aboutsummaryrefslogtreecommitdiffstats
path: root/module/icp/algs/modes/gcm.c
blob: 1fb8e256a52b35d12425ec17842d3eaf696b362c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
 */

#include <sys/zfs_context.h>
#include <modes/modes.h>
#include <sys/crypto/common.h>
#include <sys/crypto/icp.h>
#include <sys/crypto/impl.h>
#include <sys/byteorder.h>
#include <sys/simd.h>
#include <modes/gcm_impl.h>

#define	GHASH(c, d, t, o) \
	xor_block((uint8_t *)(d), (uint8_t *)(c)->gcm_ghash); \
	(o)->mul((uint64_t *)(void *)(c)->gcm_ghash, (c)->gcm_H, \
	(uint64_t *)(void *)(t));

/*
 * Encrypt multiple blocks of data in GCM mode.  Decrypt for GCM mode
 * is done in another function.
 */
int
gcm_mode_encrypt_contiguous_blocks(gcm_ctx_t *ctx, char *data, size_t length,
    crypto_data_t *out, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	const gcm_impl_ops_t *gops;
	size_t remainder = length;
	size_t need = 0;
	uint8_t *datap = (uint8_t *)data;
	uint8_t *blockp;
	uint8_t *lastp;
	void *iov_or_mp;
	offset_t offset;
	uint8_t *out_data_1;
	uint8_t *out_data_2;
	size_t out_data_1_len;
	uint64_t counter;
	uint64_t counter_mask = ntohll(0x00000000ffffffffULL);

	if (length + ctx->gcm_remainder_len < block_size) {
		/* accumulate bytes here and return */
		bcopy(datap,
		    (uint8_t *)ctx->gcm_remainder + ctx->gcm_remainder_len,
		    length);
		ctx->gcm_remainder_len += length;
		ctx->gcm_copy_to = datap;
		return (CRYPTO_SUCCESS);
	}

	lastp = (uint8_t *)ctx->gcm_cb;
	if (out != NULL)
		crypto_init_ptrs(out, &iov_or_mp, &offset);

	gops = gcm_impl_get_ops();
	do {
		/* Unprocessed data from last call. */
		if (ctx->gcm_remainder_len > 0) {
			need = block_size - ctx->gcm_remainder_len;

			if (need > remainder)
				return (CRYPTO_DATA_LEN_RANGE);

			bcopy(datap, &((uint8_t *)ctx->gcm_remainder)
			    [ctx->gcm_remainder_len], need);

			blockp = (uint8_t *)ctx->gcm_remainder;
		} else {
			blockp = datap;
		}

		/*
		 * Increment counter. Counter bits are confined
		 * to the bottom 32 bits of the counter block.
		 */
		counter = ntohll(ctx->gcm_cb[1] & counter_mask);
		counter = htonll(counter + 1);
		counter &= counter_mask;
		ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;

		encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb,
		    (uint8_t *)ctx->gcm_tmp);
		xor_block(blockp, (uint8_t *)ctx->gcm_tmp);

		lastp = (uint8_t *)ctx->gcm_tmp;

		ctx->gcm_processed_data_len += block_size;

		if (out == NULL) {
			if (ctx->gcm_remainder_len > 0) {
				bcopy(blockp, ctx->gcm_copy_to,
				    ctx->gcm_remainder_len);
				bcopy(blockp + ctx->gcm_remainder_len, datap,
				    need);
			}
		} else {
			crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
			    &out_data_1_len, &out_data_2, block_size);

			/* copy block to where it belongs */
			if (out_data_1_len == block_size) {
				copy_block(lastp, out_data_1);
			} else {
				bcopy(lastp, out_data_1, out_data_1_len);
				if (out_data_2 != NULL) {
					bcopy(lastp + out_data_1_len,
					    out_data_2,
					    block_size - out_data_1_len);
				}
			}
			/* update offset */
			out->cd_offset += block_size;
		}

		/* add ciphertext to the hash */
		GHASH(ctx, ctx->gcm_tmp, ctx->gcm_ghash, gops);

		/* Update pointer to next block of data to be processed. */
		if (ctx->gcm_remainder_len != 0) {
			datap += need;
			ctx->gcm_remainder_len = 0;
		} else {
			datap += block_size;
		}

		remainder = (size_t)&data[length] - (size_t)datap;

