current write head__       __old tail
 *                        \     /
 *                        V    V
 * <--|bufs |lb |bufs |lb |    |bufs |lb |bufs |lb |-->
 *                         ^    ^^^^^^^^^___________________________________
 *                         |                                                \
 *                   <<nextwrite>> may overwrite this blk and/or its bufs --'
 *
 * When importing the pool, we detect this situation and use it to stop
 * our scanning process (see l2arc_rebuild).
 *
 * There is one significant caveat to consider when rebuilding ARC contents
 * from an L2ARC device: what about invalidated buffers? Given the above
 * construction, we cannot update blocks which we've already written to amend
 * them to remove buffers which were invalidated. Thus, during reconstruction,
 * we might be populating the cache with buffers for data that's not on the
 * main pool anymore, or may have been overwritten!
 *
 * As it turns out, this isn't a problem. Every arc_read request includes
 * both the DVA and, crucially, the birth TXG of the BP the caller is
 * looking for. So even if the cache were populated by completely rotten
 * blocks for data that had been long deleted and/or overwritten, we'll
 * never actually return bad data from the cache, since the DVA with the
 * birth TXG uniquely identify a block in space and time - once created,
 * a block is immutable on disk. The worst thing we have done is wasted
 * some time and memory at l2arc rebuild to reconstruct outdated ARC
 * entries that will get dropped from the l2arc as it is being updated
 * with new blocks.
 *
 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
 * hand are not restored. This is done by saving the offset (in bytes)
 * l2arc_evict() has evicted to in the L2ARC device header and taking it
 * into account when restoring buffers.
 */

static boolean_t
l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
{
	/*
	 * A buffer is *not* eligible for the L2ARC if it:
	 * 1. belongs to a different spa.
	 * 2. is already cached on the L2ARC.
	 * 3. has an I/O in progress (it may be an incomplete read).
	 * 4. is flagged not eligible (zfs property).
	 */
	if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
	    HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
		return (B_FALSE);

	return (B_TRUE);
}

static uint64_t
l2arc_write_size(l2arc_dev_t *dev)
{
	uint64_t size;

	/*
	 * Make sure our globals have meaningful values in case the user
	 * altered them.
	 */
	size = l2arc_write_max;
	if (size == 0) {
		cmn_err(CE_NOTE, "l2arc_write_max must be greater than zero, "
		    "resetting it to the default (%d)", L2ARC_WRITE_SIZE);
		size = l2arc_write_max = L2ARC_WRITE_SIZE;
	}

	if (arc_warm == B_FALSE)
		size += l2arc_write_boost;

	/* We need to add in the worst case scenario of log block overhead. */
	size += l2arc_log_blk_overhead(size, dev);
	if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) {
		/*
		 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
		 * times the writesize, whichever is greater.
		 */
		size += MAX(64 * 1024 * 1024,
		    (size * l2arc_trim_ahead) / 100);
	}

	/*
	 * Make sure the write size does not exceed the size of the cache
	 * device. This is important in l2arc_evict(), otherwise infinite
	 * iteration can occur.
	 */
	size = MIN(size, (dev->l2ad_end - dev->l2ad_start) / 4);

	size = P2ROUNDUP(size, 1ULL << dev->l2ad_vdev->vdev_ashift);

	return (size);

}

static clock_t
l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
{
	clock_t interval, next, now;

	/*
	 * If the ARC lists are busy, increase our write rate; if the
	 * lists are stale, idle back.  This is achieved by checking
	 * how much we previously wrote - if it was more than half of
	 * what we wanted, schedule the next write much sooner.
	 */
	if (l2arc_feed_again && wrote > (wanted / 2))
		interval = (hz * l2arc_feed_min_ms) / 1000;
	else
		interval = hz * l2arc_feed_secs;

	now = ddi_get_lbolt();
	next = MAX(now, MIN(now + interval, began + interval));

	return (next);
}

/*
 * Cycle through L2ARC devices.  This is how L2ARC load balances.
 * If a device is returned, this also returns holding the spa config lock.
 */
static l2arc_dev_t *
l2arc_dev_get_next(void)
{
	l2arc_dev_t *first, *next = NULL;

	/*
	 * Lock out the removal of spas (spa_namespace_lock), then removal
	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
	 * both locks will be dropped and a spa config lock held instead.
	 */
	mutex_enter(&spa_namespace_lock);
	mutex_enter(&l2arc_dev_mtx);

	/* if there are no vdevs, there is nothing to do */
	if (l2arc_ndev == 0)
		goto out;

	first = NULL;
	next = l2arc_dev_last;
	do {
		/* loop around the list looking for a non-faulted vdev */
		if (next == NULL) {
			next = list_head(l2arc_dev_list);
		} else {
			next = list_next(l2arc_dev_list, next);
			if (next == NULL)
				next = list_head(l2arc_dev_list);
		}

		/* if we have come back to the start, bail out */
		if (first == NULL)
			first = next;
		else if (next == first)
			break;

		ASSERT3P(next, !=, NULL);
	} while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
	    next->l2ad_trim_all || next->l2ad_spa->spa_is_exporting);

	/* if we were unable to find any usable vdevs, return NULL */
	if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
	    next->l2ad_trim_all || next->l2ad_spa->spa_is_exporting)
		next = NULL;

	l2arc_dev_last = next;

out:
	mutex_exit(&l2arc_dev_mtx);

	/*
	 * Grab the config lock to prevent the 'next' device from being
	 * removed while we are writing to it.
	 */
	if (next != NULL)
		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
	mutex_exit(&spa_namespace_lock);

	return (next);
}

/*
 * Free buffers that were tagged for destruction.
 */
static void
l2arc_do_free_on_write(void)
{
	l2arc_data_free_t *df;

	mutex_enter(&l2arc_free_on_write_mtx);
	while ((df = list_remove_head(l2arc_free_on_write)) != NULL) {
		ASSERT3P(df->l2df_abd, !=, NULL);
		abd_free(df->l2df_abd);
		kmem_free(df, sizeof (l2arc_data_free_t));
	}
	mutex_exit(&l2arc_free_on_write_mtx);
}

/*
 * A write to a cache device has completed.  Update all headers to allow
 * reads from these buffers to begin.
 */
static void
l2arc_write_done(zio_t *zio)
{
	l2arc_write_callback_t	*cb;
	l2arc_lb_abd_buf_t	*abd_buf;
	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
	l2arc_dev_t		*dev;
	l2arc_dev_hdr_phys_t	*l2dhdr;
	list_t			*buflist;
	arc_buf_hdr_t		*head, *hdr, *hdr_prev;
	kmutex_t		*hash_lock;
	int64_t			bytes_dropped = 0;

	cb = zio->io_private;
	ASSERT3P(cb, !=, NULL);
	dev = cb->l2wcb_dev;
	l2dhdr = dev->l2ad_dev_hdr;
	ASSERT3P(dev, !=, NULL);
	head = cb->l2wcb_head;
	ASSERT3P(head, !=, NULL);
	buflist = &dev->l2ad_buflist;
	ASSERT3P(buflist, !=, NULL);
	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
	    l2arc_write_callback_t *, cb);

	/*
	 * All writes completed, or an error was hit.
	 */
top:
	mutex_enter(&dev->l2ad_mtx);
	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
		hdr_prev = list_prev(buflist, hdr);

		hash_lock = HDR_LOCK(hdr);

		/*
		 * We cannot use mutex_enter or else we can deadlock
		 * with l2arc_write_buffers (due to swapping the order
		 * the hash lock and l2ad_mtx are taken).
		 */
		if (!mutex_tryenter(hash_lock)) {
			/*
			 * Missed the hash lock. We must retry so we
			 * don't leave the ARC_FLAG_L2_WRITING bit set.
			 */
			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);

			/*
			 * We don't want to rescan the headers we've
			 * already marked as having been written out, so
			 * we reinsert the head node so we can pick up
			 * where we left off.
			 */
			list_remove(buflist, head);
			list_insert_after(buflist, hdr, head);

			mutex_exit(&dev->l2ad_mtx);

			/*
			 * We wait for the hash lock to become available
			 * to try and prevent busy waiting, and increase
			 * the chance we'll be able to acquire the lock
			 * the next time around.
			 */
			mutex_enter(hash_lock);
			mutex_exit(hash_lock);
			goto top;
		}

		/*
		 * We could not have been moved into the arc_l2c_only
		 * state while in-flight due to our ARC_FLAG_L2_WRITING
		 * bit being set. Let's just ensure that's being enforced.
		 */
		ASSERT(HDR_HAS_L1HDR(hdr));

		/*
		 * Skipped - drop L2ARC entry and mark the header as no
		 * longer L2 eligibile.
		 */
		if (zio->io_error != 0) {
			/*
			 * Error - drop L2ARC entry.
			 */
			list_remove(buflist, hdr);
			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);

			uint64_t psize = HDR_GET_PSIZE(hdr);
			l2arc_hdr_arcstats_decrement(hdr);

			bytes_dropped +=
			    vdev_psize_to_asize(dev->l2ad_vdev, psize);
			(void) zfs_refcount_remove_many(&dev->l2ad_alloc,
			    arc_hdr_size(hdr), hdr);
		}

		/*
		 * Allow ARC to begin reads and ghost list evictions to
		 * this L2ARC entry.
		 */
		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);

		mutex_exit(hash_lock);
	}

	/*
	 * Free the allocated abd buffers for writing the log blocks.
	 * If the zio failed reclaim the allocated space and remove the
	 * pointers to these log blocks from the log block pointer list
	 * of the L2ARC device.
	 */
	while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
		abd_free(abd_buf->abd);
		zio_buf_free(abd_buf, sizeof (*abd_buf));
		if (zio->io_error != 0) {
			lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
			/*
			 * L2BLK_GET_PSIZE returns aligned size for log
			 * blocks.
			 */
			uint64_t asize =
			    L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
			bytes_dropped += asize;
			ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
			ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
			zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
			    lb_ptr_buf);
			(void) zfs_refcount_remove(&dev->l2ad_lb_count,
			    lb_ptr_buf);
			kmem_free(lb_ptr_buf->lb_ptr,
			    sizeof (l2arc_log_blkptr_t));
			kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
		}
	}
	list_destroy(&cb->l2wcb_abd_list);

	if (zio->io_error != 0) {
		ARCSTAT_BUMP(arcstat_l2_writes_error);

