summaryrefslogtreecommitdiffstats
path: root/module/splat/splat-kmem.c
blob: 31499dde326ed1d117b4e0054e74d594f5ea87e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
/*
 *  This file is part of the SPL: Solaris Porting Layer.
 *
 *  Copyright (c) 2008 Lawrence Livermore National Security, LLC.
 *  Produced at Lawrence Livermore National Laboratory
 *  Written by:
 *          Brian Behlendorf <behlendorf1@llnl.gov>,
 *          Herb Wartens <wartens2@llnl.gov>,
 *          Jim Garlick <garlick@llnl.gov>
 *  UCRL-CODE-235197
 *
 *  This is free software; you can redistribute it and/or modify it
 *  under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This is distributed in the hope that it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 *  for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
 */

#include "splat-internal.h"

#define SPLAT_SUBSYSTEM_KMEM		0x0100
#define SPLAT_KMEM_NAME			"kmem"
#define SPLAT_KMEM_DESC			"Kernel Malloc/Slab Tests"

#define SPLAT_KMEM_TEST1_ID		0x0101
#define SPLAT_KMEM_TEST1_NAME		"kmem_alloc"
#define SPLAT_KMEM_TEST1_DESC		"Memory allocation test (kmem_alloc)"

#define SPLAT_KMEM_TEST2_ID		0x0102
#define SPLAT_KMEM_TEST2_NAME		"kmem_zalloc"
#define SPLAT_KMEM_TEST2_DESC		"Memory allocation test (kmem_zalloc)"

#define SPLAT_KMEM_TEST3_ID		0x0103
#define SPLAT_KMEM_TEST3_NAME		"vmem_alloc"
#define SPLAT_KMEM_TEST3_DESC		"Memory allocation test (vmem_alloc)"

#define SPLAT_KMEM_TEST4_ID		0x0104
#define SPLAT_KMEM_TEST4_NAME		"vmem_zalloc"
#define SPLAT_KMEM_TEST4_DESC		"Memory allocation test (vmem_zalloc)"

#define SPLAT_KMEM_TEST5_ID		0x0105
#define SPLAT_KMEM_TEST5_NAME		"kmem_cache1"
#define SPLAT_KMEM_TEST5_DESC		"Slab ctor/dtor test (small)"

#define SPLAT_KMEM_TEST6_ID		0x0106
#define SPLAT_KMEM_TEST6_NAME		"kmem_cache2"
#define SPLAT_KMEM_TEST6_DESC		"Slab ctor/dtor test (large)"

#define SPLAT_KMEM_TEST7_ID		0x0107
#define SPLAT_KMEM_TEST7_NAME		"kmem_reap"
#define SPLAT_KMEM_TEST7_DESC		"Slab reaping test"

#define SPLAT_KMEM_TEST8_ID		0x0108
#define SPLAT_KMEM_TEST8_NAME		"kmem_lock"
#define SPLAT_KMEM_TEST8_DESC		"Slab locking test"

#define SPLAT_KMEM_ALLOC_COUNT		10
#define SPLAT_VMEM_ALLOC_COUNT		10


/* XXX - This test may fail under tight memory conditions */
static int
splat_kmem_test1(struct file *file, void *arg)
{
	void *ptr[SPLAT_KMEM_ALLOC_COUNT];
	int size = PAGE_SIZE;
	int i, count, rc = 0;

	/* We are intentionally going to push kmem_alloc to its max
	 * allocation size, so suppress the console warnings for now */
	kmem_set_warning(0);

	while ((!rc) && (size <= (PAGE_SIZE * 32))) {
		count = 0;

		for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
			ptr[i] = kmem_alloc(size, KM_SLEEP);
			if (ptr[i])
				count++;
		}

		for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++)
			if (ptr[i])
				kmem_free(ptr[i], size);

		splat_vprint(file, SPLAT_KMEM_TEST1_NAME,
	                   "%d byte allocations, %d/%d successful\n",
		           size, count, SPLAT_KMEM_ALLOC_COUNT);
		if (count != SPLAT_KMEM_ALLOC_COUNT)
			rc = -ENOMEM;

		size *= 2;
	}

	kmem_set_warning(1);

	return rc;
}

static int
splat_kmem_test2(struct file *file, void *arg)
{
	void *ptr[SPLAT_KMEM_ALLOC_COUNT];
	int size = PAGE_SIZE;
	int i, j, count, rc = 0;

