aboutsummaryrefslogtreecommitdiffstats
path: root/module/spl/spl-kmem.c
blob: 0c3c2f37efea64e3be930ed95a988a7793e76a0c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
/*
 *  This file is part of the SPL: Solaris Porting Layer.
 *
 *  Copyright (c) 2008 Lawrence Livermore National Security, LLC.
 *  Produced at Lawrence Livermore National Laboratory
 *  Written by:
 *          Brian Behlendorf <behlendorf1@llnl.gov>,
 *          Herb Wartens <wartens2@llnl.gov>,
 *          Jim Garlick <garlick@llnl.gov>
 *  UCRL-CODE-235197
 *
 *  This is free software; you can redistribute it and/or modify it
 *  under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This is distributed in the hope that it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 *  for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
 */

#include <sys/kmem.h>

#ifdef DEBUG_SUBSYSTEM
# undef DEBUG_SUBSYSTEM
#endif

#define DEBUG_SUBSYSTEM S_KMEM

/*
 * Memory allocation interfaces and debugging for basic kmem_*
 * and vmem_* style memory allocation.  When DEBUG_KMEM is enable
 * all allocations will be tracked when they are allocated and
 * freed.  When the SPL module is unload a list of all leaked
 * addresses and where they were allocated will be dumped to the
 * console.  Enabling this feature has a significant impant on
 * performance but it makes finding memory leaks staight forward.
 */
#ifdef DEBUG_KMEM
/* Shim layer memory accounting */
atomic64_t kmem_alloc_used = ATOMIC64_INIT(0);
unsigned long long kmem_alloc_max = 0;
atomic64_t vmem_alloc_used = ATOMIC64_INIT(0);
unsigned long long vmem_alloc_max = 0;
int kmem_warning_flag = 1;

EXPORT_SYMBOL(kmem_alloc_used);
EXPORT_SYMBOL(kmem_alloc_max);
EXPORT_SYMBOL(vmem_alloc_used);
EXPORT_SYMBOL(vmem_alloc_max);
EXPORT_SYMBOL(kmem_warning_flag);

# ifdef DEBUG_KMEM_TRACKING

/* XXX - Not to surprisingly with debugging enabled the xmem_locks are very
 * highly contended particularly on xfree().  If we want to run with this
 * detailed debugging enabled for anything other than debugging  we need to
 * minimize the contention by moving to a lock per xmem_table entry model.
 */

#  define KMEM_HASH_BITS          10
#  define KMEM_TABLE_SIZE         (1 << KMEM_HASH_BITS)

#  define VMEM_HASH_BITS          10
#  define VMEM_TABLE_SIZE         (1 << VMEM_HASH_BITS)

typedef struct kmem_debug {
	struct hlist_node kd_hlist;     /* Hash node linkage */
	struct list_head kd_list;       /* List of all allocations */
	void *kd_addr;                  /* Allocation pointer */
	size_t kd_size;                 /* Allocation size */
	const char *kd_func;            /* Allocation function */
	int kd_line;                    /* Allocation line */
} kmem_debug_t;

spinlock_t kmem_lock;
struct hlist_head kmem_table[KMEM_TABLE_SIZE];
struct list_head kmem_list;

spinlock_t vmem_lock;
struct hlist_head vmem_table[VMEM_TABLE_SIZE];
struct list_head vmem_list;

EXPORT_SYMBOL(kmem_lock);
EXPORT_SYMBOL(kmem_table);
EXPORT_SYMBOL(kmem_list);

EXPORT_SYMBOL(vmem_lock);
EXPORT_SYMBOL(vmem_table);
EXPORT_SYMBOL(vmem_list);
# endif

int kmem_set_warning(int flag) { return (kmem_warning_flag = !!flag); }
#else
int kmem_set_warning(int flag) { return 0; }
#endif
EXPORT_SYMBOL(kmem_set_warning);

/*
 * Slab allocation interfaces
 *
 * While the Linux slab implementation was inspired by the Solaris
 * implemenation I cannot use it to emulate the Solaris APIs.  I
 * require two features which are not provided by the Linux slab.
 *
 * 1) Constructors AND destructors.  Recent versions of the Linux
 *    kernel have removed support for destructors.  This is a deal
 *    breaker for the SPL which contains particularly expensive
 *    initializers for mutex's, condition variables, etc.  We also
 *    require a minimal level of cleanup for these data types unlike
 *    many Linux data type which do need to be explicitly destroyed.
 *
 * 2) Virtual address space backed slab.  Callers of the Solaris slab
 *    expect it to work well for both small are very large allocations.
 *    Because of memory fragmentation the Linux slab which is backed
 *    by kmalloc'ed memory performs very badly when confronted with
 *    large numbers of large allocations.  Basing the slab on the
 *    virtual address space removes the need for contigeous pages
 *    and greatly improve performance for large allocations.
 *
 * For these reasons, the SPL has its own slab implementation with
 * the needed features.  It is not as highly optimized as either the
 * Solaris or Linux slabs, but it should get me most of what is
 * needed until it can be optimized or obsoleted by another approach.
 *
 * One serious concern I do have about this method is the relatively
 * small virtual address space on 32bit arches.  This will seriously
 * constrain the size of the slab caches and their performance.
 *
 * XXX: Implement work requests to keep an eye on each cache and
 *      shrink them via spl_slab_reclaim() when they are wasting lots
 *      of space.  Currently this process is driven by the reapers.
 *
 * XXX: Improve the partial slab list by carefully maintaining a
 *      strict ordering of fullest to emptiest slabs based on
 *      the slab reference count.  This gaurentees the when freeing
 *      slabs back to the system we need only linearly traverse the
 *      last N slabs in the list to discover all the freeable slabs.
 *
 * XXX: NUMA awareness for optionally allocating memory close to a
 *      particular core.  This can be adventageous if you know the slab
 *      object will be short lived and primarily accessed from one core.
 *
 * XXX: Slab coloring may also yield performance improvements and would
 *      be desirable to implement.
 */

struct list_head spl_kmem_cache_list;   /* List of caches */
struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */

static int spl_cache_flush(spl_kmem_cache_t *skc,
                           spl_kmem_magazine_t *skm, int flush);

