aboutsummaryrefslogtreecommitdiffstats
path: root/module/splat/splat-kmem.c
blob: b3fd1a84dc871a4d95deaafcf9c88dfd6986860d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
/*****************************************************************************\
 *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
 *  Copyright (C) 2007 The Regents of the University of California.
 *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
 *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
 *  UCRL-CODE-235197
 *
 *  This file is part of the SPL, Solaris Porting Layer.
 *  For details, see <http://zfsonlinux.org/>.
 *
 *  The SPL is free software; you can redistribute it and/or modify it
 *  under the terms of the GNU General Public License as published by the
 *  Free Software Foundation; either version 2 of the License, or (at your
 *  option) any later version.
 *
 *  The SPL is distributed in the hope that it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 *  for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
 *****************************************************************************
 *  Solaris Porting LAyer Tests (SPLAT) Kmem Tests.
\*****************************************************************************/

#include <sys/kmem.h>
#include <sys/kmem_cache.h>
#include <sys/vmem.h>
#include <sys/random.h>
#include <sys/thread.h>
#include <sys/vmsystm.h>
#include "splat-internal.h"

#define SPLAT_KMEM_NAME			"kmem"
#define SPLAT_KMEM_DESC			"Kernel Malloc/Slab Tests"

#define SPLAT_KMEM_TEST1_ID		0x0101
#define SPLAT_KMEM_TEST1_NAME		"kmem_alloc"
#define SPLAT_KMEM_TEST1_DESC		"Memory allocation test (kmem_alloc)"

#define SPLAT_KMEM_TEST2_ID		0x0102
#define SPLAT_KMEM_TEST2_NAME		"kmem_zalloc"
#define SPLAT_KMEM_TEST2_DESC		"Memory allocation test (kmem_zalloc)"

#define SPLAT_KMEM_TEST3_ID		0x0103
#define SPLAT_KMEM_TEST3_NAME		"vmem_alloc"
#define SPLAT_KMEM_TEST3_DESC		"Memory allocation test (vmem_alloc)"

#define SPLAT_KMEM_TEST4_ID		0x0104
#define SPLAT_KMEM_TEST4_NAME		"vmem_zalloc"
#define SPLAT_KMEM_TEST4_DESC		"Memory allocation test (vmem_zalloc)"

#define SPLAT_KMEM_TEST5_ID		0x0105
#define SPLAT_KMEM_TEST5_NAME		"slab_small"
#define SPLAT_KMEM_TEST5_DESC		"Slab ctor/dtor test (small)"

#define SPLAT_KMEM_TEST6_ID		0x0106
#define SPLAT_KMEM_TEST6_NAME		"slab_large"
#define SPLAT_KMEM_TEST6_DESC		"Slab ctor/dtor test (large)"

#define SPLAT_KMEM_TEST7_ID		0x0107
#define SPLAT_KMEM_TEST7_NAME		"slab_align"
#define SPLAT_KMEM_TEST7_DESC		"Slab alignment test"

#define SPLAT_KMEM_TEST8_ID		0x0108
#define SPLAT_KMEM_TEST8_NAME		"slab_reap"
#define SPLAT_KMEM_TEST8_DESC		"Slab reaping test"

#define SPLAT_KMEM_TEST9_ID		0x0109
#define SPLAT_KMEM_TEST9_NAME		"slab_age"
#define SPLAT_KMEM_TEST9_DESC		"Slab aging test"

#define SPLAT_KMEM_TEST10_ID		0x010a
#define SPLAT_KMEM_TEST10_NAME		"slab_lock"
#define SPLAT_KMEM_TEST10_DESC		"Slab locking test"

#if 0
#define SPLAT_KMEM_TEST11_ID		0x010b
#define SPLAT_KMEM_TEST11_NAME		"slab_overcommit"
#define SPLAT_KMEM_TEST11_DESC		"Slab memory overcommit test"
#endif

#define SPLAT_KMEM_TEST13_ID		0x010d
#define SPLAT_KMEM_TEST13_NAME		"slab_reclaim"
#define SPLAT_KMEM_TEST13_DESC		"Slab direct memory reclaim test"

#define SPLAT_KMEM_ALLOC_COUNT		10
#define SPLAT_VMEM_ALLOC_COUNT		10


static int
splat_kmem_test1(struct file *file, void *arg)
{
	void *ptr[SPLAT_KMEM_ALLOC_COUNT];
	int size = PAGE_SIZE;
	int i, count, rc = 0;

	while ((!rc) && (size <= spl_kmem_alloc_warn)) {
		count = 0;

		for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
			ptr[i] = kmem_alloc(size, KM_SLEEP);
			if (ptr[i])
				count++;
		}

		for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++)
			if (ptr[i])
				kmem_free(ptr[i], size);

		splat_vprint(file, SPLAT_KMEM_TEST1_NAME,
			   "%d byte allocations, %d/%d successful\n",
			   size, count, SPLAT_KMEM_ALLOC_COUNT);
		if (count != SPLAT_KMEM_ALLOC_COUNT)
			rc = -ENOMEM;

		size *= 2;
	}

	return rc;
}

static int
splat_kmem_test2(struct file *file, void *arg)
{
	void *ptr[SPLAT_KMEM_ALLOC_COUNT];
	int size = PAGE_SIZE;
	int i, j, count, rc = 0;

	while ((!rc) && (size <= spl_kmem_alloc_warn)) {
		count = 0;

		for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
			ptr[i] = kmem_zalloc(size, KM_SLEEP);
			if (ptr[i])
				count++;
		}

		/* Ensure buffer has been zero filled */
		for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
			for (j = 0; j < size; j++) {
				if (((char *)ptr[i])[j] != '\0') {
					splat_vprint(file,SPLAT_KMEM_TEST2_NAME,
						  "%d-byte allocation was "
						  "not zeroed\n", size);
					rc = -EFAULT;
				}
			}
		}

		for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++)
			if (ptr[i])
				kmem_free(ptr[i], size);

		splat_vprint(file, SPLAT_KMEM_TEST2_NAME,
			   "%d byte allocations, %d/%d successful\n",
			   size, count, SPLAT_KMEM_ALLOC_COUNT);
		if (count != SPLAT_KMEM_ALLOC_COUNT)
			rc = -ENOMEM;

		size *= 2;
	}

	return rc;
}

static int
splat_kmem_test3(struct file *file, void *arg)
{
	void *ptr[SPLAT_VMEM_ALLOC_COUNT];
	int size = PAGE_SIZE;
	int i, count, rc = 0;