	/* We are intentionally going to push kmem_alloc to its max
	 * allocation size, so suppress the console warnings for now */
	kmem_set_warning(0);

	while ((!rc) && (size <= (PAGE_SIZE * 32))) {
		count = 0;

		for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
			ptr[i] = kmem_zalloc(size, KM_SLEEP);
			if (ptr[i])
				count++;
		}

		/* Ensure buffer has been zero filled */
		for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
			for (j = 0; j < size; j++) {
				if (((char *)ptr[i])[j] != '\0') {
					splat_vprint(file, SPLAT_KMEM_TEST2_NAME,
				                  "%d-byte allocation was "
					          "not zeroed\n", size);
					rc = -EFAULT;
				}
			}
		}

		for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++)
			if (ptr[i])
				kmem_free(ptr[i], size);

		splat_vprint(file, SPLAT_KMEM_TEST2_NAME,
	                   "%d byte allocations, %d/%d successful\n",
		           size, count, SPLAT_KMEM_ALLOC_COUNT);
		if (count != SPLAT_KMEM_ALLOC_COUNT)
			rc = -ENOMEM;

		size *= 2;
	}

	kmem_set_warning(1);

	return rc;
}

static int
splat_kmem_test3(struct file *file, void *arg)
{
	void *ptr[SPLAT_VMEM_ALLOC_COUNT];
	int size = PAGE_SIZE;
	int i, count, rc = 0;

	while ((!rc) && (size <= (PAGE_SIZE * 1024))) {
		count = 0;

		for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
			ptr[i] = vmem_alloc(size, KM_SLEEP);
			if (ptr[i])
				count++;
		}

		for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++)
			if (ptr[i])
				vmem_free(ptr[i], size);

		splat_vprint(file, SPLAT_KMEM_TEST3_NAME,
	                   "%d byte allocations, %d/%d successful\n",
		           size, count, SPLAT_VMEM_ALLOC_COUNT);
		if (count != SPLAT_VMEM_ALLOC_COUNT)
			rc = -ENOMEM;

		size *= 2;
	}

	return rc;
}

static int
splat_kmem_test4(struct file *file, void *arg)
{
	void *ptr[SPLAT_VMEM_ALLOC_COUNT];
	int size = PAGE_SIZE;
	int i, j, count, rc = 0;

	while ((!rc) && (size <= (PAGE_SIZE * 1024))) {
		count = 0;

		for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
			ptr[i] = vmem_zalloc(size, KM_SLEEP);
			if (ptr[i])
				count++;
		}

		/* Ensure buffer has been zero filled */
		for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
			for (j = 0; j < size; j++) {
				if (((char *)ptr[i])[j] != '\0') {
					splat_vprint(file, SPLAT_KMEM_TEST4_NAME,
				                  "%d-byte allocation was "
					          "not zeroed\n", size);
					rc = -EFAULT;
				}
			}
		}

		for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++)
			if (ptr[i])
				vmem_free(ptr[i], size);

		splat_vprint(file, SPLAT_KMEM_TEST4_NAME,
	                   "%d byte allocations, %d/%d successful\n",
		           size, count, SPLAT_VMEM_ALLOC_COUNT);
		if (count != SPLAT_VMEM_ALLOC_COUNT)
			rc = -ENOMEM;

		size *= 2;
	}

	return rc;
}

#define SPLAT_KMEM_TEST_MAGIC		0x004488CCUL
#define SPLAT_KMEM_CACHE_NAME		"kmem_test"
#define SPLAT_KMEM_OBJ_COUNT		128
#define SPLAT_KMEM_OBJ_RECLAIM		16

typedef struct kmem_cache_data {
	unsigned long kcd_magic;
	int kcd_flag;
	char kcd_buf[0];
} kmem_cache_data_t;

typedef struct kmem_cache_priv {
	unsigned long kcp_magic;
	struct file *kcp_file;
	kmem_cache_t *kcp_cache;
	kmem_cache_data_t *kcp_kcd[SPLAT_KMEM_OBJ_COUNT];
	spinlock_t kcp_lock;
	wait_queue_head_t kcp_waitq;
	int kcp_size;
	int kcp_count;
	int kcp_threads;
	int kcp_alloc;
	int kcp_rc;
} kmem_cache_priv_t;

