aboutsummaryrefslogtreecommitdiffstats
path: root/man/man7/zpool-features.7
blob: 09f1e50decdaf5a9e3c8eaf0ff2cf80194f7188d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
.\"
.\" Copyright (c) 2012, 2018 by Delphix. All rights reserved.
.\" Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
.\" Copyright (c) 2014, Joyent, Inc. All rights reserved.
.\" The contents of this file are subject to the terms of the Common Development
.\" and Distribution License (the "License").  You may not use this file except
.\" in compliance with the License. You can obtain a copy of the license at
.\" usr/src/OPENSOLARIS.LICENSE or https://opensource.org/licenses/CDDL-1.0.
.\"
.\" See the License for the specific language governing permissions and
.\" limitations under the License. When distributing Covered Code, include this
.\" CDDL HEADER in each file and include the License file at
.\" usr/src/OPENSOLARIS.LICENSE.  If applicable, add the following below this
.\" CDDL HEADER, with the fields enclosed by brackets "[]" replaced with your
.\" own identifying information:
.\" Portions Copyright [yyyy] [name of copyright owner]
.\" Copyright (c) 2019, Klara Inc.
.\" Copyright (c) 2019, Allan Jude
.\" Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
.\"
.Dd June 23, 2022
.Dt ZPOOL-FEATURES 7
.Os
.
.Sh NAME
.Nm zpool-features
.Nd description of ZFS pool features
.
.Sh DESCRIPTION
ZFS pool on-disk format versions are specified via
.Dq features
which replace the old on-disk format numbers
.Pq the last supported on-disk format number is 28 .
To enable a feature on a pool use the
.Nm zpool Cm upgrade ,
or set the
.Sy feature Ns @ Ns Ar feature-name
property to
.Sy enabled .
Please also see the
.Sx Compatibility feature sets
section for information on how sets of features may be enabled together.
.Pp
The pool format does not affect file system version compatibility or the ability
to send file systems between pools.
.Pp
Since most features can be enabled independently of each other, the on-disk
format of the pool is specified by the set of all features marked as
.Sy active
on the pool.
If the pool was created by another software version
this set may include unsupported features.
.
.Ss Identifying features
Every feature has a GUID of the form
.Ar com.example : Ns Ar feature-name .
The reversed DNS name ensures that the feature's GUID is unique across all ZFS
implementations.
When unsupported features are encountered on a pool they will
be identified by their GUIDs.
Refer to the documentation for the ZFS
implementation that created the pool for information about those features.
.Pp
Each supported feature also has a short name.
By convention a feature's short name is the portion of its GUID which follows the
.Sq \&:
.Po
i.e.
.Ar com.example : Ns Ar feature-name
would have the short name
.Ar feature-name
.Pc ,
however a feature's short name may differ across ZFS implementations if
following the convention would result in name conflicts.
.
.Ss Feature states
Features can be in one of three states:
.Bl -tag -width "disabled"
.It Sy active
This feature's on-disk format changes are in effect on the pool.
Support for this feature is required to import the pool in read-write mode.
If this feature is not read-only compatible,
support is also required to import the pool in read-only mode
.Pq see Sx Read-only compatibility .
.It Sy enabled
An administrator has marked this feature as enabled on the pool, but the
feature's on-disk format changes have not been made yet.
The pool can still be imported by software that does not support this feature,
but changes may be made to the on-disk format at any time
which will move the feature to the
.Sy active
state.
Some features may support returning to the
.Sy enabled
state after becoming
.Sy active .
See feature-specific documentation for details.
.It Sy disabled
This feature's on-disk format changes have not been made and will not be made
unless an administrator moves the feature to the
.Sy enabled
state.
Features cannot be disabled once they have been enabled.
.El
.Pp
The state of supported features is exposed through pool properties of the form
.Sy feature Ns @ Ns Ar short-name .
.
.Ss Read-only compatibility
Some features may make on-disk format changes that do not interfere with other
software's ability to read from the pool.
These features are referred to as
.Dq read-only compatible .
If all unsupported features on a pool are read-only compatible,
the pool can be imported in read-only mode by setting the
.Sy readonly
property during import
.Po see
.Xr zpool-import 8
for details on importing pools
.Pc .
.
.Ss Unsupported features
For each unsupported feature enabled on an imported pool, a pool property
named
.Sy unsupported Ns @ Ns Ar feature-name
will indicate why the import was allowed despite the unsupported feature.