#ifdef HAVE_SET_SHRINKER
static struct shrinker *spl_kmem_cache_shrinker;
#else
static int spl_kmem_cache_generic_shrinker(int nr_to_scan,
                                           unsigned int gfp_mask);
static struct shrinker spl_kmem_cache_shrinker = {
	.shrink = spl_kmem_cache_generic_shrinker,
	.seeks = KMC_DEFAULT_SEEKS,
};
#endif

#ifdef DEBUG_KMEM
# ifdef DEBUG_KMEM_TRACKING

static kmem_debug_t *
kmem_del_init(spinlock_t *lock, struct hlist_head *table, int bits,
                void *addr)
{
	struct hlist_head *head;
	struct hlist_node *node;
	struct kmem_debug *p;
	unsigned long flags;
	ENTRY;

	spin_lock_irqsave(lock, flags);

	head = &table[hash_ptr(addr, bits)];
	hlist_for_each_entry_rcu(p, node, head, kd_hlist) {
		if (p->kd_addr == addr) {
			hlist_del_init(&p->kd_hlist);
			list_del_init(&p->kd_list);
			spin_unlock_irqrestore(lock, flags);
			return p;
		}
	}

	spin_unlock_irqrestore(lock, flags);

	RETURN(NULL);
}

void *
kmem_alloc_track(size_t size, int flags, const char *func, int line,
    int node_alloc, int node)
{
	void *ptr = NULL;
	kmem_debug_t *dptr;
	unsigned long irq_flags;
	ENTRY;

	dptr = (kmem_debug_t *) kmalloc(sizeof(kmem_debug_t),
	    flags & ~__GFP_ZERO);

	if (dptr == NULL) {
		CWARN("kmem_alloc(%ld, 0x%x) debug failed\n",
		    sizeof(kmem_debug_t), flags);
	} else {
		/* Marked unlikely because we should never be doing this,
		 * we tolerate to up 2 pages but a single page is best.   */
		if (unlikely((size) > (PAGE_SIZE * 2)) && kmem_warning_flag)
			CWARN("Large kmem_alloc(%llu, 0x%x) (%lld/%llu)\n",
			    (unsigned long long) size, flags,
			    atomic64_read(&kmem_alloc_used), kmem_alloc_max);

		/* We use kstrdup() below because the string pointed to by
		 * __FUNCTION__ might not be available by the time we want
		 * to print it since the module might have been unloaded. */
		dptr->kd_func = kstrdup(func, flags & ~__GFP_ZERO);
		if (unlikely(dptr->kd_func == NULL)) {
			kfree(dptr);
			CWARN("kstrdup() failed in kmem_alloc(%llu, 0x%x) "
			    "(%lld/%llu)\n", (unsigned long long) size, flags,
			    atomic64_read(&kmem_alloc_used), kmem_alloc_max);
			goto out;
		}

		/* Use the correct allocator */
		if (node_alloc) {
			ASSERT(!(flags & __GFP_ZERO));
			ptr = kmalloc_node(size, flags, node);
		} else if (flags & __GFP_ZERO) {
			ptr = kzalloc(size, flags & ~__GFP_ZERO);
		} else {
			ptr = kmalloc(size, flags);
		}

		if (unlikely(ptr == NULL)) {
			kfree(dptr->kd_func);
			kfree(dptr);
			CWARN("kmem_alloc(%llu, 0x%x) failed (%lld/%llu)\n",
			    (unsigned long long) size, flags,
			    atomic64_read(&kmem_alloc_used), kmem_alloc_max);
			goto out;
		}

		atomic64_add(size, &kmem_alloc_used);
		if (unlikely(atomic64_read(&kmem_alloc_used) >
		    kmem_alloc_max))
			kmem_alloc_max =
			    atomic64_read(&kmem_alloc_used);

		INIT_HLIST_NODE(&dptr->kd_hlist);
		INIT_LIST_HEAD(&dptr->kd_list);

		dptr->kd_addr = ptr;
		dptr->kd_size = size;
		dptr->kd_line = line;

		spin_lock_irqsave(&kmem_lock, irq_flags);
		hlist_add_head_rcu(&dptr->kd_hlist,
		    &kmem_table[hash_ptr(ptr, KMEM_HASH_BITS)]);
		list_add_tail(&dptr->kd_list, &kmem_list);
		spin_unlock_irqrestore(&kmem_lock, irq_flags);

		CDEBUG_LIMIT(D_INFO, "kmem_alloc(%llu, 0x%x) = %p "
		    "(%lld/%llu)\n", (unsigned long long) size, flags,
		    ptr, atomic64_read(&kmem_alloc_used),
		    kmem_alloc_max);
	}
out:
	RETURN(ptr);
}
EXPORT_SYMBOL(kmem_alloc_track);

void
kmem_free_track(void *ptr, size_t size)
{
	kmem_debug_t *dptr;
	ENTRY;

	ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
	    (unsigned long long) size);

	dptr = kmem_del_init(&kmem_lock, kmem_table, KMEM_HASH_BITS, ptr);

	ASSERT(dptr); /* Must exist in hash due to kmem_alloc() */

	/* Size must match */
	ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
	    "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
	    (unsigned long long) size, dptr->kd_func, dptr->kd_line);

	atomic64_sub(size, &kmem_alloc_used);

	CDEBUG_LIMIT(D_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
	    (unsigned long long) size, atomic64_read(&kmem_alloc_used),
	    kmem_alloc_max);

	kfree(dptr->kd_func);

	memset(dptr, 0x5a, sizeof(kmem_debug_t));
	kfree(dptr);

	memset(ptr, 0x5a, size);
	kfree(ptr);

	EXIT;
}
EXPORT_SYMBOL(kmem_free_track);

void *
vmem_alloc_track(size_t size, int flags, const char *func, int line)
{
	void *ptr = NULL;
	kmem_debug_t *dptr;
	unsigned long irq_flags;
	ENTRY;