	/*
	 * Test up to 4x the maximum kmem_alloc() size to ensure both
	 * the kmem_alloc() and vmem_alloc() call paths are used.
	 */
	while ((!rc) && (size <= (4 * spl_kmem_alloc_max))) {
		count = 0;

		for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
			ptr[i] = vmem_alloc(size, KM_SLEEP);
			if (ptr[i])
				count++;
		}

		for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++)
			if (ptr[i])
				vmem_free(ptr[i], size);

		splat_vprint(file, SPLAT_KMEM_TEST3_NAME,
			   "%d byte allocations, %d/%d successful\n",
			   size, count, SPLAT_VMEM_ALLOC_COUNT);
		if (count != SPLAT_VMEM_ALLOC_COUNT)
			rc = -ENOMEM;

		size *= 2;
	}

	return rc;
}

static int
splat_kmem_test4(struct file *file, void *arg)
{
	void *ptr[SPLAT_VMEM_ALLOC_COUNT];
	int size = PAGE_SIZE;
	int i, j, count, rc = 0;

	/*
	 * Test up to 4x the maximum kmem_zalloc() size to ensure both
	 * the kmem_zalloc() and vmem_zalloc() call paths are used.
	 */
	while ((!rc) && (size <= (4 * spl_kmem_alloc_max))) {
		count = 0;

		for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
			ptr[i] = vmem_zalloc(size, KM_SLEEP);
			if (ptr[i])
				count++;
		}

		/* Ensure buffer has been zero filled */
		for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
			for (j = 0; j < size; j++) {
				if (((char *)ptr[i])[j] != '\0') {
					splat_vprint(file, SPLAT_KMEM_TEST4_NAME,
						  "%d-byte allocation was "
						  "not zeroed\n", size);
					rc = -EFAULT;
				}
			}
		}

		for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++)
			if (ptr[i])
				vmem_free(ptr[i], size);

		splat_vprint(file, SPLAT_KMEM_TEST4_NAME,
			   "%d byte allocations, %d/%d successful\n",
			   size, count, SPLAT_VMEM_ALLOC_COUNT);
		if (count != SPLAT_VMEM_ALLOC_COUNT)
			rc = -ENOMEM;

		size *= 2;
	}

	return rc;
}

#define SPLAT_KMEM_TEST_MAGIC		0x004488CCUL
#define SPLAT_KMEM_CACHE_NAME		"kmem_test"
#define SPLAT_KMEM_OBJ_COUNT		1024
#define SPLAT_KMEM_OBJ_RECLAIM		32 /* objects */
#define SPLAT_KMEM_THREADS		32

#define KCP_FLAG_READY			0x01

typedef struct kmem_cache_data {
	unsigned long kcd_magic;
	struct list_head kcd_node;
	int kcd_flag;
	char kcd_buf[0];
} kmem_cache_data_t;

typedef struct kmem_cache_thread {
	spinlock_t kct_lock;
	int kct_id;
	struct list_head kct_list;
} kmem_cache_thread_t;

typedef struct kmem_cache_priv {
	unsigned long kcp_magic;
	struct file *kcp_file;
	kmem_cache_t *kcp_cache;
	spinlock_t kcp_lock;
	wait_queue_head_t kcp_ctl_waitq;
	wait_queue_head_t kcp_thr_waitq;
	int kcp_flags;
	int kcp_kct_count;
	kmem_cache_thread_t *kcp_kct[SPLAT_KMEM_THREADS];
	int kcp_size;
	int kcp_align;
	int kcp_count;
	int kcp_alloc;
	int kcp_rc;
} kmem_cache_priv_t;

static kmem_cache_priv_t *
splat_kmem_cache_test_kcp_alloc(struct file *file, char *name,
				int size, int align, int alloc)
{
	kmem_cache_priv_t *kcp;

	kcp = kmem_zalloc(sizeof(kmem_cache_priv_t), KM_SLEEP);
	if (!kcp)
		return NULL;

	kcp->kcp_magic = SPLAT_KMEM_TEST_MAGIC;
	kcp->kcp_file = file;
	kcp->kcp_cache = NULL;
	spin_lock_init(&kcp->kcp_lock);
	init_waitqueue_head(&kcp->kcp_ctl_waitq);
	init_waitqueue_head(&kcp->kcp_thr_waitq);
	kcp->kcp_flags = 0;
	kcp->kcp_kct_count = -1;
	kcp->kcp_size = size;
	kcp->kcp_align = align;
	kcp->kcp_count = 0;
	kcp->kcp_alloc = alloc;
	kcp->kcp_rc = 0;

	return kcp;
}

static void
splat_kmem_cache_test_kcp_free(kmem_cache_priv_t *kcp)
{
	kmem_free(kcp, sizeof(kmem_cache_priv_t));
}

static kmem_cache_thread_t *
splat_kmem_cache_test_kct_alloc(kmem_cache_priv_t *kcp, int id)
{
	kmem_cache_thread_t *kct;

