aboutsummaryrefslogtreecommitdiffstats
path: root/module/spl/spl-taskq.c
blob: f9ee570351c4acb7f125b99c10a86a1844058ddc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
/*****************************************************************************\
 *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
 *  Copyright (C) 2007 The Regents of the University of California.
 *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
 *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
 *  UCRL-CODE-235197
 *
 *  This file is part of the SPL, Solaris Porting Layer.
 *  For details, see <http://github.com/behlendorf/spl/>.
 *
 *  The SPL is free software; you can redistribute it and/or modify it
 *  under the terms of the GNU General Public License as published by the
 *  Free Software Foundation; either version 2 of the License, or (at your
 *  option) any later version.
 *
 *  The SPL is distributed in the hope that it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 *  for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
 *****************************************************************************
 *  Solaris Porting Layer (SPL) Task Queue Implementation.
\*****************************************************************************/

#include <sys/taskq.h>
#include <sys/kmem.h>
#include <spl-debug.h>

#ifdef SS_DEBUG_SUBSYS
#undef SS_DEBUG_SUBSYS
#endif

#define SS_DEBUG_SUBSYS SS_TASKQ

/* Global system-wide dynamic task queue available for all consumers */
taskq_t *system_taskq;
EXPORT_SYMBOL(system_taskq);

typedef struct spl_task {
        spinlock_t              t_lock;
        struct list_head        t_list;
        taskqid_t               t_id;
        task_func_t             *t_func;
        void                    *t_arg;
} spl_task_t;

/*
 * NOTE: Must be called with tq->tq_lock held, returns a list_t which
 * is not attached to the free, work, or pending taskq lists.
 */
static spl_task_t *
task_alloc(taskq_t *tq, uint_t flags)
{
        spl_task_t *t;
        int count = 0;
        SENTRY;

        ASSERT(tq);
        ASSERT(flags & (TQ_SLEEP | TQ_NOSLEEP));               /* One set */
        ASSERT(!((flags & TQ_SLEEP) && (flags & TQ_NOSLEEP))); /* Not both */
        ASSERT(spin_is_locked(&tq->tq_lock));
retry:
        /* Acquire spl_task_t's from free list if available */
        if (!list_empty(&tq->tq_free_list) && !(flags & TQ_NEW)) {
                t = list_entry(tq->tq_free_list.next, spl_task_t, t_list);
                list_del_init(&t->t_list);
                SRETURN(t);
        }

        /* Free list is empty and memory allocations are prohibited */
        if (flags & TQ_NOALLOC)
                SRETURN(NULL);

        /* Hit maximum spl_task_t pool size */
        if (tq->tq_nalloc >= tq->tq_maxalloc) {
                if (flags & TQ_NOSLEEP)
                        SRETURN(NULL);

                /*
                 * Sleep periodically polling the free list for an available
                 * spl_task_t. Dispatching with TQ_SLEEP should always succeed
                 * but we cannot block forever waiting for an spl_taskq_t to
                 * show up in the free list, otherwise a deadlock can happen.
                 *
                 * Therefore, we need to allocate a new task even if the number
                 * of allocated tasks is above tq->tq_maxalloc, but we still
                 * end up delaying the task allocation by one second, thereby
                 * throttling the task dispatch rate.
                 */
                 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
                 schedule_timeout(HZ / 100);
                 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
                 if (count < 100)
                        SGOTO(retry, count++);
        }

        spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
        t = kmem_alloc(sizeof(spl_task_t), flags & (TQ_SLEEP | TQ_NOSLEEP));
        spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);

        if (t) {
                spin_lock_init(&t->t_lock);
                INIT_LIST_HEAD(&t->t_list);
                t->t_id = 0;
                t->t_func = NULL;
                t->t_arg = NULL;
                tq->tq_nalloc++;
        }

        SRETURN(t);
}

/*
 * NOTE: Must be called with tq->tq_lock held, expects the spl_task_t
 * to already be removed from the free, work, or pending taskq lists.
 */
static void
task_free(taskq_t *tq, spl_task_t *t)
{
        SENTRY;

        ASSERT(tq);
        ASSERT(t);
	ASSERT(spin_is_locked(&tq->tq_lock));
	ASSERT(list_empty(&t->t_list));

        kmem_free(t, sizeof(spl_task_t));
        tq->tq_nalloc--;

	SEXIT;
}

/*
 * NOTE: Must be called with tq->tq_lock held, either destroys the
 * spl_task_t if too many exist or moves it to the free list for later use.
 */
static void
task_done(taskq_t *tq, spl_task_t *t)
{
	SENTRY;
	ASSERT(tq);
	ASSERT(t);
	ASSERT(spin_is_locked(&tq->tq_lock));

	list_del_init(&t->t_list);

        if (tq->tq_nalloc <= tq->tq_minalloc) {
		t->t_id = 0;
		t->t_func = NULL;
		t->t_arg = NULL;
                list_add_tail(&t->t_list, &tq->tq_free_list);
	} else {
		task_free(tq, t);
	}