		/*
		 * Restore the lbps array in the header to its previous state.
		 * If the list of log block pointers is empty, zero out the
		 * log block pointers in the device header.
		 */
		lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
		for (int i = 0; i < 2; i++) {
			if (lb_ptr_buf == NULL) {
				/*
				 * If the list is empty zero out the device
				 * header. Otherwise zero out the second log
				 * block pointer in the header.
				 */
				if (i == 0) {
					memset(l2dhdr, 0,
					    dev->l2ad_dev_hdr_asize);
				} else {
					memset(&l2dhdr->dh_start_lbps[i], 0,
					    sizeof (l2arc_log_blkptr_t));
				}
				break;
			}
			memcpy(&l2dhdr->dh_start_lbps[i], lb_ptr_buf->lb_ptr,
			    sizeof (l2arc_log_blkptr_t));
			lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
			    lb_ptr_buf);
		}
	}

	ARCSTAT_BUMP(arcstat_l2_writes_done);
	list_remove(buflist, head);
	ASSERT(!HDR_HAS_L1HDR(head));
	kmem_cache_free(hdr_l2only_cache, head);
	mutex_exit(&dev->l2ad_mtx);

	ASSERT(dev->l2ad_vdev != NULL);
	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);

	l2arc_do_free_on_write();

	kmem_free(cb, sizeof (l2arc_write_callback_t));
}

static int
l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
{
	int ret;
	spa_t *spa = zio->io_spa;
	arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
	blkptr_t *bp = zio->io_bp;
	uint8_t salt[ZIO_DATA_SALT_LEN];
	uint8_t iv[ZIO_DATA_IV_LEN];
	uint8_t mac[ZIO_DATA_MAC_LEN];
	boolean_t no_crypt = B_FALSE;

	/*
	 * ZIL data is never be written to the L2ARC, so we don't need
	 * special handling for its unique MAC storage.
	 */
	ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);

	/*
	 * If the data was encrypted, decrypt it now. Note that
	 * we must check the bp here and not the hdr, since the
	 * hdr does not have its encryption parameters updated
	 * until arc_read_done().
	 */
	if (BP_IS_ENCRYPTED(bp)) {
		abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
		    ARC_HDR_USE_RESERVE);

		zio_crypt_decode_params_bp(bp, salt, iv);
		zio_crypt_decode_mac_bp(bp, mac);

		ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
		    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
		    salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
		    hdr->b_l1hdr.b_pabd, &no_crypt);
		if (ret != 0) {
			arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
			goto error;
		}

		/*
		 * If we actually performed decryption, replace b_pabd
		 * with the decrypted data. Otherwise we can just throw
		 * our decryption buffer away.
		 */
		if (!no_crypt) {
			arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
			    arc_hdr_size(hdr), hdr);
			hdr->b_l1hdr.b_pabd = eabd;
			zio->io_abd = eabd;
		} else {
			arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
		}
	}

	/*
	 * If the L2ARC block was compressed, but ARC compression
	 * is disabled we decompress the data into a new buffer and
	 * replace the existing data.
	 */
	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
	    !HDR_COMPRESSION_ENABLED(hdr)) {
		abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
		    ARC_HDR_USE_RESERVE);

		ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
		    hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr),
		    HDR_GET_LSIZE(hdr), &hdr->b_complevel);
		if (ret != 0) {
			arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
			goto error;
		}

		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
		    arc_hdr_size(hdr), hdr);
		hdr->b_l1hdr.b_pabd = cabd;
		zio->io_abd = cabd;
		zio->io_size = HDR_GET_LSIZE(hdr);
	}

	return (0);

error:
	return (ret);
}


/*
 * A read to a cache device completed.  Validate buffer contents before
 * handing over to the regular ARC routines.
 */
static void
l2arc_read_done(zio_t *zio)
{
	int tfm_error = 0;
	l2arc_read_callback_t *cb = zio->io_private;
	arc_buf_hdr_t *hdr;
	kmutex_t *hash_lock;
	boolean_t valid_cksum;
	boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
	    (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));

	ASSERT3P(zio->io_vd, !=, NULL);
	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);

	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);

	ASSERT3P(cb, !=, NULL);
	hdr = cb->l2rcb_hdr;
	ASSERT3P(hdr, !=, NULL);

	hash_lock = HDR_LOCK(hdr);
	mutex_enter(hash_lock);
	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));

	/*
	 * If the data was read into a temporary buffer,
	 * move it and free the buffer.
	 */
	if (cb->l2rcb_abd != NULL) {
		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
		if (zio->io_error == 0) {
			if (using_rdata) {
				abd_copy(hdr->b_crypt_hdr.b_rabd,
				    cb->l2rcb_abd, arc_hdr_size(hdr));
			} else {
				abd_copy(hdr->b_l1hdr.b_pabd,
				    cb->l2rcb_abd, arc_hdr_size(hdr));
			}
		}

		/*
		 * The following must be done regardless of whether
		 * there was an error:
		 * - free the temporary buffer
		 * - point zio to the real ARC buffer
		 * - set zio size accordingly
		 * These are required because zio is either re-used for
		 * an I/O of the block in the case of the error
		 * or the zio is passed to arc_read_done() and it
		 * needs real data.
		 */
		abd_free(cb->l2rcb_abd);
		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);

		if (using_rdata) {
			ASSERT(HDR_HAS_RABD(hdr));
			zio->io_abd = zio->io_orig_abd =
			    hdr->b_crypt_hdr.b_rabd;
		} else {
			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
			zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
		}
	}

	ASSERT3P(zio->io_abd, !=, NULL);

	/*
	 * Check this survived the L2ARC journey.
	 */
	ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
	    (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
	zio->io_prop.zp_complevel = hdr->b_complevel;

	valid_cksum = arc_cksum_is_equal(hdr, zio);

	/*
	 * b_rabd will always match the data as it exists on disk if it is
	 * being used. Therefore if we are reading into b_rabd we do not
	 * attempt to untransform the data.
	 */
	if (valid_cksum && !using_rdata)
		tfm_error = l2arc_untransform(zio, cb);

	if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
	    !HDR_L2_EVICTED(hdr)) {
		mutex_exit(hash_lock);
		zio->io_private = hdr;
		arc_read_done(zio);
	} else {
		/*
		 * Buffer didn't survive caching.  Increment stats and
		 * reissue to the original storage device.
		 */
		if (zio->io_error != 0) {
			ARCSTAT_BUMP(arcstat_l2_io_error);
		} else {
			zio->io_error = SET_ERROR(EIO);
		}
		if (!valid_cksum || tfm_error != 0)
			ARCSTAT_BUMP(arcstat_l2_cksum_bad);

		/*
		 * If there's no waiter, issue an async i/o to the primary
		 * storage now.  If there *is* a waiter, the caller must
		 * issue the i/o in a context where it's OK to block.
		 */
		if (zio->io_waiter == NULL) {
			zio_t *pio = zio_unique_parent(zio);
			void *abd = (using_rdata) ?
			    hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;

			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);

			zio = zio_read(pio, zio->io_spa, zio->io_bp,
			    abd, zio->io_size, arc_read_done,
			    hdr, zio->io_priority, cb->l2rcb_flags,
			    &cb->l2rcb_zb);

			/*
			 * Original ZIO will be freed, so we need to update
			 * ARC header with the new ZIO pointer to be used
			 * by zio_change_priority() in arc_read().
			 */
			for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
			    acb != NULL; acb = acb->acb_next)
				acb->acb_zio_head = zio;

			mutex_exit(hash_lock);
			zio_nowait(zio);
		} else {
			mutex_exit(hash_lock);
		}
	}

	kmem_free(cb, sizeof (l2arc_read_callback_t));
}

/*
 * This is the list priority from which the L2ARC will search for pages to
 * cache.  This is used within loops (0..3) to cycle through lists in the
 * desired order.  This order can have a significant effect on cache
 * performance.
 *
 * Currently the metadata lists are hit first, MFU then MRU, followed by
 * the data lists.  This function returns a locked list, and also returns
 * the lock pointer.
 */
static multilist_sublist_t *
l2arc_sublist_lock(int list_num)
{
	multilist_t *ml = NULL;
	unsigned int idx;

	ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);

	switch (list_num) {
	case 0:
		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
		break;
	case 1:
		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
		break;
	case 2:
		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
		break;
	case 3:
		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
		break;
	default:
		return (NULL);
	}

	/*
	 * Return a randomly-selected sublist. This is acceptable
	 * because the caller feeds only a little bit of data for each
	 * call (8MB). Subsequent calls will result in different
	 * sublists being selected.
	 */
	idx = multilist_get_random_index(ml);
	return (multilist_sublist_lock_idx(ml, idx));
}

/*
 * Calculates the maximum overhead of L2ARC metadata log blocks for a given
 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
 * overhead in processing to make sure there is enough headroom available
 * when writing buffers.
 */
static inline uint64_t
l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
{
	if (dev->l2ad_log_entries == 0) {
		return (0);
	} else {
		uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;

		uint64_t log_blocks = (log_entries +
		    dev->l2ad_log_entries - 1) /
		    dev->l2ad_log_entries;

		return (vdev_psize_to_asize(dev->l2ad_vdev,
		    sizeof (l2arc_log_blk_phys_t)) * log_blocks);
	}
}