	ASSERT(flags & KM_SLEEP);

	dptr = (kmem_debug_t *) kmalloc(sizeof(kmem_debug_t), flags);
	if (dptr == NULL) {
		CWARN("vmem_alloc(%ld, 0x%x) debug failed\n",
		    sizeof(kmem_debug_t), flags);
	} else {
		/* We use kstrdup() below because the string pointed to by
		 * __FUNCTION__ might not be available by the time we want
		 * to print it, since the module might have been unloaded. */
		dptr->kd_func = kstrdup(func, flags & ~__GFP_ZERO);
		if (unlikely(dptr->kd_func == NULL)) {
			kfree(dptr);
			CWARN("kstrdup() failed in vmem_alloc(%llu, 0x%x) "
			    "(%lld/%llu)\n", (unsigned long long) size, flags,
			    atomic64_read(&vmem_alloc_used), vmem_alloc_max);
			goto out;
		}

		ptr = __vmalloc(size, (flags | __GFP_HIGHMEM) & ~__GFP_ZERO,
		    PAGE_KERNEL);

		if (unlikely(ptr == NULL)) {
			kfree(dptr->kd_func);
			kfree(dptr);
			CWARN("vmem_alloc(%llu, 0x%x) failed (%lld/%llu)\n",
			    (unsigned long long) size, flags,
			    atomic64_read(&vmem_alloc_used), vmem_alloc_max);
			goto out;
		}

		if (flags & __GFP_ZERO)
			memset(ptr, 0, size);

		atomic64_add(size, &vmem_alloc_used);
		if (unlikely(atomic64_read(&vmem_alloc_used) >
		    vmem_alloc_max))
			vmem_alloc_max =
			    atomic64_read(&vmem_alloc_used);

		INIT_HLIST_NODE(&dptr->kd_hlist);
		INIT_LIST_HEAD(&dptr->kd_list);

		dptr->kd_addr = ptr;
		dptr->kd_size = size;
		dptr->kd_line = line;

		spin_lock_irqsave(&vmem_lock, irq_flags);
		hlist_add_head_rcu(&dptr->kd_hlist,
		    &vmem_table[hash_ptr(ptr, VMEM_HASH_BITS)]);
		list_add_tail(&dptr->kd_list, &vmem_list);
		spin_unlock_irqrestore(&vmem_lock, irq_flags);

		CDEBUG_LIMIT(D_INFO, "vmem_alloc(%llu, 0x%x) = %p "
		    "(%lld/%llu)\n", (unsigned long long) size, flags,
		    ptr, atomic64_read(&vmem_alloc_used),
		    vmem_alloc_max);
	}
out:
	RETURN(ptr);
}
EXPORT_SYMBOL(vmem_alloc_track);

void
vmem_free_track(void *ptr, size_t size)
{
	kmem_debug_t *dptr;
	ENTRY;

	ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
	    (unsigned long long) size);

	dptr = kmem_del_init(&vmem_lock, vmem_table, VMEM_HASH_BITS, ptr);
	ASSERT(dptr); /* Must exist in hash due to vmem_alloc() */

	/* Size must match */
	ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
	    "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
	    (unsigned long long) size, dptr->kd_func, dptr->kd_line);

	atomic64_sub(size, &vmem_alloc_used);
	CDEBUG_LIMIT(D_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
	    (unsigned long long) size, atomic64_read(&vmem_alloc_used),
	    vmem_alloc_max);

	kfree(dptr->kd_func);

	memset(dptr, 0x5a, sizeof(kmem_debug_t));
	kfree(dptr);

	memset(ptr, 0x5a, size);
	vfree(ptr);

	EXIT;
}
EXPORT_SYMBOL(vmem_free_track);

# else /* DEBUG_KMEM_TRACKING */

void *
kmem_alloc_debug(size_t size, int flags, const char *func, int line,
    int node_alloc, int node)
{
	void *ptr;
	ENTRY;

	/* Marked unlikely because we should never be doing this,
	 * we tolerate to up 2 pages but a single page is best.   */
	if (unlikely(size > (PAGE_SIZE * 2)) && kmem_warning_flag)
		CWARN("Large kmem_alloc(%llu, 0x%x) (%lld/%llu)\n",
		    (unsigned long long) size, flags,
		    atomic64_read(&kmem_alloc_used), kmem_alloc_max);

	/* Use the correct allocator */
	if (node_alloc) {
		ASSERT(!(flags & __GFP_ZERO));
		ptr = kmalloc_node(size, flags, node);
	} else if (flags & __GFP_ZERO) {
		ptr = kzalloc(size, flags & (~__GFP_ZERO));
	} else {
		ptr = kmalloc(size, flags);
	}

	if (ptr == NULL) {
		CWARN("kmem_alloc(%llu, 0x%x) failed (%lld/%llu)\n",
		    (unsigned long long) size, flags,
		    atomic64_read(&kmem_alloc_used), kmem_alloc_max);
	} else {
		atomic64_add(size, &kmem_alloc_used);
		if (unlikely(atomic64_read(&kmem_alloc_used) > kmem_alloc_max))
			kmem_alloc_max = atomic64_read(&kmem_alloc_used);

		CDEBUG_LIMIT(D_INFO, "kmem_alloc(%llu, 0x%x) = %p "
		       "(%lld/%llu)\n", (unsigned long long) size, flags, ptr,
		       atomic64_read(&kmem_alloc_used), kmem_alloc_max);
	}
	RETURN(ptr);
}
EXPORT_SYMBOL(kmem_alloc_debug);

void
kmem_free_debug(void *ptr, size_t size)
{
	ENTRY;

	ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
	    (unsigned long long) size);

	atomic64_sub(size, &kmem_alloc_used);

	CDEBUG_LIMIT(D_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
	    (unsigned long long) size, atomic64_read(&kmem_alloc_used),
	    kmem_alloc_max);

	memset(ptr, 0x5a, size);
	kfree(ptr);

	EXIT;
}
EXPORT_SYMBOL(kmem_free_debug);

void *
vmem_alloc_debug(size_t size, int flags, const char *func, int line)
{
	void *ptr;
	ENTRY;

	ASSERT(flags & KM_SLEEP);

	ptr = __vmalloc(size, (flags | __GFP_HIGHMEM) & ~__GFP_ZERO,
	    PAGE_KERNEL);
	if (ptr == NULL) {
		CWARN("vmem_alloc(%llu, 0x%x) failed (%lld/%llu)\n",
		    (unsigned long long) size, flags,
		    atomic64_read(&vmem_alloc_used), vmem_alloc_max);
	} else {
		if (flags & __GFP_ZERO)
			memset(ptr, 0, size);

		atomic64_add(size, &vmem_alloc_used);

		if (unlikely(atomic64_read(&vmem_alloc_used) > vmem_alloc_max))
			vmem_alloc_max = atomic64_read(&vmem_alloc_used);

		CDEBUG_LIMIT(D_INFO, "vmem_alloc(%llu, 0x%x) = %p "
		    "(%lld/%llu)\n", (unsigned long long) size, flags, ptr,
		    atomic64_read(&vmem_alloc_used), vmem_alloc_max);
	}