	ASSERT3S(id, <, SPLAT_KMEM_THREADS);
	ASSERT(kcp->kcp_kct[id] == NULL);

	kct = kmem_zalloc(sizeof(kmem_cache_thread_t), KM_SLEEP);
	if (!kct)
		return NULL;

	spin_lock_init(&kct->kct_lock);
	kct->kct_id = id;
	INIT_LIST_HEAD(&kct->kct_list);

	spin_lock(&kcp->kcp_lock);
	kcp->kcp_kct[id] = kct;
	spin_unlock(&kcp->kcp_lock);

	return kct;
}

static void
splat_kmem_cache_test_kct_free(kmem_cache_priv_t *kcp,
			       kmem_cache_thread_t *kct)
{
	spin_lock(&kcp->kcp_lock);
	kcp->kcp_kct[kct->kct_id] = NULL;
	spin_unlock(&kcp->kcp_lock);

	kmem_free(kct, sizeof(kmem_cache_thread_t));
}

static void
splat_kmem_cache_test_kcd_free(kmem_cache_priv_t *kcp,
			       kmem_cache_thread_t *kct)
{
	kmem_cache_data_t *kcd;

	spin_lock(&kct->kct_lock);
	while (!list_empty(&kct->kct_list)) {
		kcd = list_entry(kct->kct_list.next,
				 kmem_cache_data_t, kcd_node);
		list_del(&kcd->kcd_node);
		spin_unlock(&kct->kct_lock);

		kmem_cache_free(kcp->kcp_cache, kcd);

		spin_lock(&kct->kct_lock);
	}
	spin_unlock(&kct->kct_lock);
}

static int
splat_kmem_cache_test_kcd_alloc(kmem_cache_priv_t *kcp,
				kmem_cache_thread_t *kct, int count)
{
	kmem_cache_data_t *kcd;
	int i;

	for (i = 0; i < count; i++) {
		kcd = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP);
		if (kcd == NULL) {
			splat_kmem_cache_test_kcd_free(kcp, kct);
			return -ENOMEM;
		}

		spin_lock(&kct->kct_lock);
		list_add_tail(&kcd->kcd_node, &kct->kct_list);
		spin_unlock(&kct->kct_lock);
	}

	return 0;
}

static void
splat_kmem_cache_test_debug(struct file *file, char *name,
			    kmem_cache_priv_t *kcp)
{
	int j;

	splat_vprint(file, name, "%s cache objects %d",
	     kcp->kcp_cache->skc_name, kcp->kcp_count);

	if (kcp->kcp_cache->skc_flags & (KMC_KMEM | KMC_VMEM)) {
		splat_vprint(file, name, ", slabs %u/%u objs %u/%u",
		     (unsigned)kcp->kcp_cache->skc_slab_alloc,
		     (unsigned)kcp->kcp_cache->skc_slab_total,
		     (unsigned)kcp->kcp_cache->skc_obj_alloc,
		     (unsigned)kcp->kcp_cache->skc_obj_total);

		if (!(kcp->kcp_cache->skc_flags & KMC_NOMAGAZINE)) {
			splat_vprint(file, name, "%s", "mags");

			for_each_online_cpu(j)
				splat_print(file, "%u/%u ",
				     kcp->kcp_cache->skc_mag[j]->skm_avail,
				     kcp->kcp_cache->skc_mag[j]->skm_size);
		}
	}

	splat_print(file, "%s\n", "");
}

static int
splat_kmem_cache_test_constructor(void *ptr, void *priv, int flags)
{
	kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
	kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr;

	if (kcd && kcp) {
		kcd->kcd_magic = kcp->kcp_magic;
		INIT_LIST_HEAD(&kcd->kcd_node);
		kcd->kcd_flag = 1;
		memset(kcd->kcd_buf, 0xaa, kcp->kcp_size - (sizeof *kcd));
		kcp->kcp_count++;
	}

	return 0;
}

static void
splat_kmem_cache_test_destructor(void *ptr, void *priv)
{
	kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
	kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr;

	if (kcd && kcp) {
		kcd->kcd_magic = 0;
		kcd->kcd_flag = 0;
		memset(kcd->kcd_buf, 0xbb, kcp->kcp_size - (sizeof *kcd));
		kcp->kcp_count--;
	}

	return;
}

/*
 * Generic reclaim function which assumes that all objects may
 * be reclaimed at any time.  We free a small  percentage of the
 * objects linked off the kcp or kct[] every time we are called.
 */
static void
splat_kmem_cache_test_reclaim(void *priv)
{
	kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
	kmem_cache_thread_t *kct;
	kmem_cache_data_t *kcd;
	LIST_HEAD(reclaim);
	int i, count;

	ASSERT(kcp->kcp_magic == SPLAT_KMEM_TEST_MAGIC);

	/* For each kct thread reclaim some objects */
	spin_lock(&kcp->kcp_lock);
	for (i = 0; i < SPLAT_KMEM_THREADS; i++) {
		kct = kcp->kcp_kct[i];
		if (!kct)
			continue;

		spin_unlock(&kcp->kcp_lock);
		spin_lock(&kct->kct_lock);

		count = SPLAT_KMEM_OBJ_RECLAIM;
		while (count > 0 && !list_empty(&kct->kct_list)) {
			kcd = list_entry(kct->kct_list.next,
					 kmem_cache_data_t, kcd_node);
			list_del(&kcd->kcd_node);
			list_add(&kcd->kcd_node, &reclaim);
			count--;
		}

		spin_unlock(&kct->kct_lock);
		spin_lock(&kcp->kcp_lock);
	}
	spin_unlock(&kcp->kcp_lock);

	/* Freed outside the spin lock */
	while (!list_empty(&reclaim)) {
		kcd = list_entry(reclaim.next, kmem_cache_data_t, kcd_node);
		list_del(&kcd->kcd_node);
		kmem_cache_free(kcp->kcp_cache, kcd);
	}

	return;
}

static int
splat_kmem_cache_test_threads(kmem_cache_priv_t *kcp, int threads)
{
	int rc;

	spin_lock(&kcp->kcp_lock);
	rc = (kcp->kcp_kct_count == threads);
	spin_unlock(&kcp->kcp_lock);

	return rc;
}

static int
splat_kmem_cache_test_flags(kmem_cache_priv_t *kcp, int flags)
{
	int rc;

	spin_lock(&kcp->kcp_lock);
	rc = (kcp->kcp_flags & flags);
	spin_unlock(&kcp->kcp_lock);

	return rc;
}

static void
splat_kmem_cache_test_thread(void *arg)
{
	kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)arg;
	kmem_cache_thread_t *kct;
	int rc = 0, id;