Possible values for this property are:
.Bl -tag -width "readonly"
.It Sy inactive
The feature is in the
.Sy enabled
state and therefore the pool's on-disk
format is still compatible with software that does not support this feature.
.It Sy readonly
The feature is read-only compatible and the pool has been imported in
read-only mode.
.El
.
.Ss Feature dependencies
Some features depend on other features being enabled in order to function.
Enabling a feature will automatically enable any features it depends on.
.
.Ss Compatibility feature sets
It is sometimes necessary for a pool to maintain compatibility with a
specific on-disk format, by enabling and disabling particular features.
The
.Sy compatibility
feature facilitates this by allowing feature sets to be read from text files.
When set to
.Sy off
.Pq the default ,
compatibility feature sets are disabled
.Pq i.e. all features are enabled ;
when set to
.Sy legacy ,
no features are enabled.
When set to a comma-separated list of filenames
.Po
each filename may either be an absolute path, or relative to
.Pa /etc/zfs/compatibility.d
or
.Pa /usr/share/zfs/compatibility.d
.Pc ,
the lists of requested features are read from those files,
separated by whitespace and/or commas.
Only features present in all files are enabled.
.Pp
Simple sanity checks are applied to the files:
they must be between 1 B and 16 KiB in size, and must end with a newline character.
.Pp
The requested features are applied when a pool is created using
.Nm zpool Cm create Fl o Sy compatibility Ns = Ns Ar …
and controls which features are enabled when using
.Nm zpool Cm upgrade .
.Nm zpool Cm status
will not show a warning about disabled features which are not part
of the requested feature set.
.Pp
The special value
.Sy legacy
prevents any features from being enabled, either via
.Nm zpool Cm upgrade
or
.Nm zpool Cm set Sy feature Ns @ Ns Ar feature-name Ns = Ns Sy enabled .
This setting also prevents pools from being upgraded to newer on-disk versions.
This is a safety measure to prevent new features from being
accidentally enabled, breaking compatibility.
.Pp
By convention, compatibility files in
.Pa /usr/share/zfs/compatibility.d
are provided by the distribution, and include feature sets
supported by important versions of popular distributions, and feature
sets commonly supported at the start of each year.
Compatibility files in
.Pa /etc/zfs/compatibility.d ,
if present, will take precedence over files with the same name in
.Pa /usr/share/zfs/compatibility.d .
.Pp
If an unrecognized feature is found in these files, an error message will
be shown.
If the unrecognized feature is in a file in
.Pa /etc/zfs/compatibility.d ,
this is treated as an error and processing will stop.
If the unrecognized feature is under
.Pa /usr/share/zfs/compatibility.d ,
this is treated as a warning and processing will continue.
This difference is to allow distributions to include features
which might not be recognized by the currently-installed binaries.
.Pp
Compatibility files may include comments:
any text from
.Sq #
to the end of the line is ignored.
.Pp
.Sy Example :
.Bd -literal -compact -offset 4n
.No example# Nm cat Pa /usr/share/zfs/compatibility.d/grub2
# Features which are supported by GRUB2
async_destroy
bookmarks
embedded_data
empty_bpobj
enabled_txg
extensible_dataset
filesystem_limits
hole_birth
large_blocks
lz4_compress
spacemap_histogram

.No example# Nm zpool Cm create Fl o Sy compatibility Ns = Ns Ar grub2 Ar bootpool Ar vdev
.Ed
.Pp
See
.Xr zpool-create 8
and
.Xr zpool-upgrade 8
for more information on how these commands are affected by feature sets.
.
.de feature
.It Sy \\$2
.Bl -tag -compact -width "READ-ONLY COMPATIBLE"
.It GUID
.Sy \\$1:\\$2
.if !"\\$4"" \{\
.It DEPENDENCIES
\fB\\$4\fP\c
.if !"\\$5"" , \fB\\$5\fP\c
.if !"\\$6"" , \fB\\$6\fP\c
.if !"\\$7"" , \fB\\$7\fP\c
.if !"\\$8"" , \fB\\$8\fP\c
.if !"\\$9"" , \fB\\$9\fP\c
.\}
.It READ-ONLY COMPATIBLE
\\$3
.El
.Pp
..
.
.ds instant-never \
.No This feature becomes Sy active No as soon as it is enabled \
and will never return to being Sy enabled .
.