/*
 * Evict buffers from the device write hand to the distance specified in
 * bytes. This distance may span populated buffers, it may span nothing.
 * This is clearing a region on the L2ARC device ready for writing.
 * If the 'all' boolean is set, every buffer is evicted.
 */
static void
l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
{
	list_t *buflist;
	arc_buf_hdr_t *hdr, *hdr_prev;
	kmutex_t *hash_lock;
	uint64_t taddr;
	l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
	vdev_t *vd = dev->l2ad_vdev;
	boolean_t rerun;

	buflist = &dev->l2ad_buflist;

top:
	rerun = B_FALSE;
	if (dev->l2ad_hand + distance > dev->l2ad_end) {
		/*
		 * When there is no space to accommodate upcoming writes,
		 * evict to the end. Then bump the write and evict hands
		 * to the start and iterate. This iteration does not
		 * happen indefinitely as we make sure in
		 * l2arc_write_size() that when the write hand is reset,
		 * the write size does not exceed the end of the device.
		 */
		rerun = B_TRUE;
		taddr = dev->l2ad_end;
	} else {
		taddr = dev->l2ad_hand + distance;
	}
	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
	    uint64_t, taddr, boolean_t, all);

	if (!all) {
		/*
		 * This check has to be placed after deciding whether to
		 * iterate (rerun).
		 */
		if (dev->l2ad_first) {
			/*
			 * This is the first sweep through the device. There is
			 * nothing to evict. We have already trimmmed the
			 * whole device.
			 */
			goto out;
		} else {
			/*
			 * Trim the space to be evicted.
			 */
			if (vd->vdev_has_trim && dev->l2ad_evict < taddr &&
			    l2arc_trim_ahead > 0) {
				/*
				 * We have to drop the spa_config lock because
				 * vdev_trim_range() will acquire it.
				 * l2ad_evict already accounts for the label
				 * size. To prevent vdev_trim_ranges() from
				 * adding it again, we subtract it from
				 * l2ad_evict.
				 */
				spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev);
				vdev_trim_simple(vd,
				    dev->l2ad_evict - VDEV_LABEL_START_SIZE,
				    taddr - dev->l2ad_evict);
				spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev,
				    RW_READER);
			}

			/*
			 * When rebuilding L2ARC we retrieve the evict hand
			 * from the header of the device. Of note, l2arc_evict()
			 * does not actually delete buffers from the cache
			 * device, but trimming may do so depending on the
			 * hardware implementation. Thus keeping track of the
			 * evict hand is useful.
			 */
			dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
		}
	}

retry:
	mutex_enter(&dev->l2ad_mtx);
	/*
	 * We have to account for evicted log blocks. Run vdev_space_update()
	 * on log blocks whose offset (in bytes) is before the evicted offset
	 * (in bytes) by searching in the list of pointers to log blocks
	 * present in the L2ARC device.
	 */
	for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
	    lb_ptr_buf = lb_ptr_buf_prev) {

		lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);

		/* L2BLK_GET_PSIZE returns aligned size for log blocks */
		uint64_t asize = L2BLK_GET_PSIZE(
		    (lb_ptr_buf->lb_ptr)->lbp_prop);

		/*
		 * We don't worry about log blocks left behind (ie
		 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
		 * will never write more than l2arc_evict() evicts.
		 */
		if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
			break;
		} else {
			vdev_space_update(vd, -asize, 0, 0);
			ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
			ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
			zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
			    lb_ptr_buf);
			(void) zfs_refcount_remove(&dev->l2ad_lb_count,
			    lb_ptr_buf);
			list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
			kmem_free(lb_ptr_buf->lb_ptr,
			    sizeof (l2arc_log_blkptr_t));
			kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
		}
	}

	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
		hdr_prev = list_prev(buflist, hdr);

		ASSERT(!HDR_EMPTY(hdr));
		hash_lock = HDR_LOCK(hdr);

		/*
		 * We cannot use mutex_enter or else we can deadlock
		 * with l2arc_write_buffers (due to swapping the order
		 * the hash lock and l2ad_mtx are taken).
		 */
		if (!mutex_tryenter(hash_lock)) {
			/*
			 * Missed the hash lock.  Retry.
			 */
			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
			mutex_exit(&dev->l2ad_mtx);
			mutex_enter(hash_lock);
			mutex_exit(hash_lock);
			goto retry;
		}

		/*
		 * A header can't be on this list if it doesn't have L2 header.
		 */
		ASSERT(HDR_HAS_L2HDR(hdr));

		/* Ensure this header has finished being written. */
		ASSERT(!HDR_L2_WRITING(hdr));
		ASSERT(!HDR_L2_WRITE_HEAD(hdr));

		if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
			/*
			 * We've evicted to the target address,
			 * or the end of the device.
			 */
			mutex_exit(hash_lock);
			break;
		}

		if (!HDR_HAS_L1HDR(hdr)) {
			ASSERT(!HDR_L2_READING(hdr));
			/*
			 * This doesn't exist in the ARC.  Destroy.
			 * arc_hdr_destroy() will call list_remove()
			 * and decrement arcstat_l2_lsize.
			 */
			arc_change_state(arc_anon, hdr);
			arc_hdr_destroy(hdr);
		} else {
			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
			/*
			 * Invalidate issued or about to be issued
			 * reads, since we may be about to write
			 * over this location.
			 */
			if (HDR_L2_READING(hdr)) {
				ARCSTAT_BUMP(arcstat_l2_evict_reading);
				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
			}

			arc_hdr_l2hdr_destroy(hdr);
		}
		mutex_exit(hash_lock);
	}
	mutex_exit(&dev->l2ad_mtx);

out:
	/*
	 * We need to check if we evict all buffers, otherwise we may iterate
	 * unnecessarily.
	 */
	if (!all && rerun) {
		/*
		 * Bump device hand to the device start if it is approaching the
		 * end. l2arc_evict() has already evicted ahead for this case.
		 */
		dev->l2ad_hand = dev->l2ad_start;
		dev->l2ad_evict = dev->l2ad_start;
		dev->l2ad_first = B_FALSE;
		goto top;
	}

	if (!all) {
		/*
		 * In case of cache device removal (all) the following
		 * assertions may be violated without functional consequences
		 * as the device is about to be removed.
		 */
		ASSERT3U(dev->l2ad_hand + distance, <=, dev->l2ad_end);
		if (!dev->l2ad_first)
			ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
	}
}

/*
 * Handle any abd transforms that might be required for writing to the L2ARC.
 * If successful, this function will always return an abd with the data
 * transformed as it is on disk in a new abd of asize bytes.
 */
static int
l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
    abd_t **abd_out)
{
	int ret;
	abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
	enum zio_compress compress = HDR_GET_COMPRESS(hdr);
	uint64_t psize = HDR_GET_PSIZE(hdr);
	uint64_t size = arc_hdr_size(hdr);
	boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
	boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
	dsl_crypto_key_t *dck = NULL;
	uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
	boolean_t no_crypt = B_FALSE;

	ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
	    !HDR_COMPRESSION_ENABLED(hdr)) ||
	    HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
	ASSERT3U(psize, <=, asize);

	/*
	 * If this data simply needs its own buffer, we simply allocate it
	 * and copy the data. This may be done to eliminate a dependency on a
	 * shared buffer or to reallocate the buffer to match asize.
	 */
	if (HDR_HAS_RABD(hdr)) {
		ASSERT3U(asize, >, psize);
		to_write = abd_alloc_for_io(asize, ismd);
		abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
		abd_zero_off(to_write, psize, asize - psize);
		goto out;
	}

	if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
	    !HDR_ENCRYPTED(hdr)) {
		ASSERT3U(size, ==, psize);
		to_write = abd_alloc_for_io(asize, ismd);
		abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
		if (asize > size)
			abd_zero_off(to_write, size, asize - size);
		goto out;
	}

	if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
		cabd = abd_alloc_for_io(MAX(size, asize), ismd);
		uint64_t csize = zio_compress_data(compress, to_write, &cabd,
		    size, MIN(size, psize), hdr->b_complevel);
		if (csize >= size || csize > psize) {
			/*
			 * We can't re-compress the block into the original
			 * psize.  Even if it fits into asize, it does not
			 * matter, since checksum will never match on read.
			 */
			abd_free(cabd);
			return (SET_ERROR(EIO));
		}
		if (asize > csize)
			abd_zero_off(cabd, csize, asize - csize);
		to_write = cabd;
	}

	if (HDR_ENCRYPTED(hdr)) {
		eabd = abd_alloc_for_io(asize, ismd);

		/*
		 * If the dataset was disowned before the buffer
		 * made it to this point, the key to re-encrypt
		 * it won't be available. In this case we simply
		 * won't write the buffer to the L2ARC.
		 */
		ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
		    FTAG, &dck);
		if (ret != 0)
			goto error;

		ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
		    hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
		    hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
		    &no_crypt);
		if (ret != 0)
			goto error;

		if (no_crypt)
			abd_copy(eabd, to_write, psize);

		if (psize != asize)
			abd_zero_off(eabd, psize, asize - psize);

		/* assert that the MAC we got here matches the one we saved */
		ASSERT0(memcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
		spa_keystore_dsl_key_rele(spa, dck, FTAG);

		if (to_write == cabd)
			abd_free(cabd);

		to_write = eabd;
	}

out:
	ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
	*abd_out = to_write;
	return (0);

error:
	if (dck != NULL)
		spa_keystore_dsl_key_rele(spa, dck, FTAG);
	if (cabd != NULL)
		abd_free(cabd);
	if (eabd != NULL)
		abd_free(eabd);

	*abd_out = NULL;
	return (ret);
}

static void
l2arc_blk_fetch_done(zio_t *zio)
{
	l2arc_read_callback_t *cb;

	cb = zio->io_private;
	if (cb->l2rcb_abd != NULL)
		abd_free(cb->l2rcb_abd);
	kmem_free(cb, sizeof (l2arc_read_callback_t));
}

/*
 * Find and write ARC buffers to the L2ARC device.
 *
 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
 * for reading until they have completed writing.
 * The headroom_boost is an in-out parameter used to maintain headroom boost
 * state between calls to this function.
 *
 * Returns the number of bytes actually written (which may be smaller than
 * the delta by which the device hand has changed due to alignment and the
 * writing of log blocks).
 */
static uint64_t
l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
{
	arc_buf_hdr_t 		*hdr, *head, *marker;
	uint64_t 		write_asize, write_psize, headroom;
	boolean_t		full, from_head = !arc_warm;
	l2arc_write_callback_t	*cb = NULL;
	zio_t 			*pio, *wzio;
	uint64_t 		guid = spa_load_guid(spa);
	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;

	ASSERT3P(dev->l2ad_vdev, !=, NULL);

	pio = NULL;
	write_asize = write_psize = 0;
	full = B_FALSE;
	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
	marker = arc_state_alloc_marker();