		/* Incomplete last block. */
		if (remainder > 0 && remainder < block_size) {
			bcopy(datap, ctx->gcm_remainder, remainder);
			ctx->gcm_remainder_len = remainder;
			ctx->gcm_copy_to = datap;
			goto out;
		}
		ctx->gcm_copy_to = NULL;

	} while (remainder > 0);
out:
	return (CRYPTO_SUCCESS);
}

/* ARGSUSED */
int
gcm_encrypt_final(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	const gcm_impl_ops_t *gops;
	uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
	uint8_t *ghash, *macp = NULL;
	int i, rv;

	if (out->cd_length <
	    (ctx->gcm_remainder_len + ctx->gcm_tag_len)) {
		return (CRYPTO_DATA_LEN_RANGE);
	}

	gops = gcm_impl_get_ops();
	ghash = (uint8_t *)ctx->gcm_ghash;

	if (ctx->gcm_remainder_len > 0) {
		uint64_t counter;
		uint8_t *tmpp = (uint8_t *)ctx->gcm_tmp;

		/*
		 * Here is where we deal with data that is not a
		 * multiple of the block size.
		 */

		/*
		 * Increment counter.
		 */
		counter = ntohll(ctx->gcm_cb[1] & counter_mask);
		counter = htonll(counter + 1);
		counter &= counter_mask;
		ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;

		encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb,
		    (uint8_t *)ctx->gcm_tmp);

		macp = (uint8_t *)ctx->gcm_remainder;
		bzero(macp + ctx->gcm_remainder_len,
		    block_size - ctx->gcm_remainder_len);

		/* XOR with counter block */
		for (i = 0; i < ctx->gcm_remainder_len; i++) {
			macp[i] ^= tmpp[i];
		}

		/* add ciphertext to the hash */
		GHASH(ctx, macp, ghash, gops);

		ctx->gcm_processed_data_len += ctx->gcm_remainder_len;
	}

	ctx->gcm_len_a_len_c[1] =
	    htonll(CRYPTO_BYTES2BITS(ctx->gcm_processed_data_len));
	GHASH(ctx, ctx->gcm_len_a_len_c, ghash, gops);
	encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_J0,
	    (uint8_t *)ctx->gcm_J0);
	xor_block((uint8_t *)ctx->gcm_J0, ghash);

	if (ctx->gcm_remainder_len > 0) {
		rv = crypto_put_output_data(macp, out, ctx->gcm_remainder_len);
		if (rv != CRYPTO_SUCCESS)
			return (rv);
	}
	out->cd_offset += ctx->gcm_remainder_len;
	ctx->gcm_remainder_len = 0;
	rv = crypto_put_output_data(ghash, out, ctx->gcm_tag_len);
	if (rv != CRYPTO_SUCCESS)
		return (rv);
	out->cd_offset += ctx->gcm_tag_len;

	return (CRYPTO_SUCCESS);
}

/*
 * This will only deal with decrypting the last block of the input that
 * might not be a multiple of block length.
 */
static void
gcm_decrypt_incomplete_block(gcm_ctx_t *ctx, size_t block_size, size_t index,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	uint8_t *datap, *outp, *counterp;
	uint64_t counter;
	uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
	int i;

	/*
	 * Increment counter.
	 * Counter bits are confined to the bottom 32 bits
	 */
	counter = ntohll(ctx->gcm_cb[1] & counter_mask);
	counter = htonll(counter + 1);
	counter &= counter_mask;
	ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;

	datap = (uint8_t *)ctx->gcm_remainder;
	outp = &((ctx->gcm_pt_buf)[index]);
	counterp = (uint8_t *)ctx->gcm_tmp;

	/* authentication tag */
	bzero((uint8_t *)ctx->gcm_tmp, block_size);
	bcopy(datap, (uint8_t *)ctx->gcm_tmp, ctx->gcm_remainder_len);

	/* add ciphertext to the hash */
	GHASH(ctx, ctx->gcm_tmp, ctx->gcm_ghash, gcm_impl_get_ops());

	/* decrypt remaining ciphertext */
	encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, counterp);

	/* XOR with counter block */
	for (i = 0; i < ctx->gcm_remainder_len; i++) {
		outp[i] = datap[i] ^ counterp[i];
	}
}

/* ARGSUSED */
int
gcm_mode_decrypt_contiguous_blocks(gcm_ctx_t *ctx, char *data, size_t length,
    crypto_data_t *out, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	size_t new_len;
	uint8_t *new;