static int
splat_kmem_cache_test_constructor(void *ptr, void *priv, int flags)
{
	kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
	kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr;

	if (kcd && kcp) {
		kcd->kcd_magic = kcp->kcp_magic;
		kcd->kcd_flag = 1;
		memset(kcd->kcd_buf, 0xaa, kcp->kcp_size - (sizeof *kcd));
		kcp->kcp_count++;
	}

	return 0;
}

static void
splat_kmem_cache_test_destructor(void *ptr, void *priv)
{
	kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
	kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr;

	if (kcd && kcp) {
		kcd->kcd_magic = 0;
		kcd->kcd_flag = 0;
		memset(kcd->kcd_buf, 0xbb, kcp->kcp_size - (sizeof *kcd));
		kcp->kcp_count--;
	}

	return;
}

static int
splat_kmem_cache_size_test(struct file *file, void *arg,
			   char *name, int size, int flags)
{
	kmem_cache_t *cache = NULL;
	kmem_cache_data_t *kcd = NULL;
	kmem_cache_priv_t kcp;
	int rc = 0, max;

	kcp.kcp_magic = SPLAT_KMEM_TEST_MAGIC;
	kcp.kcp_file = file;
	kcp.kcp_size = size;
	kcp.kcp_count = 0;
	kcp.kcp_rc = 0;

	cache = kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp.kcp_size, 0,
	                          splat_kmem_cache_test_constructor,
	                          splat_kmem_cache_test_destructor,
	                          NULL, &kcp, NULL, flags);
	if (!cache) {
		splat_vprint(file, name,
	                     "Unable to create '%s'\n",
			     SPLAT_KMEM_CACHE_NAME);
		return -ENOMEM;
	}

	kcd = kmem_cache_alloc(cache, KM_SLEEP);
	if (!kcd) {
		splat_vprint(file, name,
	                     "Unable to allocate from '%s'\n",
		             SPLAT_KMEM_CACHE_NAME);
		rc = -EINVAL;
		goto out_free;
	}

	if (!kcd->kcd_flag) {
		splat_vprint(file, name,
		             "Failed to run contructor for '%s'\n",
		             SPLAT_KMEM_CACHE_NAME);
		rc = -EINVAL;
		goto out_free;
	}

	if (kcd->kcd_magic != kcp.kcp_magic) {
		splat_vprint(file, name,
		             "Failed to pass private data to constructor "
		             "for '%s'\n", SPLAT_KMEM_CACHE_NAME);
		rc = -EINVAL;
		goto out_free;
	}

	max = kcp.kcp_count;
	kmem_cache_free(cache, kcd);

	/* Destroy the entire cache which will force destructors to
	 * run and we can verify one was called for every object */
	kmem_cache_destroy(cache);
	if (kcp.kcp_count) {
		splat_vprint(file, name,
		             "Failed to run destructor on all slab objects "
		             "for '%s'\n", SPLAT_KMEM_CACHE_NAME);
		rc = -EINVAL;
	}

	splat_vprint(file, name,
	             "Successfully ran ctors/dtors for %d elements in '%s'\n",
	             max, SPLAT_KMEM_CACHE_NAME);

	return rc;

out_free:
	if (kcd)
		kmem_cache_free(cache, kcd);

	kmem_cache_destroy(cache);
	return rc;
}

/* Validate small object cache behavior for dynamic/kmem/vmem caches */
static int
splat_kmem_test5(struct file *file, void *arg)
{
	char *name = SPLAT_KMEM_TEST5_NAME;
	int rc;

	rc = splat_kmem_cache_size_test(file, arg, name, 128, 0);
	if (rc)
		return rc;

	rc = splat_kmem_cache_size_test(file, arg, name, 128, KMC_KMEM);
	if (rc)
		return rc;

	return splat_kmem_cache_size_test(file, arg, name, 128, KMC_VMEM);
}

/* Validate large object cache behavior for dynamic/kmem/vmem caches */
static int
splat_kmem_test6(struct file *file, void *arg)
{
	char *name = SPLAT_KMEM_TEST6_NAME;
	int rc;

	rc = splat_kmem_cache_size_test(file, arg, name, 128 * 1024, 0);
	if (rc)
		return rc;