	/*
	 * Copy buffers for L2ARC writing.
	 */
	for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) {
		/*
		 * pass == 0: MFU meta
		 * pass == 1: MRU meta
		 * pass == 2: MFU data
		 * pass == 3: MRU data
		 */
		if (l2arc_mfuonly == 1) {
			if (pass == 1 || pass == 3)
				continue;
		} else if (l2arc_mfuonly > 1) {
			if (pass == 3)
				continue;
		}

		uint64_t passed_sz = 0;
		headroom = target_sz * l2arc_headroom;
		if (zfs_compressed_arc_enabled)
			headroom = (headroom * l2arc_headroom_boost) / 100;

		/*
		 * Until the ARC is warm and starts to evict, read from the
		 * head of the ARC lists rather than the tail.
		 */
		multilist_sublist_t *mls = l2arc_sublist_lock(pass);
		ASSERT3P(mls, !=, NULL);
		if (from_head)
			hdr = multilist_sublist_head(mls);
		else
			hdr = multilist_sublist_tail(mls);

		while (hdr != NULL) {
			kmutex_t *hash_lock;
			abd_t *to_write = NULL;

			hash_lock = HDR_LOCK(hdr);
			if (!mutex_tryenter(hash_lock)) {
skip:
				/* Skip this buffer rather than waiting. */
				if (from_head)
					hdr = multilist_sublist_next(mls, hdr);
				else
					hdr = multilist_sublist_prev(mls, hdr);
				continue;
			}

			passed_sz += HDR_GET_LSIZE(hdr);
			if (l2arc_headroom != 0 && passed_sz > headroom) {
				/*
				 * Searched too far.
				 */
				mutex_exit(hash_lock);
				break;
			}

			if (!l2arc_write_eligible(guid, hdr)) {
				mutex_exit(hash_lock);
				goto skip;
			}

			ASSERT(HDR_HAS_L1HDR(hdr));
			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
			ASSERT3U(arc_hdr_size(hdr), >, 0);
			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
			    HDR_HAS_RABD(hdr));
			uint64_t psize = HDR_GET_PSIZE(hdr);
			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
			    psize);

			/*
			 * If the allocated size of this buffer plus the max
			 * size for the pending log block exceeds the evicted
			 * target size, terminate writing buffers for this run.
			 */
			if (write_asize + asize +
			    sizeof (l2arc_log_blk_phys_t) > target_sz) {
				full = B_TRUE;
				mutex_exit(hash_lock);
				break;
			}

			/*
			 * We should not sleep with sublist lock held or it
			 * may block ARC eviction.  Insert a marker to save
			 * the position and drop the lock.
			 */
			if (from_head) {
				multilist_sublist_insert_after(mls, hdr,
				    marker);
			} else {
				multilist_sublist_insert_before(mls, hdr,
				    marker);
			}
			multilist_sublist_unlock(mls);

			/*
			 * If this header has b_rabd, we can use this since it
			 * must always match the data exactly as it exists on
			 * disk. Otherwise, the L2ARC can normally use the
			 * hdr's data, but if we're sharing data between the
			 * hdr and one of its bufs, L2ARC needs its own copy of
			 * the data so that the ZIO below can't race with the
			 * buf consumer. To ensure that this copy will be
			 * available for the lifetime of the ZIO and be cleaned
			 * up afterwards, we add it to the l2arc_free_on_write
			 * queue. If we need to apply any transforms to the
			 * data (compression, encryption) we will also need the
			 * extra buffer.
			 */
			if (HDR_HAS_RABD(hdr) && psize == asize) {
				to_write = hdr->b_crypt_hdr.b_rabd;
			} else if ((HDR_COMPRESSION_ENABLED(hdr) ||
			    HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
			    !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
			    psize == asize) {
				to_write = hdr->b_l1hdr.b_pabd;
			} else {
				int ret;
				arc_buf_contents_t type = arc_buf_type(hdr);

				ret = l2arc_apply_transforms(spa, hdr, asize,
				    &to_write);
				if (ret != 0) {
					arc_hdr_clear_flags(hdr,
					    ARC_FLAG_L2CACHE);
					mutex_exit(hash_lock);
					goto next;
				}

				l2arc_free_abd_on_write(to_write, asize, type);
			}

			hdr->b_l2hdr.b_dev = dev;
			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
			hdr->b_l2hdr.b_hits = 0;
			hdr->b_l2hdr.b_arcs_state =
			    hdr->b_l1hdr.b_state->arcs_state;
			arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR |
			    ARC_FLAG_L2_WRITING);

			(void) zfs_refcount_add_many(&dev->l2ad_alloc,
			    arc_hdr_size(hdr), hdr);
			l2arc_hdr_arcstats_increment(hdr);
			vdev_space_update(dev->l2ad_vdev, asize, 0, 0);

			mutex_enter(&dev->l2ad_mtx);
			if (pio == NULL) {
				/*
				 * Insert a dummy header on the buflist so
				 * l2arc_write_done() can find where the
				 * write buffers begin without searching.
				 */
				list_insert_head(&dev->l2ad_buflist, head);
			}
			list_insert_head(&dev->l2ad_buflist, hdr);
			mutex_exit(&dev->l2ad_mtx);

			boolean_t commit = l2arc_log_blk_insert(dev, hdr);
			mutex_exit(hash_lock);

			if (pio == NULL) {
				cb = kmem_alloc(
				    sizeof (l2arc_write_callback_t), KM_SLEEP);
				cb->l2wcb_dev = dev;
				cb->l2wcb_head = head;
				list_create(&cb->l2wcb_abd_list,
				    sizeof (l2arc_lb_abd_buf_t),
				    offsetof(l2arc_lb_abd_buf_t, node));
				pio = zio_root(spa, l2arc_write_done, cb,
				    ZIO_FLAG_CANFAIL);
			}

			wzio = zio_write_phys(pio, dev->l2ad_vdev,
			    dev->l2ad_hand, asize, to_write,
			    ZIO_CHECKSUM_OFF, NULL, hdr,
			    ZIO_PRIORITY_ASYNC_WRITE,
			    ZIO_FLAG_CANFAIL, B_FALSE);

			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
			    zio_t *, wzio);
			zio_nowait(wzio);

			write_psize += psize;
			write_asize += asize;
			dev->l2ad_hand += asize;

			if (commit) {
				/* l2ad_hand will be adjusted inside. */
				write_asize +=
				    l2arc_log_blk_commit(dev, pio, cb);
			}

next:
			multilist_sublist_lock(mls);
			if (from_head)
				hdr = multilist_sublist_next(mls, marker);
			else
				hdr = multilist_sublist_prev(mls, marker);
			multilist_sublist_remove(mls, marker);
		}

		multilist_sublist_unlock(mls);

		if (full == B_TRUE)
			break;
	}

	arc_state_free_marker(marker);

	/* No buffers selected for writing? */
	if (pio == NULL) {
		ASSERT0(write_psize);
		ASSERT(!HDR_HAS_L1HDR(head));
		kmem_cache_free(hdr_l2only_cache, head);

		/*
		 * Although we did not write any buffers l2ad_evict may
		 * have advanced.
		 */
		if (dev->l2ad_evict != l2dhdr->dh_evict)
			l2arc_dev_hdr_update(dev);

		return (0);
	}

	if (!dev->l2ad_first)
		ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);

	ASSERT3U(write_asize, <=, target_sz);
	ARCSTAT_BUMP(arcstat_l2_writes_sent);
	ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);

	dev->l2ad_writing = B_TRUE;
	(void) zio_wait(pio);
	dev->l2ad_writing = B_FALSE;

	/*
	 * Update the device header after the zio completes as
	 * l2arc_write_done() may have updated the memory holding the log block
	 * pointers in the device header.
	 */
	l2arc_dev_hdr_update(dev);

	return (write_asize);
}

static boolean_t
l2arc_hdr_limit_reached(void)
{
	int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size);

	return (arc_reclaim_needed() ||
	    (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100));
}

/*
 * This thread feeds the L2ARC at regular intervals.  This is the beating
 * heart of the L2ARC.
 */
static  __attribute__((noreturn)) void
l2arc_feed_thread(void *unused)
{
	(void) unused;
	callb_cpr_t cpr;
	l2arc_dev_t *dev;
	spa_t *spa;
	uint64_t size, wrote;
	clock_t begin, next = ddi_get_lbolt();
	fstrans_cookie_t cookie;

	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);

	mutex_enter(&l2arc_feed_thr_lock);

	cookie = spl_fstrans_mark();
	while (l2arc_thread_exit == 0) {
		CALLB_CPR_SAFE_BEGIN(&cpr);
		(void) cv_timedwait_idle(&l2arc_feed_thr_cv,
		    &l2arc_feed_thr_lock, next);
		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
		next = ddi_get_lbolt() + hz;

		/*
		 * Quick check for L2ARC devices.
		 */
		mutex_enter(&l2arc_dev_mtx);
		if (l2arc_ndev == 0) {
			mutex_exit(&l2arc_dev_mtx);
			continue;
		}
		mutex_exit(&l2arc_dev_mtx);
		begin = ddi_get_lbolt();

		/*
		 * This selects the next l2arc device to write to, and in
		 * doing so the next spa to feed from: dev->l2ad_spa.   This
		 * will return NULL if there are now no l2arc devices or if
		 * they are all faulted.
		 *
		 * If a device is returned, its spa's config lock is also
		 * held to prevent device removal.  l2arc_dev_get_next()
		 * will grab and release l2arc_dev_mtx.
		 */
		if ((dev = l2arc_dev_get_next()) == NULL)
			continue;

		spa = dev->l2ad_spa;
		ASSERT3P(spa, !=, NULL);

		/*
		 * If the pool is read-only then force the feed thread to
		 * sleep a little longer.
		 */
		if (!spa_writeable(spa)) {
			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
			spa_config_exit(spa, SCL_L2ARC, dev);
			continue;
		}

		/*
		 * Avoid contributing to memory pressure.
		 */
		if (l2arc_hdr_limit_reached()) {
			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
			spa_config_exit(spa, SCL_L2ARC, dev);
			continue;
		}

		ARCSTAT_BUMP(arcstat_l2_feeds);

		size = l2arc_write_size(dev);

		/*
		 * Evict L2ARC buffers that will be overwritten.
		 */
		l2arc_evict(dev, size, B_FALSE);