	/*
	 * Copy contiguous ciphertext input blocks to plaintext buffer.
	 * Ciphertext will be decrypted in the final.
	 */
	if (length > 0) {
		new_len = ctx->gcm_pt_buf_len + length;
		new = vmem_alloc(new_len, ctx->gcm_kmflag);
		bcopy(ctx->gcm_pt_buf, new, ctx->gcm_pt_buf_len);
		vmem_free(ctx->gcm_pt_buf, ctx->gcm_pt_buf_len);
		if (new == NULL)
			return (CRYPTO_HOST_MEMORY);

		ctx->gcm_pt_buf = new;
		ctx->gcm_pt_buf_len = new_len;
		bcopy(data, &ctx->gcm_pt_buf[ctx->gcm_processed_data_len],
		    length);
		ctx->gcm_processed_data_len += length;
	}

	ctx->gcm_remainder_len = 0;
	return (CRYPTO_SUCCESS);
}

int
gcm_decrypt_final(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	const gcm_impl_ops_t *gops;
	size_t pt_len;
	size_t remainder;
	uint8_t *ghash;
	uint8_t *blockp;
	uint8_t *cbp;
	uint64_t counter;
	uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
	int processed = 0, rv;

	ASSERT(ctx->gcm_processed_data_len == ctx->gcm_pt_buf_len);

	gops = gcm_impl_get_ops();
	pt_len = ctx->gcm_processed_data_len - ctx->gcm_tag_len;
	ghash = (uint8_t *)ctx->gcm_ghash;
	blockp = ctx->gcm_pt_buf;
	remainder = pt_len;
	while (remainder > 0) {
		/* Incomplete last block */
		if (remainder < block_size) {
			bcopy(blockp, ctx->gcm_remainder, remainder);
			ctx->gcm_remainder_len = remainder;
			/*
			 * not expecting anymore ciphertext, just
			 * compute plaintext for the remaining input
			 */
			gcm_decrypt_incomplete_block(ctx, block_size,
			    processed, encrypt_block, xor_block);
			ctx->gcm_remainder_len = 0;
			goto out;
		}
		/* add ciphertext to the hash */
		GHASH(ctx, blockp, ghash, gops);

		/*
		 * Increment counter.
		 * Counter bits are confined to the bottom 32 bits
		 */
		counter = ntohll(ctx->gcm_cb[1] & counter_mask);
		counter = htonll(counter + 1);
		counter &= counter_mask;
		ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;

		cbp = (uint8_t *)ctx->gcm_tmp;
		encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, cbp);

		/* XOR with ciphertext */
		xor_block(cbp, blockp);

		processed += block_size;
		blockp += block_size;
		remainder -= block_size;
	}
out:
	ctx->gcm_len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(pt_len));
	GHASH(ctx, ctx->gcm_len_a_len_c, ghash, gops);
	encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_J0,
	    (uint8_t *)ctx->gcm_J0);
	xor_block((uint8_t *)ctx->gcm_J0, ghash);

	/* compare the input authentication tag with what we calculated */
	if (bcmp(&ctx->gcm_pt_buf[pt_len], ghash, ctx->gcm_tag_len)) {
		/* They don't match */
		return (CRYPTO_INVALID_MAC);
	} else {
		rv = crypto_put_output_data(ctx->gcm_pt_buf, out, pt_len);
		if (rv != CRYPTO_SUCCESS)
			return (rv);
		out->cd_offset += pt_len;
	}
	return (CRYPTO_SUCCESS);
}

static int
gcm_validate_args(CK_AES_GCM_PARAMS *gcm_param)
{
	size_t tag_len;

	/*
	 * Check the length of the authentication tag (in bits).
	 */
	tag_len = gcm_param->ulTagBits;
	switch (tag_len) {
	case 32:
	case 64:
	case 96:
	case 104:
	case 112:
	case 120:
	case 128:
		break;
	default:
		return (CRYPTO_MECHANISM_PARAM_INVALID);
	}

	if (gcm_param->ulIvLen == 0)
		return (CRYPTO_MECHANISM_PARAM_INVALID);

	return (CRYPTO_SUCCESS);
}

static void
gcm_format_initial_blocks(uchar_t *iv, ulong_t iv_len,
    gcm_ctx_t *ctx, size_t block_size,
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	const gcm_impl_ops_t *gops;
	uint8_t *cb;
	ulong_t remainder = iv_len;
	ulong_t processed = 0;
	uint8_t *datap, *ghash;
	uint64_t len_a_len_c[2];