	rc = splat_kmem_cache_size_test(file, arg, name, 128 * 1024, KMC_KMEM);
	if (rc)
		return rc;

	return splat_kmem_cache_size_test(file, arg, name, 128 * 1028, KMC_VMEM);
}

static void
splat_kmem_cache_test_reclaim(void *priv)
{
	kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
	int i, count;

	count = min(SPLAT_KMEM_OBJ_RECLAIM, kcp->kcp_count);
	splat_vprint(kcp->kcp_file, SPLAT_KMEM_TEST7_NAME,
                     "Reaping %d objects from '%s'\n", count,
	             SPLAT_KMEM_CACHE_NAME);

	for (i = 0; i < SPLAT_KMEM_OBJ_COUNT; i++) {
		if (kcp->kcp_kcd[i]) {
			kmem_cache_free(kcp->kcp_cache, kcp->kcp_kcd[i]);
			kcp->kcp_kcd[i] = NULL;

			if (--count == 0)
				break;
		}
	}

	return;
}

static int
splat_kmem_test7(struct file *file, void *arg)
{
	kmem_cache_t *cache;
	kmem_cache_priv_t kcp;
	int i, rc = 0;

	kcp.kcp_magic = SPLAT_KMEM_TEST_MAGIC;
	kcp.kcp_file = file;
	kcp.kcp_size = 256;
	kcp.kcp_count = 0;
	kcp.kcp_rc = 0;

	cache = kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp.kcp_size, 0,
	                          splat_kmem_cache_test_constructor,
	                          splat_kmem_cache_test_destructor,
	                          splat_kmem_cache_test_reclaim,
				  &kcp, NULL, 0);
	if (!cache) {
		splat_vprint(file, SPLAT_KMEM_TEST7_NAME,
	                   "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
		return -ENOMEM;
	}

	kcp.kcp_cache = cache;

	for (i = 0; i < SPLAT_KMEM_OBJ_COUNT; i++) {
		/* All allocations need not succeed */
		kcp.kcp_kcd[i] = kmem_cache_alloc(cache, KM_SLEEP);
		if (!kcp.kcp_kcd[i]) {
			splat_vprint(file, SPLAT_KMEM_TEST7_NAME,
		                   "Unable to allocate from '%s'\n",
			           SPLAT_KMEM_CACHE_NAME);
		}
	}

	ASSERT(kcp.kcp_count > 0);

	/* Request the slab cache free any objects it can.  For a few reasons
	 * this may not immediately result in more free memory even if objects
	 * are freed.  First off, due to fragmentation we may not be able to
	 * reclaim any slabs.  Secondly, even if we do we fully clear some
	 * slabs we will not want to immedately reclaim all of them because
	 * we may contend with cache allocs and thrash.  What we want to see
	 * is slab size decrease more gradually as it becomes clear they
	 * will not be needed.  This should be acheivable in less than minute
	 * if it takes longer than this something has gone wrong.
	 */
	for (i = 0; i < 60; i++) {
		kmem_cache_reap_now(cache);
		splat_vprint(file, SPLAT_KMEM_TEST7_NAME,
                             "%s cache objects %d, slabs %u/%u objs %u/%u\n",
			     SPLAT_KMEM_CACHE_NAME, kcp.kcp_count,
			    (unsigned)cache->skc_slab_alloc,
			    (unsigned)cache->skc_slab_total,
			    (unsigned)cache->skc_obj_alloc,
			    (unsigned)cache->skc_obj_total);

		if (cache->skc_obj_total == 0)
			break;

		set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(HZ);
	}

	if (cache->skc_obj_total == 0) {
		splat_vprint(file, SPLAT_KMEM_TEST7_NAME,
			"Successfully created %d objects "
			"in cache %s and reclaimed them\n",
		        SPLAT_KMEM_OBJ_COUNT, SPLAT_KMEM_CACHE_NAME);
	} else {
		splat_vprint(file, SPLAT_KMEM_TEST7_NAME,
			"Failed to reclaim %u/%d objects from cache %s\n",
		        (unsigned)cache->skc_obj_total, SPLAT_KMEM_OBJ_COUNT,
			SPLAT_KMEM_CACHE_NAME);
		rc = -ENOMEM;
	}