        SEXIT;
}

/*
 * As tasks are submitted to the task queue they are assigned a
 * monotonically increasing taskqid and added to the tail of the pending
 * list.  As worker threads become available the tasks are removed from
 * the head of the pending or priority list, giving preference to the
 * priority list.  The tasks are then added to the work list, preserving
 * the ordering by taskqid.  Finally, as tasks complete they are removed
 * from the work list.  This means that the pending and work lists are
 * always kept sorted by taskqid.  Thus the lowest outstanding
 * incomplete taskqid can be determined simply by checking the min
 * taskqid for each head item on the pending, priority, and work list.
 * This value is stored in tq->tq_lowest_id and only updated to the new
 * lowest id when the previous lowest id completes.  All taskqids lower
 * than tq->tq_lowest_id must have completed.  It is also possible
 * larger taskqid's have completed because they may be processed in
 * parallel by several worker threads.  However, this is not a problem
 * because the behavior of taskq_wait_id() is to block until all
 * previously submitted taskqid's have completed.
 *
 * XXX: Taskqid_t wrapping is not handled.  However, taskqid_t's are
 * 64-bit values so even if a taskq is processing 2^24 (16,777,216)
 * taskqid_ts per second it will still take 2^40 seconds, 34,865 years,
 * before the wrap occurs.  I can live with that for now.
 */
static int
taskq_wait_check(taskq_t *tq, taskqid_t id)
{
	int rc;

	spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
	rc = (id < tq->tq_lowest_id);
	spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);

	SRETURN(rc);
}

void
__taskq_wait_id(taskq_t *tq, taskqid_t id)
{
	SENTRY;
	ASSERT(tq);

	wait_event(tq->tq_wait_waitq, taskq_wait_check(tq, id));

	SEXIT;
}
EXPORT_SYMBOL(__taskq_wait_id);

void
__taskq_wait(taskq_t *tq)
{
	taskqid_t id;
	SENTRY;
	ASSERT(tq);

	/* Wait for the largest outstanding taskqid */
	spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
	id = tq->tq_next_id - 1;
	spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);

	__taskq_wait_id(tq, id);

	SEXIT;

}
EXPORT_SYMBOL(__taskq_wait);

int
__taskq_member(taskq_t *tq, void *t)
{
        int i;
        SENTRY;

	ASSERT(tq);
        ASSERT(t);

        for (i = 0; i < tq->tq_nthreads; i++)
                if (tq->tq_threads[i] == (struct task_struct *)t)
                        SRETURN(1);

        SRETURN(0);
}
EXPORT_SYMBOL(__taskq_member);

taskqid_t
__taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
{
        spl_task_t *t;
	taskqid_t rc = 0;
        SENTRY;

        ASSERT(tq);
        ASSERT(func);

	/* Solaris assumes TQ_SLEEP if not passed explicitly */
	if (!(flags & (TQ_SLEEP | TQ_NOSLEEP)))
		flags |= TQ_SLEEP;

	if (unlikely(in_atomic() && (flags & TQ_SLEEP)))
		PANIC("May schedule while atomic: %s/0x%08x/%d\n",
		    current->comm, preempt_count(), current->pid);

        spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);

	/* Taskq being destroyed and all tasks drained */
	if (!(tq->tq_flags & TQ_ACTIVE))
		SGOTO(out, rc = 0);

	/* Do not queue the task unless there is idle thread for it */
	ASSERT(tq->tq_nactive <= tq->tq_nthreads);
	if ((flags & TQ_NOQUEUE) && (tq->tq_nactive == tq->tq_nthreads))
		SGOTO(out, rc = 0);

        if ((t = task_alloc(tq, flags)) == NULL)
		SGOTO(out, rc = 0);

	spin_lock(&t->t_lock);

	/* Queue to the priority list instead of the pending list */
	if (flags & TQ_FRONT)
		list_add_tail(&t->t_list, &tq->tq_prio_list);
	else
		list_add_tail(&t->t_list, &tq->tq_pend_list);

	t->t_id = rc = tq->tq_next_id;
	tq->tq_next_id++;
        t->t_func = func;
        t->t_arg = arg;
	spin_unlock(&t->t_lock);

	wake_up(&tq->tq_work_waitq);
out:
	spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
	SRETURN(rc);
}
EXPORT_SYMBOL(__taskq_dispatch);

