aboutsummaryrefslogtreecommitdiffstats
path: root/module/lua/lopcodes.h
blob: 8e2f80a131418042203bf5eb52d629a4159ad9f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
/*
** $Id: lopcodes.h,v 1.142.1.2 2014/10/20 18:32:09 roberto Exp $
** Opcodes for Lua virtual machine
** See Copyright Notice in lua.h
*/

#ifndef lopcodes_h
#define lopcodes_h

#include "llimits.h"


/*===========================================================================
  We assume that instructions are unsigned numbers.
  All instructions have an opcode in the first 6 bits.
  Instructions can have the following fields:
	`A' : 8 bits
	`B' : 9 bits
	`C' : 9 bits
	'Ax' : 26 bits ('A', 'B', and 'C' together)
	`Bx' : 18 bits (`B' and `C' together)
	`sBx' : signed Bx

  A signed argument is represented in excess K; that is, the number
  value is the unsigned value minus K. K is exactly the maximum value
  for that argument (so that -max is represented by 0, and +max is
  represented by 2*max), which is half the maximum for the corresponding
  unsigned argument.
===========================================================================*/


enum OpMode {iABC, iABx, iAsBx, iAx};  /* basic instruction format */


/*
** size and position of opcode arguments.
*/
#define SIZE_C		9
#define SIZE_B		9
#define SIZE_Bx		(SIZE_C + SIZE_B)
#define SIZE_A		8
#define SIZE_Ax		(SIZE_C + SIZE_B + SIZE_A)

#define SIZE_OP		6

#define POS_OP		0
#define POS_A		(POS_OP + SIZE_OP)
#define POS_C		(POS_A + SIZE_A)
#define POS_B		(POS_C + SIZE_C)
#define POS_Bx		POS_C
#define POS_Ax		POS_A


/*
** limits for opcode arguments.
** we use (signed) int to manipulate most arguments,
** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
*/
#if SIZE_Bx < LUAI_BITSINT-1
#define MAXARG_Bx        ((1<<SIZE_Bx)-1)
#define MAXARG_sBx        (MAXARG_Bx>>1)         /* `sBx' is signed */
#else
#define MAXARG_Bx        MAX_INT
#define MAXARG_sBx        MAX_INT
#endif

#if SIZE_Ax < LUAI_BITSINT-1
#define MAXARG_Ax	((1<<SIZE_Ax)-1)
#else
#define MAXARG_Ax	MAX_INT
#endif


#define MAXARG_A        ((1<<SIZE_A)-1)
#define MAXARG_B        ((1<<SIZE_B)-1)
#define MAXARG_C        ((1<<SIZE_C)-1)


/* creates a mask with `n' 1 bits at position `p' */
#define MASK1(n,p)	((~((~(Instruction)0)<<(n)))<<(p))

/* creates a mask with `n' 0 bits at position `p' */
#define MASK0(n,p)	(~MASK1(n,p))

/*
** the following macros help to manipulate instructions
*/

#define GET_OPCODE(i)	(cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
#define SET_OPCODE(i,o)	((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
		((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))

#define getarg(i,pos,size)	(cast(int, ((i)>>pos) & MASK1(size,0)))
#define setarg(i,v,pos,size)	((i) = (((i)&MASK0(size,pos)) | \
                ((cast(Instruction, v)<<pos)&MASK1(size,pos))))

#define GETARG_A(i)	getarg(i, POS_A, SIZE_A)
#define SETARG_A(i,v)	setarg(i, v, POS_A, SIZE_A)

#define GETARG_B(i)	getarg(i, POS_B, SIZE_B)
#define SETARG_B(i,v)	setarg(i, v, POS_B, SIZE_B)

#define GETARG_C(i)	getarg(i, POS_C, SIZE_C)
#define SETARG_C(i,v)	setarg(i, v, POS_C, SIZE_C)

#define GETARG_Bx(i)	getarg(i, POS_Bx, SIZE_Bx)
#define SETARG_Bx(i,v)	setarg(i, v, POS_Bx, SIZE_Bx)

#define GETARG_Ax(i)	getarg(i, POS_Ax, SIZE_Ax)
#define SETARG_Ax(i,v)	setarg(i, v, POS_Ax, SIZE_Ax)

#define GETARG_sBx(i)	(GETARG_Bx(i)-MAXARG_sBx)
#define SETARG_sBx(i,b)	SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))


#define CREATE_ABC(o,a,b,c)	((cast(Instruction, o)<<POS_OP) \
			| (cast(Instruction, a)<<POS_A) \
			| (cast(Instruction, b)<<POS_B) \
			| (cast(Instruction, c)<<POS_C))

#define CREATE_ABx(o,a,bc)	((cast(Instruction, o)<<POS_OP) \
			| (cast(Instruction, a)<<POS_A) \
			| (cast(Instruction, bc)<<POS_Bx))

#define CREATE_Ax(o,a)		((cast(Instruction, o)<<POS_OP) \
			| (cast(Instruction, a)<<POS_Ax))


/*
** Macros to operate RK indices
*/

/* this bit 1 means constant (0 means register) */
#define BITRK		(1 << (SIZE_B - 1))

/* test whether value is a constant */
#define ISK(x)		((x) & BITRK)

/* gets the index of the constant */
#define INDEXK(r)	((int)(r) & ~BITRK)

#define MAXINDEXRK	(BITRK - 1)

/* code a constant index as a RK value */
#define RKASK(x)	((x) | BITRK)