		/*
		 * Write ARC buffers.
		 */
		wrote = l2arc_write_buffers(spa, dev, size);

		/*
		 * Calculate interval between writes.
		 */
		next = l2arc_write_interval(begin, size, wrote);
		spa_config_exit(spa, SCL_L2ARC, dev);
	}
	spl_fstrans_unmark(cookie);

	l2arc_thread_exit = 0;
	cv_broadcast(&l2arc_feed_thr_cv);
	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
	thread_exit();
}

boolean_t
l2arc_vdev_present(vdev_t *vd)
{
	return (l2arc_vdev_get(vd) != NULL);
}

/*
 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
 * the vdev_t isn't an L2ARC device.
 */
l2arc_dev_t *
l2arc_vdev_get(vdev_t *vd)
{
	l2arc_dev_t	*dev;

	mutex_enter(&l2arc_dev_mtx);
	for (dev = list_head(l2arc_dev_list); dev != NULL;
	    dev = list_next(l2arc_dev_list, dev)) {
		if (dev->l2ad_vdev == vd)
			break;
	}
	mutex_exit(&l2arc_dev_mtx);

	return (dev);
}

static void
l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen)
{
	l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
	uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
	spa_t *spa = dev->l2ad_spa;

	/*
	 * The L2ARC has to hold at least the payload of one log block for
	 * them to be restored (persistent L2ARC). The payload of a log block
	 * depends on the amount of its log entries. We always write log blocks
	 * with 1022 entries. How many of them are committed or restored depends
	 * on the size of the L2ARC device. Thus the maximum payload of
	 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
	 * is less than that, we reduce the amount of committed and restored
	 * log entries per block so as to enable persistence.
	 */
	if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
		dev->l2ad_log_entries = 0;
	} else {
		dev->l2ad_log_entries = MIN((dev->l2ad_end -
		    dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
		    L2ARC_LOG_BLK_MAX_ENTRIES);
	}

	/*
	 * Read the device header, if an error is returned do not rebuild L2ARC.
	 */
	if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) {
		/*
		 * If we are onlining a cache device (vdev_reopen) that was
		 * still present (l2arc_vdev_present()) and rebuild is enabled,
		 * we should evict all ARC buffers and pointers to log blocks
		 * and reclaim their space before restoring its contents to
		 * L2ARC.
		 */
		if (reopen) {
			if (!l2arc_rebuild_enabled) {
				return;
			} else {
				l2arc_evict(dev, 0, B_TRUE);
				/* start a new log block */
				dev->l2ad_log_ent_idx = 0;
				dev->l2ad_log_blk_payload_asize = 0;
				dev->l2ad_log_blk_payload_start = 0;
			}
		}
		/*
		 * Just mark the device as pending for a rebuild. We won't
		 * be starting a rebuild in line here as it would block pool
		 * import. Instead spa_load_impl will hand that off to an
		 * async task which will call l2arc_spa_rebuild_start.
		 */
		dev->l2ad_rebuild = B_TRUE;
	} else if (spa_writeable(spa)) {
		/*
		 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
		 * otherwise create a new header. We zero out the memory holding
		 * the header to reset dh_start_lbps. If we TRIM the whole
		 * device the new header will be written by
		 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
		 * trim_state in the header too. When reading the header, if
		 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
		 * we opt to TRIM the whole device again.
		 */
		if (l2arc_trim_ahead > 0) {
			dev->l2ad_trim_all = B_TRUE;
		} else {
			memset(l2dhdr, 0, l2dhdr_asize);
			l2arc_dev_hdr_update(dev);
		}
	}
}

/*
 * Add a vdev for use by the L2ARC.  By this point the spa has already
 * validated the vdev and opened it.
 */
void
l2arc_add_vdev(spa_t *spa, vdev_t *vd)
{
	l2arc_dev_t		*adddev;
	uint64_t		l2dhdr_asize;

	ASSERT(!l2arc_vdev_present(vd));

	/*
	 * Create a new l2arc device entry.
	 */
	adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
	adddev->l2ad_spa = spa;
	adddev->l2ad_vdev = vd;
	/* leave extra size for an l2arc device header */
	l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
	    MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
	adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
	ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
	adddev->l2ad_hand = adddev->l2ad_start;
	adddev->l2ad_evict = adddev->l2ad_start;
	adddev->l2ad_first = B_TRUE;
	adddev->l2ad_writing = B_FALSE;
	adddev->l2ad_trim_all = B_FALSE;
	list_link_init(&adddev->l2ad_node);
	adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);

	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
	/*
	 * This is a list of all ARC buffers that are still valid on the
	 * device.
	 */
	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));

	/*
	 * This is a list of pointers to log blocks that are still present
	 * on the device.
	 */
	list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
	    offsetof(l2arc_lb_ptr_buf_t, node));

	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
	zfs_refcount_create(&adddev->l2ad_alloc);
	zfs_refcount_create(&adddev->l2ad_lb_asize);
	zfs_refcount_create(&adddev->l2ad_lb_count);

	/*
	 * Decide if dev is eligible for L2ARC rebuild or whole device
	 * trimming. This has to happen before the device is added in the
	 * cache device list and l2arc_dev_mtx is released. Otherwise
	 * l2arc_feed_thread() might already start writing on the
	 * device.
	 */
	l2arc_rebuild_dev(adddev, B_FALSE);

	/*
	 * Add device to global list
	 */
	mutex_enter(&l2arc_dev_mtx);
	list_insert_head(l2arc_dev_list, adddev);
	atomic_inc_64(&l2arc_ndev);
	mutex_exit(&l2arc_dev_mtx);
}

/*
 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen()
 * in case of onlining a cache device.
 */
void
l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
{
	l2arc_dev_t		*dev = NULL;

	dev = l2arc_vdev_get(vd);
	ASSERT3P(dev, !=, NULL);

	/*
	 * In contrast to l2arc_add_vdev() we do not have to worry about
	 * l2arc_feed_thread() invalidating previous content when onlining a
	 * cache device. The device parameters (l2ad*) are not cleared when
	 * offlining the device and writing new buffers will not invalidate
	 * all previous content. In worst case only buffers that have not had
	 * their log block written to the device will be lost.
	 * When onlining the cache device (ie offline->online without exporting
	 * the pool in between) this happens:
	 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev()
	 * 			|			|
	 * 		vdev_is_dead() = B_FALSE	l2ad_rebuild = B_TRUE
	 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild
	 * is set to B_TRUE we might write additional buffers to the device.
	 */
	l2arc_rebuild_dev(dev, reopen);
}

/*
 * Remove a vdev from the L2ARC.
 */
void
l2arc_remove_vdev(vdev_t *vd)
{
	l2arc_dev_t *remdev = NULL;

	/*
	 * Find the device by vdev
	 */
	remdev = l2arc_vdev_get(vd);
	ASSERT3P(remdev, !=, NULL);

	/*
	 * Cancel any ongoing or scheduled rebuild.
	 */
	mutex_enter(&l2arc_rebuild_thr_lock);
	if (remdev->l2ad_rebuild_began == B_TRUE) {
		remdev->l2ad_rebuild_cancel = B_TRUE;
		while (remdev->l2ad_rebuild == B_TRUE)
			cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
	}
	mutex_exit(&l2arc_rebuild_thr_lock);

	/*
	 * Remove device from global list
	 */
	mutex_enter(&l2arc_dev_mtx);
	list_remove(l2arc_dev_list, remdev);
	l2arc_dev_last = NULL;		/* may have been invalidated */
	atomic_dec_64(&l2arc_ndev);
	mutex_exit(&l2arc_dev_mtx);

	/*
	 * Clear all buflists and ARC references.  L2ARC device flush.
	 */
	l2arc_evict(remdev, 0, B_TRUE);
	list_destroy(&remdev->l2ad_buflist);
	ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
	list_destroy(&remdev->l2ad_lbptr_list);
	mutex_destroy(&remdev->l2ad_mtx);
	zfs_refcount_destroy(&remdev->l2ad_alloc);
	zfs_refcount_destroy(&remdev->l2ad_lb_asize);
	zfs_refcount_destroy(&remdev->l2ad_lb_count);
	kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
	vmem_free(remdev, sizeof (l2arc_dev_t));
}

void
l2arc_init(void)
{
	l2arc_thread_exit = 0;
	l2arc_ndev = 0;

	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
	mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
	cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);

	l2arc_dev_list = &L2ARC_dev_list;
	l2arc_free_on_write = &L2ARC_free_on_write;
	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
	    offsetof(l2arc_dev_t, l2ad_node));
	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
	    offsetof(l2arc_data_free_t, l2df_list_node));
}

void
l2arc_fini(void)
{
	mutex_destroy(&l2arc_feed_thr_lock);
	cv_destroy(&l2arc_feed_thr_cv);
	mutex_destroy(&l2arc_rebuild_thr_lock);
	cv_destroy(&l2arc_rebuild_thr_cv);
	mutex_destroy(&l2arc_dev_mtx);
	mutex_destroy(&l2arc_free_on_write_mtx);

	list_destroy(l2arc_dev_list);
	list_destroy(l2arc_free_on_write);
}

void
l2arc_start(void)
{
	if (!(spa_mode_global & SPA_MODE_WRITE))
		return;

	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
	    TS_RUN, defclsyspri);
}

void
l2arc_stop(void)
{
	if (!(spa_mode_global & SPA_MODE_WRITE))
		return;

	mutex_enter(&l2arc_feed_thr_lock);
	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
	l2arc_thread_exit = 1;
	while (l2arc_thread_exit != 0)
		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
	mutex_exit(&l2arc_feed_thr_lock);
}

/*
 * Punches out rebuild threads for the L2ARC devices in a spa. This should
 * be called after pool import from the spa async thread, since starting
 * these threads directly from spa_import() will make them part of the
 * "zpool import" context and delay process exit (and thus pool import).
 */
void
l2arc_spa_rebuild_start(spa_t *spa)
{
	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	/*
	 * Locate the spa's l2arc devices and kick off rebuild threads.
	 */
	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
		l2arc_dev_t *dev =
		    l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
		if (dev == NULL) {
			/* Don't attempt a rebuild if the vdev is UNAVAIL */
			continue;
		}
		mutex_enter(&l2arc_rebuild_thr_lock);
		if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
			dev->l2ad_rebuild_began = B_TRUE;
			(void) thread_create(NULL, 0, l2arc_dev_rebuild_thread,
			    dev, 0, &p0, TS_RUN, minclsyspri);
		}
		mutex_exit(&l2arc_rebuild_thr_lock);
	}
}