	RETURN(ptr);
}
EXPORT_SYMBOL(vmem_alloc_debug);

void
vmem_free_debug(void *ptr, size_t size)
{
	ENTRY;

	ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
	    (unsigned long long) size);

	atomic64_sub(size, &vmem_alloc_used);

	CDEBUG_LIMIT(D_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
	    (unsigned long long) size, atomic64_read(&vmem_alloc_used),
	    vmem_alloc_max);

	memset(ptr, 0x5a, size);
	vfree(ptr);

	EXIT;
}
EXPORT_SYMBOL(vmem_free_debug);

# endif /* DEBUG_KMEM_TRACKING */
#endif /* DEBUG_KMEM */

static void *
kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
{
	void *ptr;

	if (skc->skc_flags & KMC_KMEM) {
		if (size > (2 * PAGE_SIZE)) {
			ptr = (void *)__get_free_pages(flags, get_order(size));
		} else
			ptr = kmem_alloc(size, flags);
	} else {
		ptr = vmem_alloc(size, flags);
	}

	return ptr;
}

static void
kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
{
	if (skc->skc_flags & KMC_KMEM) {
		if (size > (2 * PAGE_SIZE))
			free_pages((unsigned long)ptr, get_order(size));
		else
			kmem_free(ptr, size);
	} else {
		vmem_free(ptr, size);
	}
}

/* It's important that we pack the spl_kmem_obj_t structure and the
 * actual objects in to one large address space to minimize the number
 * of calls to the allocator.  It is far better to do a few large
 * allocations and then subdivide it ourselves.  Now which allocator
 * we use requires balancing a few trade offs.
 *
 * For small objects we use kmem_alloc() because as long as you are
 * only requesting a small number of pages (ideally just one) its cheap.
 * However, when you start requesting multiple pages with kmem_alloc()
 * it gets increasingly expensive since it requires contigeous pages.
 * For this reason we shift to vmem_alloc() for slabs of large objects
 * which removes the need for contigeous pages.  We do not use
 * vmem_alloc() in all cases because there is significant locking
 * overhead in __get_vm_area_node().  This function takes a single
 * global lock when aquiring an available virtual address range which
 * serializes all vmem_alloc()'s for all slab caches.  Using slightly
 * different allocation functions for small and large objects should
 * give us the best of both worlds.
 *
 * KMC_ONSLAB                       KMC_OFFSLAB
 *
 * +------------------------+       +-----------------+
 * | spl_kmem_slab_t --+-+  |       | spl_kmem_slab_t |---+-+
 * | skc_obj_size    <-+ |  |       +-----------------+   | |
 * | spl_kmem_obj_t      |  |                             | |
 * | skc_obj_size    <---+  |       +-----------------+   | |
 * | spl_kmem_obj_t      |  |       | skc_obj_size    | <-+ |
 * | ...                 v  |       | spl_kmem_obj_t  |     |
 * +------------------------+       +-----------------+     v
 */
static spl_kmem_slab_t *
spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
{
	spl_kmem_slab_t *sks;
	spl_kmem_obj_t *sko, *n;
	void *base, *obj;
	int i, align, size, rc = 0;

	base = kv_alloc(skc, skc->skc_slab_size, flags);
	if (base == NULL)
		RETURN(NULL);

	sks = (spl_kmem_slab_t *)base;
	sks->sks_magic = SKS_MAGIC;
	sks->sks_objs = skc->skc_slab_objs;
	sks->sks_age = jiffies;
	sks->sks_cache = skc;
	INIT_LIST_HEAD(&sks->sks_list);
	INIT_LIST_HEAD(&sks->sks_free_list);
	sks->sks_ref = 0;

	align = skc->skc_obj_align;
	size = P2ROUNDUP(skc->skc_obj_size, align) +
	       P2ROUNDUP(sizeof(spl_kmem_obj_t), align);

	for (i = 0; i < sks->sks_objs; i++) {
		if (skc->skc_flags & KMC_OFFSLAB) {
			obj = kv_alloc(skc, size, flags);
			if (!obj)
				GOTO(out, rc = -ENOMEM);
		} else {
			obj = base +
			      P2ROUNDUP(sizeof(spl_kmem_slab_t), align) +
			      (i * size);
		}

		sko = obj + P2ROUNDUP(skc->skc_obj_size, align);
		sko->sko_addr = obj;
		sko->sko_magic = SKO_MAGIC;
		sko->sko_slab = sks;
		INIT_LIST_HEAD(&sko->sko_list);
		list_add_tail(&sko->sko_list, &sks->sks_free_list);
	}

	list_for_each_entry(sko, &sks->sks_free_list, sko_list)
		if (skc->skc_ctor)
			skc->skc_ctor(sko->sko_addr, skc->skc_private, flags);
out:
	if (rc) {
		if (skc->skc_flags & KMC_OFFSLAB)
			list_for_each_entry_safe(sko, n, &sks->sks_free_list,
						 sko_list)
				kv_free(skc, sko->sko_addr, size);

		kv_free(skc, base, skc->skc_slab_size);
		sks = NULL;
	}

	RETURN(sks);
}

/* Removes slab from complete or partial list, so it must
 * be called with the 'skc->skc_lock' held.
 */
static void
spl_slab_free(spl_kmem_slab_t *sks) {
	spl_kmem_cache_t *skc;
	spl_kmem_obj_t *sko, *n;
	int size;
	ENTRY;

	ASSERT(sks->sks_magic == SKS_MAGIC);
	ASSERT(sks->sks_ref == 0);

	skc = sks->sks_cache;
	ASSERT(skc->skc_magic == SKC_MAGIC);
	ASSERT(spin_is_locked(&skc->skc_lock));

	skc->skc_obj_total -= sks->sks_objs;
	skc->skc_slab_total--;
	list_del(&sks->sks_list);
	size = P2ROUNDUP(skc->skc_obj_size, skc->skc_obj_align) +
	       P2ROUNDUP(sizeof(spl_kmem_obj_t), skc->skc_obj_align);

	/* Run destructors slab is being released */
	list_for_each_entry_safe(sko, n, &sks->sks_free_list, sko_list) {
		ASSERT(sko->sko_magic == SKO_MAGIC);

		if (skc->skc_dtor)
			skc->skc_dtor(sko->sko_addr, skc->skc_private);

		if (skc->skc_flags & KMC_OFFSLAB)
			kv_free(skc, sko->sko_addr, size);
	}

	kv_free(skc, sks, skc->skc_slab_size);
	EXIT;
}

static int
__spl_slab_reclaim(spl_kmem_cache_t *skc)
{
	spl_kmem_slab_t *sks, *m;
	int rc = 0;
	ENTRY;