/*
 * Returns the lowest incomplete taskqid_t.  The taskqid_t may
 * be queued on the pending list, on the priority list,  or on
 * the work list currently being handled, but it is not 100%
 * complete yet.
 */
static taskqid_t
taskq_lowest_id(taskq_t *tq)
{
	taskqid_t lowest_id = tq->tq_next_id;
        spl_task_t *t;
	SENTRY;

	ASSERT(tq);
	ASSERT(spin_is_locked(&tq->tq_lock));

	if (!list_empty(&tq->tq_pend_list)) {
		t = list_entry(tq->tq_pend_list.next, spl_task_t, t_list);
		lowest_id = MIN(lowest_id, t->t_id);
	}

	if (!list_empty(&tq->tq_prio_list)) {
		t = list_entry(tq->tq_prio_list.next, spl_task_t, t_list);
		lowest_id = MIN(lowest_id, t->t_id);
	}

	if (!list_empty(&tq->tq_work_list)) {
		t = list_entry(tq->tq_work_list.next, spl_task_t, t_list);
		lowest_id = MIN(lowest_id, t->t_id);
	}

	SRETURN(lowest_id);
}

/*
 * Insert a task into a list keeping the list sorted by increasing
 * taskqid.
 */
static void
taskq_insert_in_order(taskq_t *tq, spl_task_t *t)
{
	spl_task_t *w;
	struct list_head *l;

	SENTRY;
	ASSERT(tq);
	ASSERT(t);
	ASSERT(spin_is_locked(&tq->tq_lock));

	list_for_each_prev(l, &tq->tq_work_list) {
		w = list_entry(l, spl_task_t, t_list);
		if (w->t_id < t->t_id) {
			list_add(&t->t_list, l);
			break;
		}
	}
	if (l == &tq->tq_work_list)
		list_add(&t->t_list, &tq->tq_work_list);

	SEXIT;
}

static int
taskq_thread(void *args)
{
        DECLARE_WAITQUEUE(wait, current);
        sigset_t blocked;
	taskqid_t id;
        taskq_t *tq = args;
        spl_task_t *t;
	struct list_head *pend_list;
	SENTRY;

        ASSERT(tq);
        current->flags |= PF_NOFREEZE;

	/* Disable the direct memory reclaim path */
	if (tq->tq_flags & TASKQ_NORECLAIM)
		current->flags |= PF_MEMALLOC;

        sigfillset(&blocked);
        sigprocmask(SIG_BLOCK, &blocked, NULL);
        flush_signals(current);

        spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
        tq->tq_nthreads++;
        wake_up(&tq->tq_wait_waitq);
        set_current_state(TASK_INTERRUPTIBLE);

        while (!kthread_should_stop()) {

		add_wait_queue(&tq->tq_work_waitq, &wait);
		if (list_empty(&tq->tq_pend_list) &&
		    list_empty(&tq->tq_prio_list)) {
			spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
			schedule();
			spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
		} else {
			__set_current_state(TASK_RUNNING);
		}

		remove_wait_queue(&tq->tq_work_waitq, &wait);

		if (!list_empty(&tq->tq_prio_list))
			pend_list = &tq->tq_prio_list;
		else if (!list_empty(&tq->tq_pend_list))
			pend_list = &tq->tq_pend_list;
		else
			pend_list = NULL;

		if (pend_list) {
                        t = list_entry(pend_list->next, spl_task_t, t_list);
                        list_del_init(&t->t_list);
			taskq_insert_in_order(tq, t);
                        tq->tq_nactive++;
			spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);

			/* Perform the requested task */
                        t->t_func(t->t_arg);

			spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
                        tq->tq_nactive--;
			id = t->t_id;
                        task_done(tq, t);

			/* When the current lowest outstanding taskqid is
			 * done calculate the new lowest outstanding id */
			if (tq->tq_lowest_id == id) {
				tq->tq_lowest_id = taskq_lowest_id(tq);
				ASSERT(tq->tq_lowest_id > id);
			}

                        wake_up_all(&tq->tq_wait_waitq);
		}

		set_current_state(TASK_INTERRUPTIBLE);

        }

	__set_current_state(TASK_RUNNING);
        tq->tq_nthreads--;
        spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);

	SRETURN(0);
}

taskq_t *
__taskq_create(const char *name, int nthreads, pri_t pri,
               int minalloc, int maxalloc, uint_t flags)
{
        taskq_t *tq;
        struct task_struct *t;
        int rc = 0, i, j = 0;
        SENTRY;

        ASSERT(name != NULL);
        ASSERT(pri <= maxclsyspri);
        ASSERT(minalloc >= 0);
        ASSERT(maxalloc <= INT_MAX);
        ASSERT(!(flags & (TASKQ_CPR_SAFE | TASKQ_DYNAMIC))); /* Unsupported */