/*
 * Main entry point for L2ARC rebuilding.
 */
static __attribute__((noreturn)) void
l2arc_dev_rebuild_thread(void *arg)
{
	l2arc_dev_t *dev = arg;

	VERIFY(!dev->l2ad_rebuild_cancel);
	VERIFY(dev->l2ad_rebuild);
	(void) l2arc_rebuild(dev);
	mutex_enter(&l2arc_rebuild_thr_lock);
	dev->l2ad_rebuild_began = B_FALSE;
	dev->l2ad_rebuild = B_FALSE;
	mutex_exit(&l2arc_rebuild_thr_lock);

	thread_exit();
}

/*
 * This function implements the actual L2ARC metadata rebuild. It:
 * starts reading the log block chain and restores each block's contents
 * to memory (reconstructing arc_buf_hdr_t's).
 *
 * Operation stops under any of the following conditions:
 *
 * 1) We reach the end of the log block chain.
 * 2) We encounter *any* error condition (cksum errors, io errors)
 */
static int
l2arc_rebuild(l2arc_dev_t *dev)
{
	vdev_t			*vd = dev->l2ad_vdev;
	spa_t			*spa = vd->vdev_spa;
	int			err = 0;
	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
	l2arc_log_blk_phys_t	*this_lb, *next_lb;
	zio_t			*this_io = NULL, *next_io = NULL;
	l2arc_log_blkptr_t	lbps[2];
	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
	boolean_t		lock_held;

	this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP);
	next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP);

	/*
	 * We prevent device removal while issuing reads to the device,
	 * then during the rebuilding phases we drop this lock again so
	 * that a spa_unload or device remove can be initiated - this is
	 * safe, because the spa will signal us to stop before removing
	 * our device and wait for us to stop.
	 */
	spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
	lock_held = B_TRUE;

	/*
	 * Retrieve the persistent L2ARC device state.
	 * L2BLK_GET_PSIZE returns aligned size for log blocks.
	 */
	dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
	dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
	    L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
	    dev->l2ad_start);
	dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);

	vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time;
	vd->vdev_trim_state = l2dhdr->dh_trim_state;

	/*
	 * In case the zfs module parameter l2arc_rebuild_enabled is false
	 * we do not start the rebuild process.
	 */
	if (!l2arc_rebuild_enabled)
		goto out;

	/* Prepare the rebuild process */
	memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));

	/* Start the rebuild process */
	for (;;) {
		if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
			break;

		if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
		    this_lb, next_lb, this_io, &next_io)) != 0)
			goto out;

		/*
		 * Our memory pressure valve. If the system is running low
		 * on memory, rather than swamping memory with new ARC buf
		 * hdrs, we opt not to rebuild the L2ARC. At this point,
		 * however, we have already set up our L2ARC dev to chain in
		 * new metadata log blocks, so the user may choose to offline/
		 * online the L2ARC dev at a later time (or re-import the pool)
		 * to reconstruct it (when there's less memory pressure).
		 */
		if (l2arc_hdr_limit_reached()) {
			ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
			cmn_err(CE_NOTE, "System running low on memory, "
			    "aborting L2ARC rebuild.");
			err = SET_ERROR(ENOMEM);
			goto out;
		}

		spa_config_exit(spa, SCL_L2ARC, vd);
		lock_held = B_FALSE;

		/*
		 * Now that we know that the next_lb checks out alright, we
		 * can start reconstruction from this log block.
		 * L2BLK_GET_PSIZE returns aligned size for log blocks.
		 */
		uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
		l2arc_log_blk_restore(dev, this_lb, asize);

		/*
		 * log block restored, include its pointer in the list of
		 * pointers to log blocks present in the L2ARC device.
		 */
		lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
		lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
		    KM_SLEEP);
		memcpy(lb_ptr_buf->lb_ptr, &lbps[0],
		    sizeof (l2arc_log_blkptr_t));
		mutex_enter(&dev->l2ad_mtx);
		list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
		ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
		ARCSTAT_BUMP(arcstat_l2_log_blk_count);
		zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
		zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
		mutex_exit(&dev->l2ad_mtx);
		vdev_space_update(vd, asize, 0, 0);

		/*
		 * Protection against loops of log blocks:
		 *
		 *				       l2ad_hand  l2ad_evict
		 *                                         V	      V
		 * l2ad_start |=======================================| l2ad_end
		 *             -----|||----|||---|||----|||
		 *                  (3)    (2)   (1)    (0)
		 *             ---|||---|||----|||---|||
		 *		  (7)   (6)    (5)   (4)
		 *
		 * In this situation the pointer of log block (4) passes
		 * l2arc_log_blkptr_valid() but the log block should not be
		 * restored as it is overwritten by the payload of log block
		 * (0). Only log blocks (0)-(3) should be restored. We check
		 * whether l2ad_evict lies in between the payload starting
		 * offset of the next log block (lbps[1].lbp_payload_start)
		 * and the payload starting offset of the present log block
		 * (lbps[0].lbp_payload_start). If true and this isn't the
		 * first pass, we are looping from the beginning and we should
		 * stop.
		 */
		if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
		    lbps[0].lbp_payload_start, dev->l2ad_evict) &&
		    !dev->l2ad_first)
			goto out;

		kpreempt(KPREEMPT_SYNC);
		for (;;) {
			mutex_enter(&l2arc_rebuild_thr_lock);
			if (dev->l2ad_rebuild_cancel) {
				dev->l2ad_rebuild = B_FALSE;
				cv_signal(&l2arc_rebuild_thr_cv);
				mutex_exit(&l2arc_rebuild_thr_lock);
				err = SET_ERROR(ECANCELED);
				goto out;
			}
			mutex_exit(&l2arc_rebuild_thr_lock);
			if (spa_config_tryenter(spa, SCL_L2ARC, vd,
			    RW_READER)) {
				lock_held = B_TRUE;
				break;
			}
			/*
			 * L2ARC config lock held by somebody in writer,
			 * possibly due to them trying to remove us. They'll
			 * likely to want us to shut down, so after a little
			 * delay, we check l2ad_rebuild_cancel and retry
			 * the lock again.
			 */
			delay(1);
		}

		/*
		 * Continue with the next log block.
		 */
		lbps[0] = lbps[1];
		lbps[1] = this_lb->lb_prev_lbp;
		PTR_SWAP(this_lb, next_lb);
		this_io = next_io;
		next_io = NULL;
	}

	if (this_io != NULL)
		l2arc_log_blk_fetch_abort(this_io);
out:
	if (next_io != NULL)
		l2arc_log_blk_fetch_abort(next_io);
	vmem_free(this_lb, sizeof (*this_lb));
	vmem_free(next_lb, sizeof (*next_lb));

	if (!l2arc_rebuild_enabled) {
		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
		    "disabled");
	} else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
		ARCSTAT_BUMP(arcstat_l2_rebuild_success);
		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
		    "successful, restored %llu blocks",
		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
	} else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
		/*
		 * No error but also nothing restored, meaning the lbps array
		 * in the device header points to invalid/non-present log
		 * blocks. Reset the header.
		 */
		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
		    "no valid log blocks");
		memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize);
		l2arc_dev_hdr_update(dev);
	} else if (err == ECANCELED) {
		/*
		 * In case the rebuild was canceled do not log to spa history
		 * log as the pool may be in the process of being removed.
		 */
		zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
	} else if (err != 0) {
		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
		    "aborted, restored %llu blocks",
		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
	}

	if (lock_held)
		spa_config_exit(spa, SCL_L2ARC, vd);

	return (err);
}

/*
 * Attempts to read the device header on the provided L2ARC device and writes
 * it to `hdr'. On success, this function returns 0, otherwise the appropriate
 * error code is returned.
 */
static int
l2arc_dev_hdr_read(l2arc_dev_t *dev)
{
	int			err;
	uint64_t		guid;
	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
	const uint64_t		l2dhdr_asize = dev->l2ad_dev_hdr_asize;
	abd_t 			*abd;

	guid = spa_guid(dev->l2ad_vdev->vdev_spa);

	abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);

	err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
	    VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
	    ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
	    ZIO_FLAG_SPECULATIVE, B_FALSE));

	abd_free(abd);

	if (err != 0) {
		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
		zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
		    "vdev guid: %llu", err,
		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
		return (err);
	}

	if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
		byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));

	if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
	    l2dhdr->dh_spa_guid != guid ||
	    l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
	    l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
	    l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
	    l2dhdr->dh_end != dev->l2ad_end ||
	    !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
	    l2dhdr->dh_evict) ||
	    (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE &&
	    l2arc_trim_ahead > 0)) {
		/*
		 * Attempt to rebuild a device containing no actual dev hdr
		 * or containing a header from some other pool or from another
		 * version of persistent L2ARC.
		 */
		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
		return (SET_ERROR(ENOTSUP));
	}

	return (0);
}

/*
 * Reads L2ARC log blocks from storage and validates their contents.
 *
 * This function implements a simple fetcher to make sure that while
 * we're processing one buffer the L2ARC is already fetching the next
 * one in the chain.
 *
 * The arguments this_lp and next_lp point to the current and next log block
 * address in the block chain. Similarly, this_lb and next_lb hold the
 * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
 *
 * The `this_io' and `next_io' arguments are used for block fetching.
 * When issuing the first blk IO during rebuild, you should pass NULL for
 * `this_io'. This function will then issue a sync IO to read the block and
 * also issue an async IO to fetch the next block in the block chain. The
 * fetched IO is returned in `next_io'. On subsequent calls to this
 * function, pass the value returned in `next_io' from the previous call
 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
 * Prior to the call, you should initialize your `next_io' pointer to be
 * NULL. If no fetch IO was issued, the pointer is left set at NULL.
 *
 * On success, this function returns 0, otherwise it returns an appropriate
 * error code. On error the fetching IO is aborted and cleared before
 * returning from this function. Therefore, if we return `success', the
 * caller can assume that we have taken care of cleanup of fetch IOs.
 */
static int
l2arc_log_blk_read(l2arc_dev_t *dev,
    const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
    l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
    zio_t *this_io, zio_t **next_io)
{
	int		err = 0;
	zio_cksum_t	cksum;
	uint64_t	asize;