/*
** invalid register that fits in 8 bits
*/
#define NO_REG		MAXARG_A


/*
** R(x) - register
** Kst(x) - constant (in constant table)
** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
*/


/*
** grep "ORDER OP" if you change these enums
*/

typedef enum {
/*----------------------------------------------------------------------
name		args	description
------------------------------------------------------------------------*/
OP_MOVE,/*	A B	R(A) := R(B)					*/
OP_LOADK,/*	A Bx	R(A) := Kst(Bx)					*/
OP_LOADKX,/*	A 	R(A) := Kst(extra arg)				*/
OP_LOADBOOL,/*	A B C	R(A) := (Bool)B; if (C) pc++			*/
OP_LOADNIL,/*	A B	R(A), R(A+1), ..., R(A+B) := nil		*/
OP_GETUPVAL,/*	A B	R(A) := UpValue[B]				*/

OP_GETTABUP,/*	A B C	R(A) := UpValue[B][RK(C)]			*/
OP_GETTABLE,/*	A B C	R(A) := R(B)[RK(C)]				*/

OP_SETTABUP,/*	A B C	UpValue[A][RK(B)] := RK(C)			*/
OP_SETUPVAL,/*	A B	UpValue[B] := R(A)				*/
OP_SETTABLE,/*	A B C	R(A)[RK(B)] := RK(C)				*/

OP_NEWTABLE,/*	A B C	R(A) := {} (size = B,C)				*/

OP_SELF,/*	A B C	R(A+1) := R(B); R(A) := R(B)[RK(C)]		*/

OP_ADD,/*	A B C	R(A) := RK(B) + RK(C)				*/
OP_SUB,/*	A B C	R(A) := RK(B) - RK(C)				*/
OP_MUL,/*	A B C	R(A) := RK(B) * RK(C)				*/
OP_DIV,/*	A B C	R(A) := RK(B) / RK(C)				*/
OP_MOD,/*	A B C	R(A) := RK(B) % RK(C)				*/
OP_POW,/*	A B C	R(A) := RK(B) ^ RK(C)				*/
OP_UNM,/*	A B	R(A) := -R(B)					*/
OP_NOT,/*	A B	R(A) := not R(B)				*/
OP_LEN,/*	A B	R(A) := length of R(B)				*/

OP_CONCAT,/*	A B C	R(A) := R(B).. ... ..R(C)			*/

OP_JMP,/*	A sBx	pc+=sBx; if (A) close all upvalues >= R(A - 1)	*/
OP_EQ,/*	A B C	if ((RK(B) == RK(C)) ~= A) then pc++		*/
OP_LT,/*	A B C	if ((RK(B) <  RK(C)) ~= A) then pc++		*/
OP_LE,/*	A B C	if ((RK(B) <= RK(C)) ~= A) then pc++		*/

OP_TEST,/*	A C	if not (R(A) <=> C) then pc++			*/
OP_TESTSET,/*	A B C	if (R(B) <=> C) then R(A) := R(B) else pc++	*/

OP_CALL,/*	A B C	R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
OP_TAILCALL,/*	A B C	return R(A)(R(A+1), ... ,R(A+B-1))		*/
OP_RETURN,/*	A B	return R(A), ... ,R(A+B-2)	(see note)	*/

OP_FORLOOP,/*	A sBx	R(A)+=R(A+2);
			if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
OP_FORPREP,/*	A sBx	R(A)-=R(A+2); pc+=sBx				*/

OP_TFORCALL,/*	A C	R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));	*/
OP_TFORLOOP,/*	A sBx	if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/

OP_SETLIST,/*	A B C	R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B	*/

OP_CLOSURE,/*	A Bx	R(A) := closure(KPROTO[Bx])			*/

OP_VARARG,/*	A B	R(A), R(A+1), ..., R(A+B-2) = vararg		*/

OP_EXTRAARG/*	Ax	extra (larger) argument for previous opcode	*/
} OpCode;


#define NUM_OPCODES	(cast(int, OP_EXTRAARG) + 1)



/*===========================================================================
  Notes:
  (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then `top' is
  set to last_result+1, so next open instruction (OP_CALL, OP_RETURN,
  OP_SETLIST) may use `top'.

  (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
  set top (like in OP_CALL with C == 0).

  (*) In OP_RETURN, if (B == 0) then return up to `top'.

  (*) In OP_SETLIST, if (B == 0) then B = `top'; if (C == 0) then next
  'instruction' is EXTRAARG(real C).

  (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG.

  (*) For comparisons, A specifies what condition the test should accept
  (true or false).

  (*) All `skips' (pc++) assume that next instruction is a jump.

===========================================================================*/


/*
** masks for instruction properties. The format is:
** bits 0-1: op mode
** bits 2-3: C arg mode
** bits 4-5: B arg mode
** bit 6: instruction set register A
** bit 7: operator is a test (next instruction must be a jump)
*/

enum OpArgMask {
  OpArgN,  /* argument is not used */
  OpArgU,  /* argument is used */
  OpArgR,  /* argument is a register or a jump offset */
  OpArgK   /* argument is a constant or register/constant */
};

LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES];

#define getOpMode(m)	(cast(enum OpMode, luaP_opmodes[m] & 3))
#define getBMode(m)	(cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
#define getCMode(m)	(cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
#define testAMode(m)	(luaP_opmodes[m] & (1 << 6))
#define testTMode(m)	(luaP_opmodes[m] & (1 << 7))


LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1];  /* opcode names */


/* number of list items to accumulate before a SETLIST instruction */
#define LFIELDS_PER_FLUSH	50


#endif