	/* Scale the number of threads using nthreads as a percentage */
	if (flags & TASKQ_THREADS_CPU_PCT) {
		ASSERT(nthreads <= 100);
		ASSERT(nthreads >= 0);
		nthreads = MIN(nthreads, 100);
		nthreads = MAX(nthreads, 0);
		nthreads = MAX((num_online_cpus() * nthreads) / 100, 1);
	}

        tq = kmem_alloc(sizeof(*tq), KM_SLEEP);
        if (tq == NULL)
                SRETURN(NULL);

        tq->tq_threads = kmem_alloc(nthreads * sizeof(t), KM_SLEEP);
        if (tq->tq_threads == NULL) {
                kmem_free(tq, sizeof(*tq));
                SRETURN(NULL);
        }

        spin_lock_init(&tq->tq_lock);
        spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
        tq->tq_name      = name;
        tq->tq_nactive   = 0;
	tq->tq_nthreads  = 0;
        tq->tq_pri       = pri;
        tq->tq_minalloc  = minalloc;
        tq->tq_maxalloc  = maxalloc;
	tq->tq_nalloc    = 0;
        tq->tq_flags     = (flags | TQ_ACTIVE);
	tq->tq_next_id   = 1;
	tq->tq_lowest_id = 1;
        INIT_LIST_HEAD(&tq->tq_free_list);
        INIT_LIST_HEAD(&tq->tq_work_list);
        INIT_LIST_HEAD(&tq->tq_pend_list);
        INIT_LIST_HEAD(&tq->tq_prio_list);
        init_waitqueue_head(&tq->tq_work_waitq);
        init_waitqueue_head(&tq->tq_wait_waitq);

        if (flags & TASKQ_PREPOPULATE)
                for (i = 0; i < minalloc; i++)
                        task_done(tq, task_alloc(tq, TQ_SLEEP | TQ_NEW));

        spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);

        for (i = 0; i < nthreads; i++) {
                t = kthread_create(taskq_thread, tq, "%s/%d", name, i);
                if (t) {
                        tq->tq_threads[i] = t;
                        kthread_bind(t, i % num_online_cpus());
                        set_user_nice(t, PRIO_TO_NICE(pri));
                        wake_up_process(t);
			j++;
                } else {
                        tq->tq_threads[i] = NULL;
                        rc = 1;
                }
        }

        /* Wait for all threads to be started before potential destroy */
	wait_event(tq->tq_wait_waitq, tq->tq_nthreads == j);

        if (rc) {
                __taskq_destroy(tq);
                tq = NULL;
        }

        SRETURN(tq);
}
EXPORT_SYMBOL(__taskq_create);

void
__taskq_destroy(taskq_t *tq)
{
	spl_task_t *t;
	int i, nthreads;
	SENTRY;

	ASSERT(tq);
	spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
        tq->tq_flags &= ~TQ_ACTIVE;
	spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);

	/* TQ_ACTIVE cleared prevents new tasks being added to pending */
        __taskq_wait(tq);

	nthreads = tq->tq_nthreads;
	for (i = 0; i < nthreads; i++)
		if (tq->tq_threads[i])
			kthread_stop(tq->tq_threads[i]);

        spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);

        while (!list_empty(&tq->tq_free_list)) {
		t = list_entry(tq->tq_free_list.next, spl_task_t, t_list);
	        list_del_init(&t->t_list);
                task_free(tq, t);
        }

        ASSERT(tq->tq_nthreads == 0);
        ASSERT(tq->tq_nalloc == 0);
        ASSERT(list_empty(&tq->tq_free_list));
        ASSERT(list_empty(&tq->tq_work_list));
        ASSERT(list_empty(&tq->tq_pend_list));
        ASSERT(list_empty(&tq->tq_prio_list));

        spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
        kmem_free(tq->tq_threads, nthreads * sizeof(spl_task_t *));
        kmem_free(tq, sizeof(taskq_t));

	SEXIT;
}
EXPORT_SYMBOL(__taskq_destroy);

int
spl_taskq_init(void)
{
        SENTRY;

	/* Solaris creates a dynamic taskq of up to 64 threads, however in
	 * a Linux environment 1 thread per-core is usually about right */
        system_taskq = taskq_create("spl_system_taskq", num_online_cpus(),
				    minclsyspri, 4, 512, TASKQ_PREPOPULATE);
	if (system_taskq == NULL)
		SRETURN(1);

        SRETURN(0);
}

void
spl_taskq_fini(void)
{
        SENTRY;
	taskq_destroy(system_taskq);
        SEXIT;
}