	gops = gcm_impl_get_ops();
	ghash = (uint8_t *)ctx->gcm_ghash;
	cb = (uint8_t *)ctx->gcm_cb;
	if (iv_len == 12) {
		bcopy(iv, cb, 12);
		cb[12] = 0;
		cb[13] = 0;
		cb[14] = 0;
		cb[15] = 1;
		/* J0 will be used again in the final */
		copy_block(cb, (uint8_t *)ctx->gcm_J0);
	} else {
		/* GHASH the IV */
		do {
			if (remainder < block_size) {
				bzero(cb, block_size);
				bcopy(&(iv[processed]), cb, remainder);
				datap = (uint8_t *)cb;
				remainder = 0;
			} else {
				datap = (uint8_t *)(&(iv[processed]));
				processed += block_size;
				remainder -= block_size;
			}
			GHASH(ctx, datap, ghash, gops);
		} while (remainder > 0);

		len_a_len_c[0] = 0;
		len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(iv_len));
		GHASH(ctx, len_a_len_c, ctx->gcm_J0, gops);

		/* J0 will be used again in the final */
		copy_block((uint8_t *)ctx->gcm_J0, (uint8_t *)cb);
	}
}

/*
 * The following function is called at encrypt or decrypt init time
 * for AES GCM mode.
 */
int
gcm_init(gcm_ctx_t *ctx, unsigned char *iv, size_t iv_len,
    unsigned char *auth_data, size_t auth_data_len, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	const gcm_impl_ops_t *gops;
	uint8_t *ghash, *datap, *authp;
	size_t remainder, processed;

	/* encrypt zero block to get subkey H */
	bzero(ctx->gcm_H, sizeof (ctx->gcm_H));
	encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_H,
	    (uint8_t *)ctx->gcm_H);

	gcm_format_initial_blocks(iv, iv_len, ctx, block_size,
	    copy_block, xor_block);

	gops = gcm_impl_get_ops();
	authp = (uint8_t *)ctx->gcm_tmp;
	ghash = (uint8_t *)ctx->gcm_ghash;
	bzero(authp, block_size);
	bzero(ghash, block_size);

	processed = 0;
	remainder = auth_data_len;
	do {
		if (remainder < block_size) {
			/*
			 * There's not a block full of data, pad rest of
			 * buffer with zero
			 */
			bzero(authp, block_size);
			bcopy(&(auth_data[processed]), authp, remainder);
			datap = (uint8_t *)authp;
			remainder = 0;
		} else {
			datap = (uint8_t *)(&(auth_data[processed]));
			processed += block_size;
			remainder -= block_size;
		}

		/* add auth data to the hash */
		GHASH(ctx, datap, ghash, gops);

	} while (remainder > 0);

	return (CRYPTO_SUCCESS);
}

int
gcm_init_ctx(gcm_ctx_t *gcm_ctx, char *param, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	int rv;
	CK_AES_GCM_PARAMS *gcm_param;

	if (param != NULL) {
		gcm_param = (CK_AES_GCM_PARAMS *)(void *)param;

		if ((rv = gcm_validate_args(gcm_param)) != 0) {
			return (rv);
		}

		gcm_ctx->gcm_tag_len = gcm_param->ulTagBits;
		gcm_ctx->gcm_tag_len >>= 3;
		gcm_ctx->gcm_processed_data_len = 0;

		/* these values are in bits */
		gcm_ctx->gcm_len_a_len_c[0]
		    = htonll(CRYPTO_BYTES2BITS(gcm_param->ulAADLen));

		rv = CRYPTO_SUCCESS;
		gcm_ctx->gcm_flags |= GCM_MODE;
	} else {
		rv = CRYPTO_MECHANISM_PARAM_INVALID;
		goto out;
	}

	if (gcm_init(gcm_ctx, gcm_param->pIv, gcm_param->ulIvLen,
	    gcm_param->pAAD, gcm_param->ulAADLen, block_size,
	    encrypt_block, copy_block, xor_block) != 0) {
		rv = CRYPTO_MECHANISM_PARAM_INVALID;
	}
out:
	return (rv);
}

int
gmac_init_ctx(gcm_ctx_t *gcm_ctx, char *param, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	int rv;
	CK_AES_GMAC_PARAMS *gmac_param;

	if (param != NULL) {
		gmac_param = (CK_AES_GMAC_PARAMS *)(void *)param;

		gcm_ctx->gcm_tag_len = CRYPTO_BITS2BYTES(AES_GMAC_TAG_BITS);
		gcm_ctx->gcm_processed_data_len = 0;