	ASSERT(kcp->kcp_magic == SPLAT_KMEM_TEST_MAGIC);

	/* Assign thread ids */
	spin_lock(&kcp->kcp_lock);
	if (kcp->kcp_kct_count == -1)
		kcp->kcp_kct_count = 0;

	id = kcp->kcp_kct_count;
	kcp->kcp_kct_count++;
	spin_unlock(&kcp->kcp_lock);

	kct = splat_kmem_cache_test_kct_alloc(kcp, id);
	if (!kct) {
		rc = -ENOMEM;
		goto out;
	}

	/* Wait for all threads to have started and report they are ready */
	if (kcp->kcp_kct_count == SPLAT_KMEM_THREADS)
		wake_up(&kcp->kcp_ctl_waitq);

	wait_event(kcp->kcp_thr_waitq,
		splat_kmem_cache_test_flags(kcp, KCP_FLAG_READY));

	/* Create and destroy objects */
	rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, kcp->kcp_alloc);
	splat_kmem_cache_test_kcd_free(kcp, kct);
out:
	if (kct)
		splat_kmem_cache_test_kct_free(kcp, kct);

	spin_lock(&kcp->kcp_lock);
	if (!kcp->kcp_rc)
		kcp->kcp_rc = rc;

	if ((--kcp->kcp_kct_count) == 0)
		wake_up(&kcp->kcp_ctl_waitq);

	spin_unlock(&kcp->kcp_lock);

	thread_exit();
}

static int
splat_kmem_cache_test(struct file *file, void *arg, char *name,
    int size, int align, int flags)
{
	kmem_cache_priv_t *kcp = NULL;
	kmem_cache_data_t **kcd = NULL;
	int i, rc = 0, objs = 0;

	splat_vprint(file, name,
	    "Testing size=%d, align=%d, flags=0x%04x\n",
	    size, align, flags);

	kcp = splat_kmem_cache_test_kcp_alloc(file, name, size, align, 0);
	if (!kcp) {
		splat_vprint(file, name, "Unable to create '%s'\n", "kcp");
		return (-ENOMEM);
	}

	kcp->kcp_cache = kmem_cache_create(SPLAT_KMEM_CACHE_NAME,
	    kcp->kcp_size, kcp->kcp_align,
	    splat_kmem_cache_test_constructor,
	    splat_kmem_cache_test_destructor,
	    NULL, kcp, NULL, flags);
	if (kcp->kcp_cache == NULL) {
		splat_vprint(file, name, "Unable to create "
		    "name='%s', size=%d, align=%d, flags=0x%x\n",
		    SPLAT_KMEM_CACHE_NAME, size, align, flags);
		rc = -ENOMEM;
		goto out_free;
	}

	/*
	 * Allocate several slabs worth of objects to verify functionality.
	 * However, on 32-bit systems with limited address space constrain
	 * it to a single slab for the purposes of this test.
	 */
#ifdef _LP64
	objs = SPL_KMEM_CACHE_OBJ_PER_SLAB * 4;
#else
	objs = 1;
#endif
	kcd = kmem_zalloc(sizeof (kmem_cache_data_t *) * objs, KM_SLEEP);
	if (kcd == NULL) {
		splat_vprint(file, name, "Unable to allocate pointers "
		    "for %d objects\n", objs);
		rc = -ENOMEM;
		goto out_free;
	}

	for (i = 0; i < objs; i++) {
		kcd[i] = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP);
		if (kcd[i] == NULL) {
			splat_vprint(file, name, "Unable to allocate "
			    "from '%s'\n", SPLAT_KMEM_CACHE_NAME);
			rc = -EINVAL;
			goto out_free;
		}

		if (!kcd[i]->kcd_flag) {
			splat_vprint(file, name, "Failed to run constructor "
			    "for '%s'\n", SPLAT_KMEM_CACHE_NAME);
			rc = -EINVAL;
			goto out_free;
		}

		if (kcd[i]->kcd_magic != kcp->kcp_magic) {
			splat_vprint(file, name,
			    "Failed to pass private data to constructor "
			    "for '%s'\n", SPLAT_KMEM_CACHE_NAME);
			rc = -EINVAL;
			goto out_free;
		}
	}

	for (i = 0; i < objs; i++) {
		kmem_cache_free(kcp->kcp_cache, kcd[i]);

		/* Destructors are run for every kmem_cache_free() */
		if (kcd[i]->kcd_flag) {
			splat_vprint(file, name,
			    "Failed to run destructor for '%s'\n",
			    SPLAT_KMEM_CACHE_NAME);
			rc = -EINVAL;
			goto out_free;
		}
	}

	if (kcp->kcp_count) {
		splat_vprint(file, name,
		    "Failed to run destructor on all slab objects for '%s'\n",
		    SPLAT_KMEM_CACHE_NAME);
		rc = -EINVAL;
	}

	kmem_free(kcd, sizeof (kmem_cache_data_t *) * objs);
	kmem_cache_destroy(kcp->kcp_cache);

	splat_kmem_cache_test_kcp_free(kcp);
	splat_vprint(file, name,
	    "Success ran alloc'd/free'd %d objects of size %d\n",
	    objs, size);

	return (rc);

out_free:
	if (kcd) {
		for (i = 0; i < objs; i++) {
			if (kcd[i] != NULL)
				kmem_cache_free(kcp->kcp_cache, kcd[i]);
		}

		kmem_free(kcd, sizeof (kmem_cache_data_t *) * objs);
	}

	if (kcp->kcp_cache)
		kmem_cache_destroy(kcp->kcp_cache);

	splat_kmem_cache_test_kcp_free(kcp);

	return (rc);
}

static int
splat_kmem_cache_thread_test(struct file *file, void *arg, char *name,
			     int size, int alloc, int max_time)
{
	kmem_cache_priv_t *kcp;
	kthread_t *thr;
	struct timespec start, stop, delta;
	char cache_name[32];
	int i, rc = 0;

	kcp = splat_kmem_cache_test_kcp_alloc(file, name, size, 0, alloc);
	if (!kcp) {
		splat_vprint(file, name, "Unable to create '%s'\n", "kcp");
		return -ENOMEM;
	}