	/* Cleanup our mess (for failure case of time expiring) */
	for (i = 0; i < SPLAT_KMEM_OBJ_COUNT; i++)
		if (kcp.kcp_kcd[i])
			kmem_cache_free(cache, kcp.kcp_kcd[i]);

	kmem_cache_destroy(cache);

	return rc;
}

static void
splat_kmem_test8_thread(void *arg)
{
	kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)arg;
	int count = kcp->kcp_alloc, rc = 0, i;
	void **objs;

	ASSERT(kcp->kcp_magic == SPLAT_KMEM_TEST_MAGIC);

	objs = vmem_zalloc(count * sizeof(void *), KM_SLEEP);
	if (!objs) {
		splat_vprint(kcp->kcp_file, SPLAT_KMEM_TEST8_NAME,
	                     "Unable to alloc objp array for cache '%s'\n",
		             kcp->kcp_cache->skc_name);
		rc = -ENOMEM;
		goto out;
	}

	for (i = 0; i < count; i++) {
		objs[i] = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP);
		if (!objs[i]) {
			splat_vprint(kcp->kcp_file, SPLAT_KMEM_TEST8_NAME,
		                     "Unable to allocate from cache '%s'\n",
			             kcp->kcp_cache->skc_name);
			rc = -ENOMEM;
			break;
		}
	}

	for (i = 0; i < count; i++)
		if (objs[i])
			kmem_cache_free(kcp->kcp_cache, objs[i]);

	vmem_free(objs, count * sizeof(void *));
out:
	spin_lock(&kcp->kcp_lock);
	if (!kcp->kcp_rc)
		kcp->kcp_rc = rc;

	if (--kcp->kcp_threads == 0)
	        wake_up(&kcp->kcp_waitq);

	spin_unlock(&kcp->kcp_lock);

        thread_exit();
}

static int
splat_kmem_test8_count(kmem_cache_priv_t *kcp, int threads)
{
	int ret;

	spin_lock(&kcp->kcp_lock);
	ret = (kcp->kcp_threads == threads);
	spin_unlock(&kcp->kcp_lock);

	return ret;
}

/* This test will always pass and is simply here so I can easily
 * eyeball the slab cache locking overhead to ensure it is reasonable.
 */
static int
splat_kmem_test8_sc(struct file *file, void *arg, int size, int count)
{
	kmem_cache_priv_t kcp;
	kthread_t *thr;
	struct timespec start, stop, delta;
	char cache_name[32];
	int i, j, rc = 0, threads = 32;

	kcp.kcp_magic = SPLAT_KMEM_TEST_MAGIC;
	kcp.kcp_file = file;

        splat_vprint(file, SPLAT_KMEM_TEST8_NAME, "%-22s  %s", "name",
	             "time (sec)\tslabs       \tobjs        \thash\n");
        splat_vprint(file, SPLAT_KMEM_TEST8_NAME, "%-22s  %s", "",
	             "          \ttot/max/calc\ttot/max/calc\n");

	for (i = 1; i <= count; i *= 2) {
		kcp.kcp_size = size;
		kcp.kcp_count = 0;
		kcp.kcp_threads = 0;
		kcp.kcp_alloc = i;
		kcp.kcp_rc = 0;
	        spin_lock_init(&kcp.kcp_lock);
	        init_waitqueue_head(&kcp.kcp_waitq);

		(void)snprintf(cache_name, 32, "%s-%d-%d",
			       SPLAT_KMEM_CACHE_NAME, size, i);
		kcp.kcp_cache = kmem_cache_create(cache_name, kcp.kcp_size, 0,
	                                  splat_kmem_cache_test_constructor,
	                                  splat_kmem_cache_test_destructor,
					  NULL, &kcp, NULL, 0);
		if (!kcp.kcp_cache) {
			splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
		                     "Unable to create '%s' cache\n",
				     SPLAT_KMEM_CACHE_NAME);
			rc = -ENOMEM;
			break;
		}

		start = current_kernel_time();

		for (j = 0; j < threads; j++) {
			thr = thread_create(NULL, 0, splat_kmem_test8_thread,
			                    &kcp, 0, &p0, TS_RUN, minclsyspri);
			if (thr == NULL) {
				rc = -ESRCH;
				break;
			}
			spin_lock(&kcp.kcp_lock);
			kcp.kcp_threads++;
			spin_unlock(&kcp.kcp_lock);
		}