		/* these values are in bits */
		gcm_ctx->gcm_len_a_len_c[0]
		    = htonll(CRYPTO_BYTES2BITS(gmac_param->ulAADLen));

		rv = CRYPTO_SUCCESS;
		gcm_ctx->gcm_flags |= GMAC_MODE;
	} else {
		rv = CRYPTO_MECHANISM_PARAM_INVALID;
		goto out;
	}

	if (gcm_init(gcm_ctx, gmac_param->pIv, AES_GMAC_IV_LEN,
	    gmac_param->pAAD, gmac_param->ulAADLen, block_size,
	    encrypt_block, copy_block, xor_block) != 0) {
		rv = CRYPTO_MECHANISM_PARAM_INVALID;
	}
out:
	return (rv);
}

void *
gcm_alloc_ctx(int kmflag)
{
	gcm_ctx_t *gcm_ctx;

	if ((gcm_ctx = kmem_zalloc(sizeof (gcm_ctx_t), kmflag)) == NULL)
		return (NULL);

	gcm_ctx->gcm_flags = GCM_MODE;
	return (gcm_ctx);
}

void *
gmac_alloc_ctx(int kmflag)
{
	gcm_ctx_t *gcm_ctx;

	if ((gcm_ctx = kmem_zalloc(sizeof (gcm_ctx_t), kmflag)) == NULL)
		return (NULL);

	gcm_ctx->gcm_flags = GMAC_MODE;
	return (gcm_ctx);
}

void
gcm_set_kmflag(gcm_ctx_t *ctx, int kmflag)
{
	ctx->gcm_kmflag = kmflag;
}

/* GCM implementation that contains the fastest methods */
static gcm_impl_ops_t gcm_fastest_impl = {
	.name = "fastest"
};

/* All compiled in implementations */
const gcm_impl_ops_t *gcm_all_impl[] = {
	&gcm_generic_impl,
#if defined(__x86_64) && defined(HAVE_PCLMULQDQ)
	&gcm_pclmulqdq_impl,
#endif
};

/* Indicate that benchmark has been completed */
static boolean_t gcm_impl_initialized = B_FALSE;

/* Select GCM implementation */
#define	IMPL_FASTEST	(UINT32_MAX)
#define	IMPL_CYCLE	(UINT32_MAX-1)

#define	GCM_IMPL_READ(i) (*(volatile uint32_t *) &(i))

static uint32_t icp_gcm_impl = IMPL_FASTEST;
static uint32_t user_sel_impl = IMPL_FASTEST;

/* Hold all supported implementations */
static size_t gcm_supp_impl_cnt = 0;
static gcm_impl_ops_t *gcm_supp_impl[ARRAY_SIZE(gcm_all_impl)];

/*
 * Returns the GCM operations for encrypt/decrypt/key setup.  When a
 * SIMD implementation is not allowed in the current context, then
 * fallback to the fastest generic implementation.
 */
const gcm_impl_ops_t *
gcm_impl_get_ops()
{
	if (!kfpu_allowed())
		return (&gcm_generic_impl);

	const gcm_impl_ops_t *ops = NULL;
	const uint32_t impl = GCM_IMPL_READ(icp_gcm_impl);

	switch (impl) {
	case IMPL_FASTEST:
		ASSERT(gcm_impl_initialized);
		ops = &gcm_fastest_impl;
		break;
	case IMPL_CYCLE:
		/* Cycle through supported implementations */
		ASSERT(gcm_impl_initialized);
		ASSERT3U(gcm_supp_impl_cnt, >, 0);
		static size_t cycle_impl_idx = 0;
		size_t idx = (++cycle_impl_idx) % gcm_supp_impl_cnt;
		ops = gcm_supp_impl[idx];
		break;
	default:
		ASSERT3U(impl, <, gcm_supp_impl_cnt);
		ASSERT3U(gcm_supp_impl_cnt, >, 0);
		if (impl < ARRAY_SIZE(gcm_all_impl))
			ops = gcm_supp_impl[impl];
		break;
	}

	ASSERT3P(ops, !=, NULL);

	return (ops);
}

/*
 * Initialize all supported implementations.
 */
/* ARGSUSED */
void
gcm_impl_init(void *arg)
{
	gcm_impl_ops_t *curr_impl;
	int i, c;