	(void)snprintf(cache_name, 32, "%s-%d-%d",
		       SPLAT_KMEM_CACHE_NAME, size, alloc);
	kcp->kcp_cache =
		kmem_cache_create(cache_name, kcp->kcp_size, 0,
				  splat_kmem_cache_test_constructor,
				  splat_kmem_cache_test_destructor,
				  splat_kmem_cache_test_reclaim,
				  kcp, NULL, 0);
	if (!kcp->kcp_cache) {
		splat_vprint(file, name, "Unable to create '%s'\n", cache_name);
		rc = -ENOMEM;
		goto out_kcp;
	}

	getnstimeofday(&start);

	for (i = 0; i < SPLAT_KMEM_THREADS; i++) {
		thr = thread_create(NULL, 0,
				    splat_kmem_cache_test_thread,
				    kcp, 0, &p0, TS_RUN, defclsyspri);
		if (thr == NULL) {
			rc = -ESRCH;
			goto out_cache;
		}
	}

	/* Sleep until all threads have started, then set the ready
	 * flag and wake them all up for maximum concurrency. */
	wait_event(kcp->kcp_ctl_waitq,
		   splat_kmem_cache_test_threads(kcp, SPLAT_KMEM_THREADS));

	spin_lock(&kcp->kcp_lock);
	kcp->kcp_flags |= KCP_FLAG_READY;
	spin_unlock(&kcp->kcp_lock);
	wake_up_all(&kcp->kcp_thr_waitq);

	/* Sleep until all thread have finished */
	wait_event(kcp->kcp_ctl_waitq, splat_kmem_cache_test_threads(kcp, 0));

	getnstimeofday(&stop);
	delta = timespec_sub(stop, start);

	splat_vprint(file, name,
		     "%-22s %2ld.%09ld\t"
		     "%lu/%lu/%lu\t%lu/%lu/%lu\n",
		     kcp->kcp_cache->skc_name,
		     delta.tv_sec, delta.tv_nsec,
		     (unsigned long)kcp->kcp_cache->skc_slab_total,
		     (unsigned long)kcp->kcp_cache->skc_slab_max,
		     (unsigned long)(kcp->kcp_alloc *
				    SPLAT_KMEM_THREADS /
				    SPL_KMEM_CACHE_OBJ_PER_SLAB),
		     (unsigned long)kcp->kcp_cache->skc_obj_total,
		     (unsigned long)kcp->kcp_cache->skc_obj_max,
		     (unsigned long)(kcp->kcp_alloc *
				     SPLAT_KMEM_THREADS));

	if (delta.tv_sec >= max_time)
		rc = -ETIME;

	if (!rc && kcp->kcp_rc)
		rc = kcp->kcp_rc;

out_cache:
	kmem_cache_destroy(kcp->kcp_cache);
out_kcp:
	splat_kmem_cache_test_kcp_free(kcp);
	return rc;
}

/* Validate small object cache behavior for dynamic/kmem/vmem caches */
static int
splat_kmem_test5(struct file *file, void *arg)
{
	char *name = SPLAT_KMEM_TEST5_NAME;
	int i, rc = 0;

	/* Randomly pick small object sizes and alignments. */
	for (i = 0; i < 100; i++) {
		int size, align, flags = 0;
		uint32_t rnd;

		/* Evenly distribute tests over all value cache types */
		get_random_bytes((void *)&rnd, sizeof (uint32_t));
		switch (rnd & 0x03) {
		default:
		case 0x00:
			flags = 0;
			break;
		case 0x01:
			flags = KMC_KMEM;
			break;
		case 0x02:
			flags = KMC_VMEM;
			break;
		case 0x03:
			flags = KMC_SLAB;
			break;
		}

		/* The following flags are set with a 1/10 chance */
		flags |= ((((rnd >> 8) % 10) == 0) ? KMC_OFFSLAB : 0);
		flags |= ((((rnd >> 16) % 10) == 0) ? KMC_NOEMERGENCY : 0);

		/* 32b - PAGE_SIZE */
		get_random_bytes((void *)&rnd, sizeof (uint32_t));
		size = MAX(rnd % (PAGE_SIZE + 1), 32);

		/* 2^N where (3 <= N <= PAGE_SHIFT) */
		get_random_bytes((void *)&rnd, sizeof (uint32_t));
		align = (1 << MAX(3, rnd % (PAGE_SHIFT + 1)));

		rc = splat_kmem_cache_test(file, arg, name, size, align, flags);
		if (rc)
			return (rc);
	}

	return (rc);
}

/*
 * Validate large object cache behavior for dynamic/kmem/vmem caches
 */
static int
splat_kmem_test6(struct file *file, void *arg)
{
	char *name = SPLAT_KMEM_TEST6_NAME;
	int i, max_size, rc = 0;

	/* Randomly pick large object sizes and alignments. */
	for (i = 0; i < 100; i++) {
		int size, align, flags = 0;
		uint32_t rnd;

		/* Evenly distribute tests over all value cache types */
		get_random_bytes((void *)&rnd, sizeof (uint32_t));
		switch (rnd & 0x03) {
		default:
		case 0x00:
			flags = 0;
			max_size = (SPL_KMEM_CACHE_MAX_SIZE * 1024 * 1024) / 2;
			break;
		case 0x01:
			flags = KMC_KMEM;
			max_size = (SPL_MAX_ORDER_NR_PAGES - 2) * PAGE_SIZE;
			break;
		case 0x02:
			flags = KMC_VMEM;
			max_size = (SPL_KMEM_CACHE_MAX_SIZE * 1024 * 1024) / 2;
			break;
		case 0x03:
			flags = KMC_SLAB;
			max_size = SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE;
			break;
		}

		/* The following flags are set with a 1/10 chance */
		flags |= ((((rnd >> 8) % 10) == 0) ? KMC_OFFSLAB : 0);
		flags |= ((((rnd >> 16) % 10) == 0) ? KMC_NOEMERGENCY : 0);