	ASSERT(spin_is_locked(&skc->skc_lock));
	/*
	 * Free empty slabs which have not been touched in skc_delay
	 * seconds.  This delay time is important to avoid thrashing.
	 * Empty slabs will be at the end of the skc_partial_list.
	 */
        list_for_each_entry_safe_reverse(sks, m, &skc->skc_partial_list,
					 sks_list) {
		if (sks->sks_ref > 0)
		       break;

		if (time_after(jiffies, sks->sks_age + skc->skc_delay * HZ)) {
			spl_slab_free(sks);
			rc++;
		}
	}

	/* Returns number of slabs reclaimed */
	RETURN(rc);
}

static int
spl_slab_reclaim(spl_kmem_cache_t *skc)
{
	int rc;
	ENTRY;

	spin_lock(&skc->skc_lock);
	rc = __spl_slab_reclaim(skc);
	spin_unlock(&skc->skc_lock);

	RETURN(rc);
}

/* Size slabs properly to ensure they are not too large */
static int
spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
{
	int max = ((uint64_t)1 << (MAX_ORDER - 1)) * PAGE_SIZE;
	int align = skc->skc_obj_align;

	*objs = SPL_KMEM_CACHE_OBJ_PER_SLAB;

	if (skc->skc_flags & KMC_OFFSLAB) {
		*size = sizeof(spl_kmem_slab_t);
	} else {
resize:
		*size = P2ROUNDUP(sizeof(spl_kmem_slab_t), align) +
			*objs * (P2ROUNDUP(skc->skc_obj_size, align) +
		        P2ROUNDUP(sizeof(spl_kmem_obj_t), align));

		if (*size > max)
			GOTO(resize, *objs = *objs - 1);

		ASSERT(*objs > 0);
	}

	ASSERTF(*size <= max, "%d < %d\n", *size, max);
	RETURN(0);
}

static int
spl_magazine_size(spl_kmem_cache_t *skc)
{
	int size, align = skc->skc_obj_align;
	ENTRY;

	/* Guesses for reasonable magazine sizes, they
	 * should really adapt based on observed usage. */
	if (P2ROUNDUP(skc->skc_obj_size, align) > (PAGE_SIZE * 256))
		size = 4;
	else if (P2ROUNDUP(skc->skc_obj_size, align) > (PAGE_SIZE * 32))
		size = 16;
	else if (P2ROUNDUP(skc->skc_obj_size, align) > (PAGE_SIZE))
		size = 64;
	else if (P2ROUNDUP(skc->skc_obj_size, align) > (PAGE_SIZE / 4))
		size = 128;
	else
		size = 512;

	RETURN(size);
}

static spl_kmem_magazine_t *
spl_magazine_alloc(spl_kmem_cache_t *skc, int node)
{
	spl_kmem_magazine_t *skm;
	int size = sizeof(spl_kmem_magazine_t) +
	           sizeof(void *) * skc->skc_mag_size;
	ENTRY;

	skm = kmem_alloc_node(size, GFP_KERNEL, node);
	if (skm) {
		skm->skm_magic = SKM_MAGIC;
		skm->skm_avail = 0;
		skm->skm_size = skc->skc_mag_size;
		skm->skm_refill = skc->skc_mag_refill;
		if (!(skc->skc_flags & KMC_NOTOUCH))
			skm->skm_age = jiffies;
	}

	RETURN(skm);
}

static void
spl_magazine_free(spl_kmem_magazine_t *skm)
{
	int size = sizeof(spl_kmem_magazine_t) +
	           sizeof(void *) * skm->skm_size;

	ENTRY;
	ASSERT(skm->skm_magic == SKM_MAGIC);
	ASSERT(skm->skm_avail == 0);

	kmem_free(skm, size);
	EXIT;
}

static int
spl_magazine_create(spl_kmem_cache_t *skc)
{
	int i;
	ENTRY;

	skc->skc_mag_size = spl_magazine_size(skc);
	skc->skc_mag_refill = (skc->skc_mag_size + 1)  / 2;

	for_each_online_cpu(i) {
		skc->skc_mag[i] = spl_magazine_alloc(skc, cpu_to_node(i));
		if (!skc->skc_mag[i]) {
			for (i--; i >= 0; i--)
				spl_magazine_free(skc->skc_mag[i]);

			RETURN(-ENOMEM);
		}
	}

	RETURN(0);
}

static void
spl_magazine_destroy(spl_kmem_cache_t *skc)
{
        spl_kmem_magazine_t *skm;
	int i;
	ENTRY;

	for_each_online_cpu(i) {
		skm = skc->skc_mag[i];
		(void)spl_cache_flush(skc, skm, skm->skm_avail);
		spl_magazine_free(skm);
	}

	EXIT;
}

spl_kmem_cache_t *
spl_kmem_cache_create(char *name, size_t size, size_t align,
                      spl_kmem_ctor_t ctor,
                      spl_kmem_dtor_t dtor,
                      spl_kmem_reclaim_t reclaim,
                      void *priv, void *vmp, int flags)
{
        spl_kmem_cache_t *skc;
	int rc, kmem_flags = KM_SLEEP;
	ENTRY;

	ASSERTF(!(flags & KMC_NOMAGAZINE), "Bad KMC_NOMAGAZINE (%x)\n", flags);
	ASSERTF(!(flags & KMC_NOHASH), "Bad KMC_NOHASH (%x)\n", flags);
	ASSERTF(!(flags & KMC_QCACHE), "Bad KMC_QCACHE (%x)\n", flags);
	ASSERT(vmp == NULL);

        /* We may be called when there is a non-zero preempt_count or
         * interrupts are disabled is which case we must not sleep.
	 */
	if (current_thread_info()->preempt_count || irqs_disabled())
		kmem_flags = KM_NOSLEEP;