	/* Move supported implementations into gcm_supp_impls */
	for (i = 0, c = 0; i < ARRAY_SIZE(gcm_all_impl); i++) {
		curr_impl = (gcm_impl_ops_t *)gcm_all_impl[i];

		if (curr_impl->is_supported())
			gcm_supp_impl[c++] = (gcm_impl_ops_t *)curr_impl;
	}
	gcm_supp_impl_cnt = c;

	/*
	 * Set the fastest implementation given the assumption that the
	 * hardware accelerated version is the fastest.
	 */
#if defined(__x86_64) && defined(HAVE_PCLMULQDQ)
	if (gcm_pclmulqdq_impl.is_supported()) {
		memcpy(&gcm_fastest_impl, &gcm_pclmulqdq_impl,
		    sizeof (gcm_fastest_impl));
	} else
#endif
	{
		memcpy(&gcm_fastest_impl, &gcm_generic_impl,
		    sizeof (gcm_fastest_impl));
	}

	strcpy(gcm_fastest_impl.name, "fastest");

	/* Finish initialization */
	atomic_swap_32(&icp_gcm_impl, user_sel_impl);
	gcm_impl_initialized = B_TRUE;
}

static const struct {
	char *name;
	uint32_t sel;
} gcm_impl_opts[] = {
		{ "cycle",	IMPL_CYCLE },
		{ "fastest",	IMPL_FASTEST },
};

/*
 * Function sets desired gcm implementation.
 *
 * If we are called before init(), user preference will be saved in
 * user_sel_impl, and applied in later init() call. This occurs when module
 * parameter is specified on module load. Otherwise, directly update
 * icp_gcm_impl.
 *
 * @val		Name of gcm implementation to use
 * @param	Unused.
 */
int
gcm_impl_set(const char *val)
{
	int err = -EINVAL;
	char req_name[GCM_IMPL_NAME_MAX];
	uint32_t impl = GCM_IMPL_READ(user_sel_impl);
	size_t i;

	/* sanitize input */
	i = strnlen(val, GCM_IMPL_NAME_MAX);
	if (i == 0 || i >= GCM_IMPL_NAME_MAX)
		return (err);

	strlcpy(req_name, val, GCM_IMPL_NAME_MAX);
	while (i > 0 && isspace(req_name[i-1]))
		i--;
	req_name[i] = '\0';

	/* Check mandatory options */
	for (i = 0; i < ARRAY_SIZE(gcm_impl_opts); i++) {
		if (strcmp(req_name, gcm_impl_opts[i].name) == 0) {
			impl = gcm_impl_opts[i].sel;
			err = 0;
			break;
		}
	}

	/* check all supported impl if init() was already called */
	if (err != 0 && gcm_impl_initialized) {
		/* check all supported implementations */
		for (i = 0; i < gcm_supp_impl_cnt; i++) {
			if (strcmp(req_name, gcm_supp_impl[i]->name) == 0) {
				impl = i;
				err = 0;
				break;
			}
		}
	}

	if (err == 0) {
		if (gcm_impl_initialized)
			atomic_swap_32(&icp_gcm_impl, impl);
		else
			atomic_swap_32(&user_sel_impl, impl);
	}

	return (err);
}

#if defined(_KERNEL)
#include <linux/mod_compat.h>

static int
icp_gcm_impl_set(const char *val, zfs_kernel_param_t *kp)
{
	return (gcm_impl_set(val));
}

static int
icp_gcm_impl_get(char *buffer, zfs_kernel_param_t *kp)
{
	int i, cnt = 0;
	char *fmt;
	const uint32_t impl = GCM_IMPL_READ(icp_gcm_impl);

	ASSERT(gcm_impl_initialized);

	/* list mandatory options */
	for (i = 0; i < ARRAY_SIZE(gcm_impl_opts); i++) {
		fmt = (impl == gcm_impl_opts[i].sel) ? "[%s] " : "%s ";
		cnt += sprintf(buffer + cnt, fmt, gcm_impl_opts[i].name);
	}

	/* list all supported implementations */
	for (i = 0; i < gcm_supp_impl_cnt; i++) {
		fmt = (i == impl) ? "[%s] " : "%s ";
		cnt += sprintf(buffer + cnt, fmt, gcm_supp_impl[i]->name);
	}

	return (cnt);
}

module_param_call(icp_gcm_impl, icp_gcm_impl_set, icp_gcm_impl_get,
    NULL, 0644);
MODULE_PARM_DESC(icp_gcm_impl, "Select gcm implementation.");
#endif