		/* PAGE_SIZE - max_size */
		get_random_bytes((void *)&rnd, sizeof (uint32_t));
		size = MAX(rnd % (max_size + 1), PAGE_SIZE),

		/* 2^N where (3 <= N <= PAGE_SHIFT) */
		get_random_bytes((void *)&rnd, sizeof (uint32_t));
		align = (1 << MAX(3, rnd % (PAGE_SHIFT + 1)));

		rc = splat_kmem_cache_test(file, arg, name, size, align, flags);
		if (rc)
			return (rc);
	}

	return (rc);
}

/*
 * Validate object alignment cache behavior for caches
 */
static int
splat_kmem_test7(struct file *file, void *arg)
{
	char *name = SPLAT_KMEM_TEST7_NAME;
	int max_size = (SPL_KMEM_CACHE_MAX_SIZE * 1024 * 1024) / 2;
	int i, rc;

	for (i = SPL_KMEM_CACHE_ALIGN; i <= PAGE_SIZE; i *= 2) {
		uint32_t size;

		get_random_bytes((void *)&size, sizeof (uint32_t));
		size = MAX(size % (max_size + 1), 32);

		rc = splat_kmem_cache_test(file, arg, name, size, i, 0);
		if (rc)
			return rc;

		rc = splat_kmem_cache_test(file, arg, name, size, i,
		    KMC_OFFSLAB);
		if (rc)
			return rc;
	}

	return rc;
}

/*
 * Validate kmem_cache_reap() by requesting the slab cache free any objects
 * it can.  For a few reasons this may not immediately result in more free
 * memory even if objects are freed.  First off, due to fragmentation we
 * may not be able to reclaim any slabs.  Secondly, even if we do we fully
 * clear some slabs we will not want to immediately reclaim all of them
 * because we may contend with cache allocations and thrash.  What we want
 * to see is the slab size decrease more gradually as it becomes clear they
 * will not be needed.  This should be achievable in less than a minute.
 * If it takes longer than this something has gone wrong.
 */
static int
splat_kmem_test8(struct file *file, void *arg)
{
	kmem_cache_priv_t *kcp;
	kmem_cache_thread_t *kct;
	unsigned int spl_kmem_cache_expire_old;
	int i, rc = 0;

	/* Enable cache aging just for this test if it is disabled */
	spl_kmem_cache_expire_old = spl_kmem_cache_expire;
	spl_kmem_cache_expire = KMC_EXPIRE_AGE;

	kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST8_NAME,
					      256, 0, 0);
	if (!kcp) {
		splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
			     "Unable to create '%s'\n", "kcp");
		rc = -ENOMEM;
		goto out;
	}

	kcp->kcp_cache =
		kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
				  splat_kmem_cache_test_constructor,
				  splat_kmem_cache_test_destructor,
				  splat_kmem_cache_test_reclaim,
				  kcp, NULL, 0);
	if (!kcp->kcp_cache) {
		splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
			   "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
		rc = -ENOMEM;
		goto out_kcp;
	}

	kct = splat_kmem_cache_test_kct_alloc(kcp, 0);
	if (!kct) {
		splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
			     "Unable to create '%s'\n", "kct");
		rc = -ENOMEM;
		goto out_cache;
	}

	rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, SPLAT_KMEM_OBJ_COUNT);
	if (rc) {
		splat_vprint(file, SPLAT_KMEM_TEST8_NAME, "Unable to "
			     "allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME);
		goto out_kct;
	}

	/* Force reclaim every 1/10 a second for 60 seconds. */
	for (i = 0; i < 600; i++) {
		kmem_cache_reap_now(kcp->kcp_cache);
		splat_kmem_cache_test_debug(file, SPLAT_KMEM_TEST8_NAME, kcp);

		if (kcp->kcp_count == 0)
			break;

		set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(HZ / 10);
	}

	if (kcp->kcp_count == 0) {
		splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
			"Successfully created %d objects "
			"in cache %s and reclaimed them\n",
			SPLAT_KMEM_OBJ_COUNT, SPLAT_KMEM_CACHE_NAME);
	} else {
		splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
			"Failed to reclaim %u/%d objects from cache %s\n",
			(unsigned)kcp->kcp_count,
			SPLAT_KMEM_OBJ_COUNT, SPLAT_KMEM_CACHE_NAME);
		rc = -ENOMEM;
	}

	/* Cleanup our mess (for failure case of time expiring) */
	splat_kmem_cache_test_kcd_free(kcp, kct);
out_kct:
	splat_kmem_cache_test_kct_free(kcp, kct);
out_cache:
	kmem_cache_destroy(kcp->kcp_cache);
out_kcp:
	splat_kmem_cache_test_kcp_free(kcp);
out:
	spl_kmem_cache_expire = spl_kmem_cache_expire_old;

	return rc;
}

/* Test cache aging, we have allocated a large number of objects thus
 * creating a large number of slabs and then free'd them all.  However,
 * since there should be little memory pressure at the moment those
 * slabs have not been freed.  What we want to see is the slab size
 * decrease gradually as it becomes clear they will not be be needed.
 * This should be achievable in less than minute.  If it takes longer
 * than this something has gone wrong.
 */
static int
splat_kmem_test9(struct file *file, void *arg)
{
	kmem_cache_priv_t *kcp;
	kmem_cache_thread_t *kct;
	unsigned int spl_kmem_cache_expire_old;
	int i, rc = 0, count = SPLAT_KMEM_OBJ_COUNT * 128;