	/* Allocate new cache memory and initialize. */
	skc = (spl_kmem_cache_t *)kmem_zalloc(sizeof(*skc), kmem_flags);
	if (skc == NULL)
		RETURN(NULL);

	skc->skc_magic = SKC_MAGIC;
	skc->skc_name_size = strlen(name) + 1;
	skc->skc_name = (char *)kmem_alloc(skc->skc_name_size, kmem_flags);
	if (skc->skc_name == NULL) {
		kmem_free(skc, sizeof(*skc));
		RETURN(NULL);
	}
	strncpy(skc->skc_name, name, skc->skc_name_size);

	skc->skc_ctor = ctor;
	skc->skc_dtor = dtor;
	skc->skc_reclaim = reclaim;
	skc->skc_private = priv;
	skc->skc_vmp = vmp;
	skc->skc_flags = flags;
	skc->skc_obj_size = size;
	skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
	skc->skc_delay = SPL_KMEM_CACHE_DELAY;

	INIT_LIST_HEAD(&skc->skc_list);
	INIT_LIST_HEAD(&skc->skc_complete_list);
	INIT_LIST_HEAD(&skc->skc_partial_list);
	spin_lock_init(&skc->skc_lock);
	skc->skc_slab_fail = 0;
	skc->skc_slab_create = 0;
	skc->skc_slab_destroy = 0;
	skc->skc_slab_total = 0;
	skc->skc_slab_alloc = 0;
	skc->skc_slab_max = 0;
	skc->skc_obj_total = 0;
	skc->skc_obj_alloc = 0;
	skc->skc_obj_max = 0;

	if (align) {
		ASSERT((align & (align - 1)) == 0);    /* Power of two */
		ASSERT(align >= SPL_KMEM_CACHE_ALIGN); /* Minimum size */
		skc->skc_obj_align = align;
	}

	/* If none passed select a cache type based on object size */
	if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM))) {
		if (P2ROUNDUP(skc->skc_obj_size, skc->skc_obj_align) <
		    (PAGE_SIZE / 8)) {
			skc->skc_flags |= KMC_KMEM;
		} else {
			skc->skc_flags |= KMC_VMEM;
		}
	}

	rc = spl_slab_size(skc, &skc->skc_slab_objs, &skc->skc_slab_size);
	if (rc)
		GOTO(out, rc);

	rc = spl_magazine_create(skc);
	if (rc)
		GOTO(out, rc);

	down_write(&spl_kmem_cache_sem);
	list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
	up_write(&spl_kmem_cache_sem);

	RETURN(skc);
out:
	kmem_free(skc->skc_name, skc->skc_name_size);
	kmem_free(skc, sizeof(*skc));
	RETURN(NULL);
}
EXPORT_SYMBOL(spl_kmem_cache_create);

void
spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
{
        spl_kmem_slab_t *sks, *m;
	ENTRY;

	ASSERT(skc->skc_magic == SKC_MAGIC);

	down_write(&spl_kmem_cache_sem);
	list_del_init(&skc->skc_list);
	up_write(&spl_kmem_cache_sem);

	spl_magazine_destroy(skc);
	spin_lock(&skc->skc_lock);

	/* Validate there are no objects in use and free all the
	 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. */
	ASSERT(list_empty(&skc->skc_complete_list));
	ASSERT(skc->skc_slab_alloc == 0);
	ASSERT(skc->skc_obj_alloc == 0);

	list_for_each_entry_safe(sks, m, &skc->skc_partial_list, sks_list)
		spl_slab_free(sks);

	ASSERT(skc->skc_slab_total == 0);
	ASSERT(skc->skc_obj_total == 0);

	kmem_free(skc->skc_name, skc->skc_name_size);
	spin_unlock(&skc->skc_lock);

	kmem_free(skc, sizeof(*skc));

	EXIT;
}
EXPORT_SYMBOL(spl_kmem_cache_destroy);

static void *
spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
{
	spl_kmem_obj_t *sko;

	ASSERT(skc->skc_magic == SKC_MAGIC);
	ASSERT(sks->sks_magic == SKS_MAGIC);
	ASSERT(spin_is_locked(&skc->skc_lock));

	sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
	ASSERT(sko->sko_magic == SKO_MAGIC);
	ASSERT(sko->sko_addr != NULL);

	/* Remove from sks_free_list */
	list_del_init(&sko->sko_list);

	sks->sks_age = jiffies;
	sks->sks_ref++;
	skc->skc_obj_alloc++;

	/* Track max obj usage statistics */
	if (skc->skc_obj_alloc > skc->skc_obj_max)
		skc->skc_obj_max = skc->skc_obj_alloc;

	/* Track max slab usage statistics */
	if (sks->sks_ref == 1) {
		skc->skc_slab_alloc++;

		if (skc->skc_slab_alloc > skc->skc_slab_max)
			skc->skc_slab_max = skc->skc_slab_alloc;
	}

	return sko->sko_addr;
}

/* No available objects create a new slab.  Since this is an
 * expensive operation we do it without holding the spinlock
 * and only briefly aquire it when we link in the fully
 * allocated and constructed slab.
 */
static spl_kmem_slab_t *
spl_cache_grow(spl_kmem_cache_t *skc, int flags)
{
	spl_kmem_slab_t *sks;
	ENTRY;

	ASSERT(skc->skc_magic == SKC_MAGIC);

	if (flags & __GFP_WAIT) {
		flags |= __GFP_NOFAIL;
		local_irq_enable();
		might_sleep();
	}

	sks = spl_slab_alloc(skc, flags);
	if (sks == NULL) {
	        if (flags & __GFP_WAIT)
			local_irq_disable();

		RETURN(NULL);
	}

	if (flags & __GFP_WAIT)
		local_irq_disable();

	/* Link the new empty slab in to the end of skc_partial_list */
	spin_lock(&skc->skc_lock);
	skc->skc_slab_total++;
	skc->skc_obj_total += sks->sks_objs;
	list_add_tail(&sks->sks_list, &skc->skc_partial_list);
	spin_unlock(&skc->skc_lock);

	RETURN(sks);
}

static int
spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
{
	spl_kmem_slab_t *sks;
	int rc = 0, refill;
	ENTRY;

	ASSERT(skc->skc_magic == SKC_MAGIC);
	ASSERT(skm->skm_magic == SKM_MAGIC);

	/* XXX: Check for refill bouncing by age perhaps */
	refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);

	spin_lock(&skc->skc_lock);

	while (refill > 0) {
		/* No slabs available we must grow the cache */
		if (list_empty(&skc->skc_partial_list)) {
			spin_unlock(&skc->skc_lock);

			sks = spl_cache_grow(skc, flags);
			if (!sks)
				GOTO(out, rc);