	        /* Sleep until the thread sets kcp.kcp_threads == 0 */
	        wait_event(kcp.kcp_waitq, splat_kmem_test8_count(&kcp, 0));
		stop = current_kernel_time();
		delta = timespec_sub(stop, start);

	        splat_vprint(file, SPLAT_KMEM_TEST8_NAME, "%-22s %2ld.%09ld\t"
			     "%lu/%lu/%lu\t%lu/%lu/%lu\n",
			     kcp.kcp_cache->skc_name,
			     delta.tv_sec, delta.tv_nsec,
			     (unsigned long)kcp.kcp_cache->skc_slab_total,
			     (unsigned long)kcp.kcp_cache->skc_slab_max,
			     (unsigned long)(kcp.kcp_alloc * threads /
					    SPL_KMEM_CACHE_OBJ_PER_SLAB),
			     (unsigned long)kcp.kcp_cache->skc_obj_total,
			     (unsigned long)kcp.kcp_cache->skc_obj_max,
			     (unsigned long)(kcp.kcp_alloc * threads));

		kmem_cache_destroy(kcp.kcp_cache);

		if (!rc && kcp.kcp_rc)
			rc = kcp.kcp_rc;

		if (rc)
			break;
	}

	return rc;
}

static int
splat_kmem_test8(struct file *file, void *arg)
{
	int i, rc = 0;

	/* Run through slab cache with objects size from
	 * 16-1Mb in 4x multiples with 1024 objects each */
	for (i = 16; i <= 1024*1024; i *= 4) {
		rc = splat_kmem_test8_sc(file, arg, i, 256);
		if (rc)
			break;
	}

	return rc;
}

splat_subsystem_t *
splat_kmem_init(void)
{
        splat_subsystem_t *sub;

        sub = kmalloc(sizeof(*sub), GFP_KERNEL);
        if (sub == NULL)
                return NULL;

        memset(sub, 0, sizeof(*sub));
        strncpy(sub->desc.name, SPLAT_KMEM_NAME, SPLAT_NAME_SIZE);
	strncpy(sub->desc.desc, SPLAT_KMEM_DESC, SPLAT_DESC_SIZE);
        INIT_LIST_HEAD(&sub->subsystem_list);
	INIT_LIST_HEAD(&sub->test_list);
        spin_lock_init(&sub->test_lock);
        sub->desc.id = SPLAT_SUBSYSTEM_KMEM;

        SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST1_NAME, SPLAT_KMEM_TEST1_DESC,
	              SPLAT_KMEM_TEST1_ID, splat_kmem_test1);
        SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST2_NAME, SPLAT_KMEM_TEST2_DESC,
	              SPLAT_KMEM_TEST2_ID, splat_kmem_test2);
        SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST3_NAME, SPLAT_KMEM_TEST3_DESC,
	              SPLAT_KMEM_TEST3_ID, splat_kmem_test3);
        SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST4_NAME, SPLAT_KMEM_TEST4_DESC,
	              SPLAT_KMEM_TEST4_ID, splat_kmem_test4);
        SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST5_NAME, SPLAT_KMEM_TEST5_DESC,
	              SPLAT_KMEM_TEST5_ID, splat_kmem_test5);
        SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST6_NAME, SPLAT_KMEM_TEST6_DESC,
	              SPLAT_KMEM_TEST6_ID, splat_kmem_test6);
        SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST7_NAME, SPLAT_KMEM_TEST7_DESC,
	              SPLAT_KMEM_TEST7_ID, splat_kmem_test7);
        SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST8_NAME, SPLAT_KMEM_TEST8_DESC,
	              SPLAT_KMEM_TEST8_ID, splat_kmem_test8);

        return sub;
}

void
splat_kmem_fini(splat_subsystem_t *sub)
{
        ASSERT(sub);
        SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST8_ID);
        SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST7_ID);
        SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST6_ID);
        SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST5_ID);
        SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST4_ID);
        SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST3_ID);
        SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST2_ID);
        SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST1_ID);

        kfree(sub);
}

int
splat_kmem_id(void) {
        return SPLAT_SUBSYSTEM_KMEM;
}