	/* Enable cache aging just for this test if it is disabled */
	spl_kmem_cache_expire_old = spl_kmem_cache_expire;
	spl_kmem_cache_expire = KMC_EXPIRE_AGE;

	kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST9_NAME,
					      256, 0, 0);
	if (!kcp) {
		splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
			     "Unable to create '%s'\n", "kcp");
		rc = -ENOMEM;
		goto out;
	}

	kcp->kcp_cache =
		kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
				  splat_kmem_cache_test_constructor,
				  splat_kmem_cache_test_destructor,
				  NULL, kcp, NULL, 0);
	if (!kcp->kcp_cache) {
		splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
			   "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
		rc = -ENOMEM;
		goto out_kcp;
	}

	kct = splat_kmem_cache_test_kct_alloc(kcp, 0);
	if (!kct) {
		splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
			     "Unable to create '%s'\n", "kct");
		rc = -ENOMEM;
		goto out_cache;
	}

	rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, count);
	if (rc) {
		splat_vprint(file, SPLAT_KMEM_TEST9_NAME, "Unable to "
			     "allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME);
		goto out_kct;
	}

	splat_kmem_cache_test_kcd_free(kcp, kct);

	for (i = 0; i < 60; i++) {
		splat_kmem_cache_test_debug(file, SPLAT_KMEM_TEST9_NAME, kcp);

		if (kcp->kcp_count == 0)
			break;

		set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(HZ);
	}

	if (kcp->kcp_count == 0) {
		splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
			"Successfully created %d objects "
			"in cache %s and reclaimed them\n",
			count, SPLAT_KMEM_CACHE_NAME);
	} else {
		splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
			"Failed to reclaim %u/%d objects from cache %s\n",
			(unsigned)kcp->kcp_count, count,
			SPLAT_KMEM_CACHE_NAME);
		rc = -ENOMEM;
	}

out_kct:
	splat_kmem_cache_test_kct_free(kcp, kct);
out_cache:
	kmem_cache_destroy(kcp->kcp_cache);
out_kcp:
	splat_kmem_cache_test_kcp_free(kcp);
out:
	spl_kmem_cache_expire = spl_kmem_cache_expire_old;

	return rc;
}

/*
 * This test creates N threads with a shared kmem cache.  They then all
 * concurrently allocate and free from the cache to stress the locking and
 * concurrent cache performance.  If any one test takes longer than 5
 * seconds to complete it is treated as a failure and may indicate a
 * performance regression.  On my test system no one test takes more
 * than 1 second to complete so a 5x slowdown likely a problem.
 */
static int
splat_kmem_test10(struct file *file, void *arg)
{
	uint64_t size, alloc, rc = 0;

	for (size = 32; size <= 1024*1024; size *= 2) {

		splat_vprint(file, SPLAT_KMEM_TEST10_NAME, "%-22s  %s", "name",
			     "time (sec)\tslabs       \tobjs	\thash\n");
		splat_vprint(file, SPLAT_KMEM_TEST10_NAME, "%-22s  %s", "",
			     "	  \ttot/max/calc\ttot/max/calc\n");

		for (alloc = 1; alloc <= 1024; alloc *= 2) {

			/* Skip tests which exceed 1/2 of physical memory. */
			if (size * alloc * SPLAT_KMEM_THREADS > physmem / 2)
				continue;

			rc = splat_kmem_cache_thread_test(file, arg,
				SPLAT_KMEM_TEST10_NAME, size, alloc, 5);
			if (rc)
				break;
		}
	}

	return rc;
}

#if 0
/*
 * This test creates N threads with a shared kmem cache which overcommits
 * memory by 4x.  This makes it impossible for the slab to satify the
 * thread requirements without having its reclaim hook run which will
 * free objects back for use.  This behavior is triggered by the linum VM
 * detecting a low memory condition on the node and invoking the shrinkers.
 * This should allow all the threads to complete while avoiding deadlock
 * and for the most part out of memory events.  This is very tough on the
 * system so it is possible the test app may get oom'ed.  This particular
 * test has proven troublesome on 32-bit archs with limited virtual
 * address space so it only run on 64-bit systems.
 */
static int
splat_kmem_test11(struct file *file, void *arg)
{
	uint64_t size, alloc, rc;

	size = 8 * 1024;
	alloc = ((4 * physmem * PAGE_SIZE) / size) / SPLAT_KMEM_THREADS;

	splat_vprint(file, SPLAT_KMEM_TEST11_NAME, "%-22s  %s", "name",
		     "time (sec)\tslabs       \tobjs	\thash\n");
	splat_vprint(file, SPLAT_KMEM_TEST11_NAME, "%-22s  %s", "",
		     "	  \ttot/max/calc\ttot/max/calc\n");

	rc = splat_kmem_cache_thread_test(file, arg,
		SPLAT_KMEM_TEST11_NAME, size, alloc, 60);

	return rc;
}
#endif

typedef struct dummy_page {
	struct list_head dp_list;
	char             dp_pad[PAGE_SIZE - sizeof(struct list_head)];
} dummy_page_t;

/*
 * This test is designed to verify that direct reclaim is functioning as
 * expected.  We allocate a large number of objects thus creating a large
 * number of slabs.  We then apply memory pressure and expect that the
 * direct reclaim path can easily recover those slabs.  The registered
 * reclaim function will free the objects and the slab shrinker will call
 * it repeatedly until at least a single slab can be freed.
 *
 * Note it may not be possible to reclaim every last slab via direct reclaim
 * without a failure because the shrinker_rwsem may be contended.  For this
 * reason, quickly reclaiming 3/4 of the slabs is considered a success.
 *
 * This should all be possible within 10 seconds.  For reference, on a
 * system with 2G of memory this test takes roughly 0.2 seconds to run.
 * It may take longer on larger memory systems but should still easily
 * complete in the alloted 10 seconds.
 */
static int
splat_kmem_test13(struct file *file, void *arg)
{
	kmem_cache_priv_t *kcp;
	kmem_cache_thread_t *kct;
	dummy_page_t *dp;
	struct list_head list;
	struct timespec start, stop, delta = { 0, 0 };
	int size, count, slabs, fails = 0;
	int i, rc = 0, max_time = 10;

	size = 128 * 1024;
	count = ((physmem * PAGE_SIZE) / 4 / size);

	kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST13_NAME,
	                                      size, 0, 0);
	if (!kcp) {
		splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
		             "Unable to create '%s'\n", "kcp");
		rc = -ENOMEM;
		goto out;
	}