			/* Rescheduled to different CPU skm is not local */
			if (skm != skc->skc_mag[smp_processor_id()])
				GOTO(out, rc);

			/* Potentially rescheduled to the same CPU but
			 * allocations may have occured from this CPU while
			 * we were sleeping so recalculate max refill. */
			refill = MIN(refill, skm->skm_size - skm->skm_avail);

			spin_lock(&skc->skc_lock);
			continue;
		}

		/* Grab the next available slab */
		sks = list_entry((&skc->skc_partial_list)->next,
		                 spl_kmem_slab_t, sks_list);
		ASSERT(sks->sks_magic == SKS_MAGIC);
		ASSERT(sks->sks_ref < sks->sks_objs);
		ASSERT(!list_empty(&sks->sks_free_list));

		/* Consume as many objects as needed to refill the requested
		 * cache.  We must also be careful not to overfill it. */
		while (sks->sks_ref < sks->sks_objs && refill-- > 0 && ++rc) {
			ASSERT(skm->skm_avail < skm->skm_size);
			ASSERT(rc < skm->skm_size);
			skm->skm_objs[skm->skm_avail++]=spl_cache_obj(skc,sks);
		}

		/* Move slab to skc_complete_list when full */
		if (sks->sks_ref == sks->sks_objs) {
			list_del(&sks->sks_list);
			list_add(&sks->sks_list, &skc->skc_complete_list);
		}
	}

	spin_unlock(&skc->skc_lock);
out:
	/* Returns the number of entries added to cache */
	RETURN(rc);
}

static void
spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
{
	spl_kmem_slab_t *sks = NULL;
	spl_kmem_obj_t *sko = NULL;
	ENTRY;

	ASSERT(skc->skc_magic == SKC_MAGIC);
	ASSERT(spin_is_locked(&skc->skc_lock));

	sko = obj + P2ROUNDUP(skc->skc_obj_size, skc->skc_obj_align);
	ASSERT(sko->sko_magic == SKO_MAGIC);

	sks = sko->sko_slab;
	ASSERT(sks->sks_magic == SKS_MAGIC);
	ASSERT(sks->sks_cache == skc);
	list_add(&sko->sko_list, &sks->sks_free_list);

	sks->sks_age = jiffies;
	sks->sks_ref--;
	skc->skc_obj_alloc--;

	/* Move slab to skc_partial_list when no longer full.  Slabs
	 * are added to the head to keep the partial list is quasi-full
	 * sorted order.  Fuller at the head, emptier at the tail. */
	if (sks->sks_ref == (sks->sks_objs - 1)) {
		list_del(&sks->sks_list);
		list_add(&sks->sks_list, &skc->skc_partial_list);
	}

	/* Move emply slabs to the end of the partial list so
	 * they can be easily found and freed during reclamation. */
	if (sks->sks_ref == 0) {
		list_del(&sks->sks_list);
		list_add_tail(&sks->sks_list, &skc->skc_partial_list);
		skc->skc_slab_alloc--;
	}

	EXIT;
}

static int
spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
{
	int i, count = MIN(flush, skm->skm_avail);
	ENTRY;

	ASSERT(skc->skc_magic == SKC_MAGIC);
	ASSERT(skm->skm_magic == SKM_MAGIC);

	spin_lock(&skc->skc_lock);

	for (i = 0; i < count; i++)
		spl_cache_shrink(skc, skm->skm_objs[i]);

//	__spl_slab_reclaim(skc);
	skm->skm_avail -= count;
	memmove(skm->skm_objs, &(skm->skm_objs[count]),
	        sizeof(void *) * skm->skm_avail);

	spin_unlock(&skc->skc_lock);

	RETURN(count);
}

void *
spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
{
	spl_kmem_magazine_t *skm;
	unsigned long irq_flags;
	void *obj = NULL;
	int id;
	ENTRY;

	ASSERT(skc->skc_magic == SKC_MAGIC);
	ASSERT(flags & KM_SLEEP); /* XXX: KM_NOSLEEP not yet supported */
	local_irq_save(irq_flags);

restart:
	/* Safe to update per-cpu structure without lock, but
	 * in the restart case we must be careful to reaquire
	 * the local magazine since this may have changed
	 * when we need to grow the cache. */
	id = smp_processor_id();
	ASSERTF(id < 4, "cache=%p smp_processor_id=%d\n", skc, id);
	skm = skc->skc_mag[smp_processor_id()];
	ASSERTF(skm->skm_magic == SKM_MAGIC, "%x != %x: %s/%p/%p %x/%x/%x\n",
		skm->skm_magic, SKM_MAGIC, skc->skc_name, skc, skm,
		skm->skm_size, skm->skm_refill, skm->skm_avail);

	if (likely(skm->skm_avail)) {
		/* Object available in CPU cache, use it */
		obj = skm->skm_objs[--skm->skm_avail];
		if (!(skc->skc_flags & KMC_NOTOUCH))
			skm->skm_age = jiffies;
	} else {
		/* Per-CPU cache empty, directly allocate from
		 * the slab and refill the per-CPU cache. */
		(void)spl_cache_refill(skc, skm, flags);
		GOTO(restart, obj = NULL);
	}

	local_irq_restore(irq_flags);
	ASSERT(obj);
	ASSERT(((unsigned long)(obj) % skc->skc_obj_align) == 0);

	/* Pre-emptively migrate object to CPU L1 cache */
	prefetchw(obj);

	RETURN(obj);
}
EXPORT_SYMBOL(spl_kmem_cache_alloc);

void
spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
{
	spl_kmem_magazine_t *skm;
	unsigned long flags;
	ENTRY;

	ASSERT(skc->skc_magic == SKC_MAGIC);
	local_irq_save(flags);

	/* Safe to update per-cpu structure without lock, but
	 * no remote memory allocation tracking is being performed
	 * it is entirely possible to allocate an object from one
	 * CPU cache and return it to another. */
	skm = skc->skc_mag[smp_processor_id()];
	ASSERT(skm->skm_magic == SKM_MAGIC);

	/* Per-CPU cache full, flush it to make space */
	if (unlikely(skm->skm_avail >= skm->skm_size))
		(void)spl_cache_flush(skc, skm, skm->skm_refill);

	/* Available space in cache, use it */
	skm->skm_objs[skm->skm_avail++] = obj;

	local_irq_restore(flags);