	ASSERT(this_lbp != NULL && next_lbp != NULL);
	ASSERT(this_lb != NULL && next_lb != NULL);
	ASSERT(next_io != NULL && *next_io == NULL);
	ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));

	/*
	 * Check to see if we have issued the IO for this log block in a
	 * previous run. If not, this is the first call, so issue it now.
	 */
	if (this_io == NULL) {
		this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
		    this_lb);
	}

	/*
	 * Peek to see if we can start issuing the next IO immediately.
	 */
	if (l2arc_log_blkptr_valid(dev, next_lbp)) {
		/*
		 * Start issuing IO for the next log block early - this
		 * should help keep the L2ARC device busy while we
		 * decompress and restore this log block.
		 */
		*next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
		    next_lb);
	}

	/* Wait for the IO to read this log block to complete */
	if ((err = zio_wait(this_io)) != 0) {
		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
		zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
		    "offset: %llu, vdev guid: %llu", err,
		    (u_longlong_t)this_lbp->lbp_daddr,
		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
		goto cleanup;
	}

	/*
	 * Make sure the buffer checks out.
	 * L2BLK_GET_PSIZE returns aligned size for log blocks.
	 */
	asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
	fletcher_4_native(this_lb, asize, NULL, &cksum);
	if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
		zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
		    "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
		    (u_longlong_t)this_lbp->lbp_daddr,
		    (u_longlong_t)dev->l2ad_vdev->vdev_guid,
		    (u_longlong_t)dev->l2ad_hand,
		    (u_longlong_t)dev->l2ad_evict);
		err = SET_ERROR(ECKSUM);
		goto cleanup;
	}

	/* Now we can take our time decoding this buffer */
	switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
	case ZIO_COMPRESS_OFF:
		break;
	case ZIO_COMPRESS_LZ4: {
		abd_t *abd = abd_alloc_linear(asize, B_TRUE);
		abd_copy_from_buf_off(abd, this_lb, 0, asize);
		abd_t dabd;
		abd_get_from_buf_struct(&dabd, this_lb, sizeof (*this_lb));
		err = zio_decompress_data(
		    L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
		    abd, &dabd, asize, sizeof (*this_lb), NULL);
		abd_free(&dabd);
		abd_free(abd);
		if (err != 0) {
			err = SET_ERROR(EINVAL);
			goto cleanup;
		}
		break;
	}
	default:
		err = SET_ERROR(EINVAL);
		goto cleanup;
	}
	if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
		byteswap_uint64_array(this_lb, sizeof (*this_lb));
	if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
		err = SET_ERROR(EINVAL);
		goto cleanup;
	}
cleanup:
	/* Abort an in-flight fetch I/O in case of error */
	if (err != 0 && *next_io != NULL) {
		l2arc_log_blk_fetch_abort(*next_io);
		*next_io = NULL;
	}
	return (err);
}

/*
 * Restores the payload of a log block to ARC. This creates empty ARC hdr
 * entries which only contain an l2arc hdr, essentially restoring the
 * buffers to their L2ARC evicted state. This function also updates space
 * usage on the L2ARC vdev to make sure it tracks restored buffers.
 */
static void
l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
    uint64_t lb_asize)
{
	uint64_t	size = 0, asize = 0;
	uint64_t	log_entries = dev->l2ad_log_entries;

	/*
	 * Usually arc_adapt() is called only for data, not headers, but
	 * since we may allocate significant amount of memory here, let ARC
	 * grow its arc_c.
	 */
	arc_adapt(log_entries * HDR_L2ONLY_SIZE);

	for (int i = log_entries - 1; i >= 0; i--) {
		/*
		 * Restore goes in the reverse temporal direction to preserve
		 * correct temporal ordering of buffers in the l2ad_buflist.
		 * l2arc_hdr_restore also does a list_insert_tail instead of
		 * list_insert_head on the l2ad_buflist:
		 *
		 *		LIST	l2ad_buflist		LIST
		 *		HEAD  <------ (time) ------	TAIL
		 * direction	+-----+-----+-----+-----+-----+    direction
		 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
		 * fill		+-----+-----+-----+-----+-----+
		 *		^				^
		 *		|				|
		 *		|				|
		 *	l2arc_feed_thread		l2arc_rebuild
		 *	will place new bufs here	restores bufs here
		 *
		 * During l2arc_rebuild() the device is not used by
		 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
		 */
		size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
		asize += vdev_psize_to_asize(dev->l2ad_vdev,
		    L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
		l2arc_hdr_restore(&lb->lb_entries[i], dev);
	}

	/*
	 * Record rebuild stats:
	 *	size		Logical size of restored buffers in the L2ARC
	 *	asize		Aligned size of restored buffers in the L2ARC
	 */
	ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
	ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
	ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
	ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
	ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
	ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
}

/*
 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
 * into a state indicating that it has been evicted to L2ARC.
 */
static void
l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
{
	arc_buf_hdr_t		*hdr, *exists;
	kmutex_t		*hash_lock;
	arc_buf_contents_t	type = L2BLK_GET_TYPE((le)->le_prop);
	uint64_t		asize;

	/*
	 * Do all the allocation before grabbing any locks, this lets us
	 * sleep if memory is full and we don't have to deal with failed
	 * allocations.
	 */
	hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
	    dev, le->le_dva, le->le_daddr,
	    L2BLK_GET_PSIZE((le)->le_prop), le->le_birth,
	    L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel,
	    L2BLK_GET_PROTECTED((le)->le_prop),
	    L2BLK_GET_PREFETCH((le)->le_prop),
	    L2BLK_GET_STATE((le)->le_prop));
	asize = vdev_psize_to_asize(dev->l2ad_vdev,
	    L2BLK_GET_PSIZE((le)->le_prop));

	/*
	 * vdev_space_update() has to be called before arc_hdr_destroy() to
	 * avoid underflow since the latter also calls vdev_space_update().
	 */
	l2arc_hdr_arcstats_increment(hdr);
	vdev_space_update(dev->l2ad_vdev, asize, 0, 0);

	mutex_enter(&dev->l2ad_mtx);
	list_insert_tail(&dev->l2ad_buflist, hdr);
	(void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
	mutex_exit(&dev->l2ad_mtx);

	exists = buf_hash_insert(hdr, &hash_lock);
	if (exists) {
		/* Buffer was already cached, no need to restore it. */
		arc_hdr_destroy(hdr);
		/*
		 * If the buffer is already cached, check whether it has
		 * L2ARC metadata. If not, enter them and update the flag.
		 * This is important is case of onlining a cache device, since
		 * we previously evicted all L2ARC metadata from ARC.
		 */
		if (!HDR_HAS_L2HDR(exists)) {
			arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
			exists->b_l2hdr.b_dev = dev;
			exists->b_l2hdr.b_daddr = le->le_daddr;
			exists->b_l2hdr.b_arcs_state =
			    L2BLK_GET_STATE((le)->le_prop);
			mutex_enter(&dev->l2ad_mtx);
			list_insert_tail(&dev->l2ad_buflist, exists);
			(void) zfs_refcount_add_many(&dev->l2ad_alloc,
			    arc_hdr_size(exists), exists);
			mutex_exit(&dev->l2ad_mtx);
			l2arc_hdr_arcstats_increment(exists);
			vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
		}
		ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
	}

	mutex_exit(hash_lock);
}

/*
 * Starts an asynchronous read IO to read a log block. This is used in log
 * block reconstruction to start reading the next block before we are done
 * decoding and reconstructing the current block, to keep the l2arc device
 * nice and hot with read IO to process.
 * The returned zio will contain a newly allocated memory buffers for the IO
 * data which should then be freed by the caller once the zio is no longer
 * needed (i.e. due to it having completed). If you wish to abort this
 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
 * care of disposing of the allocated buffers correctly.
 */
static zio_t *
l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
    l2arc_log_blk_phys_t *lb)
{
	uint32_t		asize;
	zio_t			*pio;
	l2arc_read_callback_t	*cb;

	/* L2BLK_GET_PSIZE returns aligned size for log blocks */
	asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
	ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));

	cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
	cb->l2rcb_abd = abd_get_from_buf(lb, asize);
	pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY);
	(void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
	    cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
	    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL |
	    ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));

	return (pio);
}

/*
 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
 * buffers allocated for it.
 */
static void
l2arc_log_blk_fetch_abort(zio_t *zio)
{
	(void) zio_wait(zio);
}

/*
 * Creates a zio to update the device header on an l2arc device.
 */
void
l2arc_dev_hdr_update(l2arc_dev_t *dev)
{
	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
	const uint64_t		l2dhdr_asize = dev->l2ad_dev_hdr_asize;
	abd_t			*abd;
	int			err;

	VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));

	l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
	l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
	l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
	l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
	l2dhdr->dh_log_entries = dev->l2ad_log_entries;
	l2dhdr->dh_evict = dev->l2ad_evict;
	l2dhdr->dh_start = dev->l2ad_start;
	l2dhdr->dh_end = dev->l2ad_end;
	l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
	l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
	l2dhdr->dh_flags = 0;
	l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time;
	l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state;
	if (dev->l2ad_first)
		l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;

	abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);

	err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
	    VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
	    NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));

	abd_free(abd);

	if (err != 0) {
		zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
		    "vdev guid: %llu", err,
		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
	}
}

/*
 * Commits a log block to the L2ARC device. This routine is invoked from
 * l2arc_write_buffers when the log block fills up.
 * This function allocates some memory to temporarily hold the serialized
 * buffer to be written. This is then released in l2arc_write_done.
 */
static uint64_t
l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
{
	l2arc_log_blk_phys_t	*lb = &dev->l2ad_log_blk;
	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
	uint64_t		psize, asize;
	zio_t			*wzio;
	l2arc_lb_abd_buf_t	*abd_buf;
	abd_t			*abd = NULL;
	l2arc_lb_ptr_buf_t	*lb_ptr_buf;

	VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);

	abd_buf = zio_buf_alloc(sizeof (*abd_buf));
	abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
	lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
	lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);

	/* link the buffer into the block chain */
	lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
	lb->lb_magic = L2ARC_LOG_BLK_MAGIC;

	/*
	 * l2arc_log_blk_commit() may be called multiple times during a single
	 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
	 * so we can free them in l2arc_write_done() later on.
	 */
	list_insert_tail(&cb->l2wcb_abd_list, abd_buf);

	/* try to compress the buffer, at least one sector to save */
	psize = zio_compress_data(ZIO_COMPRESS_LZ4,
	    abd_buf->abd, &abd, sizeof (*lb),
	    zio_get_compression_max_size(ZIO_COMPRESS_LZ4,
	    dev->l2ad_vdev->vdev_ashift,
	    dev->l2ad_vdev->vdev_ashift, sizeof (*lb)), 0);

	/* a log block is never entirely zero */
	ASSERT(psize != 0);
	asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
	ASSERT(asize <= sizeof (*lb));

	/*
	 * Update the start log block pointer in the device header to point
	 * to the log block we're about to write.
	 */
	l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
	l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
	l2dhdr->dh_start_lbps[0].lbp_payload_asize =
	    dev->l2ad_log_blk_payload_asize;
	l2dhdr->dh_start_lbps[0].lbp_payload_start =
	    dev->l2ad_log_blk_payload_start;
	L2BLK_SET_LSIZE(
	    (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
	L2BLK_SET_PSIZE(
	    (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
	L2BLK_SET_CHECKSUM(
	    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
	    ZIO_CHECKSUM_FLETCHER_4);
	if (asize < sizeof (*lb)) {
		/* compression succeeded */
		abd_zero_off(abd, psize, asize - psize);
		L2BLK_SET_COMPRESS(
		    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
		    ZIO_COMPRESS_LZ4);
	} else {
		/* compression failed */
		abd_copy_from_buf_off(abd, lb, 0, sizeof (*lb));
		L2BLK_SET_COMPRESS(
		    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
		    ZIO_COMPRESS_OFF);
	}

	/* checksum what we're about to write */
	abd_fletcher_4_native(abd, asize, NULL,
	    &l2dhdr->dh_start_lbps[0].lbp_cksum);

	abd_free(abd_buf->abd);

	/* perform the write itself */
	abd_buf->abd = abd;
	wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
	    asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
	    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
	DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
	(void) zio_nowait(wzio);

	dev->l2ad_hand += asize;
	vdev_space_update(dev->l2ad_vdev, asize, 0, 0);

	/*
	 * Include the committed log block's pointer  in the list of pointers
	 * to log blocks present in the L2ARC device.
	 */
	memcpy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[0],
	    sizeof (l2arc_log_blkptr_t));
	mutex_enter(&dev->l2ad_mtx);
	list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
	ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
	ARCSTAT_BUMP(arcstat_l2_log_blk_count);
	zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
	zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
	mutex_exit(&dev->l2ad_mtx);

	/* bump the kstats */
	ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
	ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
	ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
	ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
	    dev->l2ad_log_blk_payload_asize / asize);

	/* start a new log block */
	dev->l2ad_log_ent_idx = 0;
	dev->l2ad_log_blk_payload_asize = 0;
	dev->l2ad_log_blk_payload_start = 0;

	return (asize);
}

/*
 * Validates an L2ARC log block address to make sure that it can be read
 * from the provided L2ARC device.
 */
boolean_t
l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
{
	/* L2BLK_GET_PSIZE returns aligned size for log blocks */
	uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
	uint64_t end = lbp->lbp_daddr + asize - 1;
	uint64_t start = lbp->lbp_payload_start;
	boolean_t evicted = B_FALSE;

	/*
	 * A log block is valid if all of the following conditions are true:
	 * - it fits entirely (including its payload) between l2ad_start and
	 *   l2ad_end
	 * - it has a valid size
	 * - neither the log block itself nor part of its payload was evicted
	 *   by l2arc_evict():
	 *
	 *		l2ad_hand          l2ad_evict
	 *		|			 |	lbp_daddr
	 *		|     start		 |	|  end
	 *		|     |			 |	|  |
	 *		V     V		         V	V  V
	 *   l2ad_start ============================================ l2ad_end
	 *                    --------------------------||||
	 *				^		 ^
	 *				|		log block
	 *				payload
	 */

	evicted =
	    l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
	    l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
	    l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
	    l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);

	return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
	    asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
	    (!evicted || dev->l2ad_first));
}

/*
 * Inserts ARC buffer header `hdr' into the current L2ARC log block on
 * the device. The buffer being inserted must be present in L2ARC.
 * Returns B_TRUE if the L2ARC log block is full and needs to be committed
 * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
 */
static boolean_t
l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
{
	l2arc_log_blk_phys_t	*lb = &dev->l2ad_log_blk;
	l2arc_log_ent_phys_t	*le;

	if (dev->l2ad_log_entries == 0)
		return (B_FALSE);

	int index = dev->l2ad_log_ent_idx++;

	ASSERT3S(index, <, dev->l2ad_log_entries);
	ASSERT(HDR_HAS_L2HDR(hdr));

	le = &lb->lb_entries[index];
	memset(le, 0, sizeof (*le));
	le->le_dva = hdr->b_dva;
	le->le_birth = hdr->b_birth;
	le->le_daddr = hdr->b_l2hdr.b_daddr;
	if (index == 0)
		dev->l2ad_log_blk_payload_start = le->le_daddr;
	L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
	L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
	L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
	le->le_complevel = hdr->b_complevel;
	L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
	L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
	L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
	L2BLK_SET_STATE((le)->le_prop, hdr->b_l2hdr.b_arcs_state);

	dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
	    HDR_GET_PSIZE(hdr));

	return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
}

/*
 * Checks whether a given L2ARC device address sits in a time-sequential
 * range. The trick here is that the L2ARC is a rotary buffer, so we can't
 * just do a range comparison, we need to handle the situation in which the
 * range wraps around the end of the L2ARC device. Arguments:
 *	bottom -- Lower end of the range to check (written to earlier).
 *	top    -- Upper end of the range to check (written to later).
 *	check  -- The address for which we want to determine if it sits in
 *		  between the top and bottom.
 *
 * The 3-way conditional below represents the following cases:
 *
 *	bottom < top : Sequentially ordered case:
 *	  <check>--------+-------------------+
 *	                 |  (overlap here?)  |
 *	 L2ARC dev       V                   V
 *	 |---------------<bottom>============<top>--------------|
 *
 *	bottom > top: Looped-around case:
 *	                      <check>--------+------------------+
 *	                                     |  (overlap here?) |
 *	 L2ARC dev                           V                  V
 *	 |===============<top>---------------<bottom>===========|
 *	 ^               ^
 *	 |  (or here?)   |
 *	 +---------------+---------<check>
 *
 *	top == bottom : Just a single address comparison.
 */
boolean_t
l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
{
	if (bottom < top)
		return (bottom <= check && check <= top);
	else if (bottom > top)
		return (check <= top || bottom <= check);
	else
		return (check == top);
}

EXPORT_SYMBOL(arc_buf_size);
EXPORT_SYMBOL(arc_write);
EXPORT_SYMBOL(arc_read);
EXPORT_SYMBOL(arc_buf_info);
EXPORT_SYMBOL(arc_getbuf_func);
EXPORT_SYMBOL(arc_add_prune_callback);
EXPORT_SYMBOL(arc_remove_prune_callback);

ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min,
	spl_param_get_u64, ZMOD_RW, "Minimum ARC size in bytes");

ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max,
	spl_param_get_u64, ZMOD_RW, "Maximum ARC size in bytes");

ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_balance, UINT, ZMOD_RW,
	"Balance between metadata and data on ghost hits.");

ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int,
	param_get_uint, ZMOD_RW, "Seconds before growing ARC size");

ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int,
	param_get_uint, ZMOD_RW, "log2(fraction of ARC to reclaim)");

ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW,
	"Percent of pagecache to reclaim ARC to");

ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, UINT, ZMOD_RD,
	"Target average block size");

ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW,
	"Disable compressed ARC buffers");

ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int,
	param_get_uint, ZMOD_RW, "Min life of prefetch block in ms");

ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms,
    param_set_arc_int, param_get_uint, ZMOD_RW,
	"Min life of prescient prefetched block in ms");

ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, U64, ZMOD_RW,
	"Max write bytes per interval");

ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, U64, ZMOD_RW,
	"Extra write bytes during device warmup");

ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, U64, ZMOD_RW,
	"Number of max device writes to precache");

ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, U64, ZMOD_RW,
	"Compressed l2arc_headroom multiplier");

ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, U64, ZMOD_RW,
	"TRIM ahead L2ARC write size multiplier");

ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, U64, ZMOD_RW,
	"Seconds between L2ARC writing");

ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, U64, ZMOD_RW,
	"Min feed interval in milliseconds");

ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW,
	"Skip caching prefetched buffers");

ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW,
	"Turbo L2ARC warmup");

ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW,
	"No reads during writes");

ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, UINT, ZMOD_RW,
	"Percent of ARC size allowed for L2ARC-only headers");

ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW,
	"Rebuild the L2ARC when importing a pool");

ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, U64, ZMOD_RW,
	"Min size in bytes to write rebuild log blocks in L2ARC");

ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW,
	"Cache only MFU data from ARC into L2ARC");

ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW,
	"Exclude dbufs on special vdevs from being cached to L2ARC if set.");

ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int,
	param_get_uint, ZMOD_RW, "System free memory I/O throttle in bytes");

ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_u64,
	spl_param_get_u64, ZMOD_RW, "System free memory target size in bytes");

ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_u64,
	spl_param_get_u64, ZMOD_RW, "Minimum bytes of dnodes in ARC");

ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent,
    param_set_arc_int, param_get_uint, ZMOD_RW,
	"Percent of ARC meta buffers for dnodes");

ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, UINT, ZMOD_RW,
	"Percentage of excess dnodes to try to unpin");

ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, UINT, ZMOD_RW,
	"When full, ARC allocation waits for eviction of this % of alloc size");

ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, UINT, ZMOD_RW,
	"The number of headers to evict per sublist before moving to the next");

ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW,
	"Number of arc_prune threads");