	kcp->kcp_cache =
		kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
		                  splat_kmem_cache_test_constructor,
		                  splat_kmem_cache_test_destructor,
				  splat_kmem_cache_test_reclaim,
		                  kcp, NULL, 0);
	if (!kcp->kcp_cache) {
		splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
		             "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
		rc = -ENOMEM;
		goto out_kcp;
	}

	kct = splat_kmem_cache_test_kct_alloc(kcp, 0);
	if (!kct) {
		splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
			     "Unable to create '%s'\n", "kct");
		rc = -ENOMEM;
		goto out_cache;
	}

	rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, count);
	if (rc) {
		splat_vprint(file, SPLAT_KMEM_TEST13_NAME, "Unable to "
			     "allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME);
		goto out_kct;
	}

	i = 0;
	slabs = kcp->kcp_cache->skc_slab_total;
	INIT_LIST_HEAD(&list);
	getnstimeofday(&start);

	/* Apply memory pressure */
	while (kcp->kcp_cache->skc_slab_total > (slabs >> 2)) {

		if ((i % 10000) == 0)
			splat_kmem_cache_test_debug(
			    file, SPLAT_KMEM_TEST13_NAME, kcp);

		getnstimeofday(&stop);
		delta = timespec_sub(stop, start);
		if (delta.tv_sec >= max_time) {
			splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
				     "Failed to reclaim 3/4 of cache in %ds, "
				     "%u/%u slabs remain\n", max_time,
				     (unsigned)kcp->kcp_cache->skc_slab_total,
				     slabs);
			rc = -ETIME;
			break;
		}

		dp = (dummy_page_t *)__get_free_page(GFP_KERNEL);
		if (!dp) {
			fails++;
			splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
				     "Failed (%d) to allocate page with %u "
				     "slabs still in the cache\n", fails,
				     (unsigned)kcp->kcp_cache->skc_slab_total);
			continue;
		}

		list_add(&dp->dp_list, &list);
		i++;
	}

	if (rc == 0)
		splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
			     "Successfully created %u slabs and with %d alloc "
			     "failures reclaimed 3/4 of them in %d.%03ds\n",
			     slabs, fails,
			     (int)delta.tv_sec, (int)delta.tv_nsec / 1000000);

	/* Release memory pressure pages */
	while (!list_empty(&list)) {
		dp = list_entry(list.next, dummy_page_t, dp_list);
		list_del_init(&dp->dp_list);
		free_page((unsigned long)dp);
	}

	/* Release remaining kmem cache objects */
	splat_kmem_cache_test_kcd_free(kcp, kct);
out_kct:
	splat_kmem_cache_test_kct_free(kcp, kct);
out_cache:
	kmem_cache_destroy(kcp->kcp_cache);
out_kcp:
	splat_kmem_cache_test_kcp_free(kcp);
out:
	return rc;
}

splat_subsystem_t *
splat_kmem_init(void)
{
	splat_subsystem_t *sub;

	sub = kmalloc(sizeof(*sub), GFP_KERNEL);
	if (sub == NULL)
		return NULL;

	memset(sub, 0, sizeof(*sub));
	strncpy(sub->desc.name, SPLAT_KMEM_NAME, SPLAT_NAME_SIZE);
	strncpy(sub->desc.desc, SPLAT_KMEM_DESC, SPLAT_DESC_SIZE);
	INIT_LIST_HEAD(&sub->subsystem_list);
	INIT_LIST_HEAD(&sub->test_list);
	spin_lock_init(&sub->test_lock);
	sub->desc.id = SPLAT_SUBSYSTEM_KMEM;

	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST1_NAME, SPLAT_KMEM_TEST1_DESC,
			SPLAT_KMEM_TEST1_ID, splat_kmem_test1);
	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST2_NAME, SPLAT_KMEM_TEST2_DESC,
			SPLAT_KMEM_TEST2_ID, splat_kmem_test2);
	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST3_NAME, SPLAT_KMEM_TEST3_DESC,
			SPLAT_KMEM_TEST3_ID, splat_kmem_test3);
	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST4_NAME, SPLAT_KMEM_TEST4_DESC,
			SPLAT_KMEM_TEST4_ID, splat_kmem_test4);
	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST5_NAME, SPLAT_KMEM_TEST5_DESC,
			SPLAT_KMEM_TEST5_ID, splat_kmem_test5);
	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST6_NAME, SPLAT_KMEM_TEST6_DESC,
			SPLAT_KMEM_TEST6_ID, splat_kmem_test6);
	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST7_NAME, SPLAT_KMEM_TEST7_DESC,
			SPLAT_KMEM_TEST7_ID, splat_kmem_test7);
	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST8_NAME, SPLAT_KMEM_TEST8_DESC,
			SPLAT_KMEM_TEST8_ID, splat_kmem_test8);
	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST9_NAME, SPLAT_KMEM_TEST9_DESC,
			SPLAT_KMEM_TEST9_ID, splat_kmem_test9);
	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST10_NAME, SPLAT_KMEM_TEST10_DESC,
			SPLAT_KMEM_TEST10_ID, splat_kmem_test10);
#if 0
	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST11_NAME, SPLAT_KMEM_TEST11_DESC,
			SPLAT_KMEM_TEST11_ID, splat_kmem_test11);
#endif
	SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST13_NAME, SPLAT_KMEM_TEST13_DESC,
			SPLAT_KMEM_TEST13_ID, splat_kmem_test13);

	return sub;
}

void
splat_kmem_fini(splat_subsystem_t *sub)
{
	ASSERT(sub);
	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST13_ID);
#if 0
	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST11_ID);
#endif
	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST10_ID);
	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST9_ID);
	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST8_ID);
	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST7_ID);
	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST6_ID);
	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST5_ID);
	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST4_ID);
	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST3_ID);
	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST2_ID);
	SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST1_ID);

	kfree(sub);
}

int
splat_kmem_id(void) {
	return SPLAT_SUBSYSTEM_KMEM;
}