	EXIT;
}
EXPORT_SYMBOL(spl_kmem_cache_free);

static int
spl_kmem_cache_generic_shrinker(int nr_to_scan, unsigned int gfp_mask)
{
	spl_kmem_cache_t *skc;

	/* Under linux a shrinker is not tightly coupled with a slab
	 * cache.  In fact linux always systematically trys calling all
	 * registered shrinker callbacks until its target reclamation level
	 * is reached.  Because of this we only register one shrinker
	 * function in the shim layer for all slab caches.  And we always
	 * attempt to shrink all caches when this generic shrinker is called.
	 */
	down_read(&spl_kmem_cache_sem);

	list_for_each_entry(skc, &spl_kmem_cache_list, skc_list)
		spl_kmem_cache_reap_now(skc);

	up_read(&spl_kmem_cache_sem);

	/* XXX: Under linux we should return the remaining number of
	 * entries in the cache.  We should do this as well.
	 */
	return 1;
}

void
spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
{
	spl_kmem_magazine_t *skm;
	int i;
	ENTRY;

	ASSERT(skc->skc_magic == SKC_MAGIC);

	if (skc->skc_reclaim)
		skc->skc_reclaim(skc->skc_private);

	/* Ensure per-CPU caches which are idle gradually flush */
	for_each_online_cpu(i) {
		skm = skc->skc_mag[i];

		if (time_after(jiffies, skm->skm_age + skc->skc_delay * HZ))
			(void)spl_cache_flush(skc, skm, skm->skm_refill);
	}

	spl_slab_reclaim(skc);

	EXIT;
}
EXPORT_SYMBOL(spl_kmem_cache_reap_now);

void
spl_kmem_reap(void)
{
	spl_kmem_cache_generic_shrinker(KMC_REAP_CHUNK, GFP_KERNEL);
}
EXPORT_SYMBOL(spl_kmem_reap);

#if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING)
static char *
spl_sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
{
	int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
	int i, flag = 1;

	ASSERT(str != NULL && len >= 17);
	memset(str, 0, len);

	/* Check for a fully printable string, and while we are at
         * it place the printable characters in the passed buffer. */
	for (i = 0; i < size; i++) {
		str[i] = ((char *)(kd->kd_addr))[i];
		if (isprint(str[i])) {
			continue;
		} else {
			/* Minimum number of printable characters found
			 * to make it worthwhile to print this as ascii. */
			if (i > min)
				break;

			flag = 0;
			break;
		}
	}

	if (!flag) {
		sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
		        *((uint8_t *)kd->kd_addr),
		        *((uint8_t *)kd->kd_addr + 2),
		        *((uint8_t *)kd->kd_addr + 4),
		        *((uint8_t *)kd->kd_addr + 6),
		        *((uint8_t *)kd->kd_addr + 8),
		        *((uint8_t *)kd->kd_addr + 10),
		        *((uint8_t *)kd->kd_addr + 12),
		        *((uint8_t *)kd->kd_addr + 14));
	}

	return str;
}

static int
spl_kmem_init_tracking(struct list_head *list, spinlock_t *lock, int size)
{
	int i;
	ENTRY;

	spin_lock_init(lock);
	INIT_LIST_HEAD(list);

	for (i = 0; i < size; i++)
		INIT_HLIST_HEAD(&kmem_table[i]);

	RETURN(0);
}

static void
spl_kmem_fini_tracking(struct list_head *list, spinlock_t *lock)
{
	unsigned long flags;
	kmem_debug_t *kd;
	char str[17];
	ENTRY;

	spin_lock_irqsave(lock, flags);
	if (!list_empty(list))
		printk(KERN_WARNING "%-16s %-5s %-16s %s:%s\n", "address",
		       "size", "data", "func", "line");

	list_for_each_entry(kd, list, kd_list)
		printk(KERN_WARNING "%p %-5d %-16s %s:%d\n", kd->kd_addr,
		       (int)kd->kd_size, spl_sprintf_addr(kd, str, 17, 8),
		       kd->kd_func, kd->kd_line);

	spin_unlock_irqrestore(lock, flags);
	EXIT;
}
#else /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
#define spl_kmem_init_tracking(list, lock, size)
#define spl_kmem_fini_tracking(list, lock)
#endif /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */

int
spl_kmem_init(void)
{
	int rc = 0;
	ENTRY;

	init_rwsem(&spl_kmem_cache_sem);
	INIT_LIST_HEAD(&spl_kmem_cache_list);

#ifdef HAVE_SET_SHRINKER
	spl_kmem_cache_shrinker = set_shrinker(KMC_DEFAULT_SEEKS,
					       spl_kmem_cache_generic_shrinker);
	if (spl_kmem_cache_shrinker == NULL)
		RETURN(rc = -ENOMEM);
#else
	register_shrinker(&spl_kmem_cache_shrinker);
#endif

#ifdef DEBUG_KMEM
	atomic64_set(&kmem_alloc_used, 0);
	atomic64_set(&vmem_alloc_used, 0);

	spl_kmem_init_tracking(&kmem_list, &kmem_lock, KMEM_TABLE_SIZE);
	spl_kmem_init_tracking(&vmem_list, &vmem_lock, VMEM_TABLE_SIZE);
#endif
	RETURN(rc);
}

void
spl_kmem_fini(void)
{
#ifdef DEBUG_KMEM
	/* Display all unreclaimed memory addresses, including the
	 * allocation size and the first few bytes of what's located
	 * at that address to aid in debugging.  Performance is not
	 * a serious concern here since it is module unload time. */
	if (atomic64_read(&kmem_alloc_used) != 0)
		CWARN("kmem leaked %ld/%ld bytes\n",
		      atomic64_read(&kmem_alloc_used), kmem_alloc_max);


	if (atomic64_read(&vmem_alloc_used) != 0)
		CWARN("vmem leaked %ld/%ld bytes\n",
		      atomic64_read(&vmem_alloc_used), vmem_alloc_max);

	spl_kmem_fini_tracking(&kmem_list, &kmem_lock);
	spl_kmem_fini_tracking(&vmem_list, &vmem_lock);
#endif /* DEBUG_KMEM */
	ENTRY;

#ifdef HAVE_SET_SHRINKER
	remove_shrinker(spl_kmem_cache_shrinker);
#else
	unregister_shrinker(&spl_kmem_cache_shrinker);
#endif

	EXIT;
}