.ds remount-upgrade \
.No Each filesystem will be upgraded automatically when remounted, \
or when a new file is created under that filesystem. \
The upgrade can also be triggered on filesystems via \
Nm zfs Cm set Sy version Ns = Ns Sy current Ar fs . \
No The upgrade process runs in the background and may take a while to complete \
for filesystems containing large amounts of files.
.
.de checksum-spiel
When the
.Sy \\$1
feature is set to
.Sy enabled ,
the administrator can turn on the
.Sy \\$1
checksum on any dataset using
.Nm zfs Cm set Sy checksum Ns = Ns Sy \\$1 Ar dset
.Po see Xr zfs-set 8 Pc .
This feature becomes
.Sy active
once a
.Sy checksum
property has been set to
.Sy \\$1 ,
and will return to being
.Sy enabled
once all filesystems that have ever had their checksum set to
.Sy \\$1
are destroyed.
..
.
.Sh FEATURES
The following features are supported on this system:
.Bl -tag -width Ds
.feature org.zfsonlinux allocation_classes yes
This feature enables support for separate allocation classes.
.Pp
This feature becomes
.Sy active
when a dedicated allocation class vdev
.Pq dedup or special
is created with the
.Nm zpool Cm create No or Nm zpool Cm add No commands .
With device removal, it can be returned to the
.Sy enabled
state if all the dedicated allocation class vdevs are removed.
.
.feature com.delphix async_destroy yes
Destroying a file system requires traversing all of its data in order to
return its used space to the pool.
Without
.Sy async_destroy ,
the file system is not fully removed until all space has been reclaimed.
If the destroy operation is interrupted by a reboot or power outage,
the next attempt to open the pool will need to complete the destroy
operation synchronously.
.Pp
When
.Sy async_destroy
is enabled, the file system's data will be reclaimed by a background process,
allowing the destroy operation to complete
without traversing the entire file system.
The background process is able to resume
interrupted destroys after the pool has been opened, eliminating the need
to finish interrupted destroys as part of the open operation.
The amount of space remaining to be reclaimed by the background process
is available through the
.Sy freeing
property.
.Pp
This feature is only
.Sy active
while
.Sy freeing
is non-zero.
.
.feature org.openzfs blake3 no extensible_dataset
This feature enables the use of the BLAKE3 hash algorithm for checksum and dedup.
BLAKE3 is a secure hash algorithm focused on high performance.
.Pp
.checksum-spiel blake3
.
.feature com.delphix bookmarks yes extensible_dataset
This feature enables use of the
.Nm zfs Cm bookmark
command.
.Pp
This feature is
.Sy active
while any bookmarks exist in the pool.
All bookmarks in the pool can be listed by running
.Nm zfs Cm list Fl t Sy bookmark Fl r Ar poolname .
.
.feature com.datto bookmark_v2 no bookmark extensible_dataset
This feature enables the creation and management of larger bookmarks which are
needed for other features in ZFS.
.Pp
This feature becomes
.Sy active
when a v2 bookmark is created and will be returned to the
.Sy enabled
state when all v2 bookmarks are destroyed.
.
.feature com.delphix bookmark_written no bookmark extensible_dataset bookmark_v2
This feature enables additional bookmark accounting fields, enabling the
.Sy written Ns # Ns Ar bookmark
property
.Pq space written since a bookmark
and estimates of send stream sizes for incrementals from bookmarks.
.Pp
This feature becomes
.Sy active
when a bookmark is created and will be
returned to the
.Sy enabled
state when all bookmarks with these fields are destroyed.
.
.feature org.openzfs device_rebuild yes
This feature enables the ability for the
.Nm zpool Cm attach
and
.Nm zpool Cm replace
commands to perform sequential reconstruction
.Pq instead of healing reconstruction
when resilvering.
.Pp
Sequential reconstruction resilvers a device in LBA order without immediately
verifying the checksums.
Once complete, a scrub is started, which then verifies the checksums.
This approach allows full redundancy to be restored to the pool
in the minimum amount of time.
This two-phase approach will take longer than a healing resilver
when the time to verify the checksums is included.
However, unless there is additional pool damage,
no checksum errors should be reported by the scrub.
This feature is incompatible with raidz configurations.
.
This feature becomes
.Sy active
while a sequential resilver is in progress, and returns to
.Sy enabled
when the resilver completes.
.
.feature com.delphix device_removal no
This feature enables the
.Nm zpool Cm remove
command to remove top-level vdevs,
evacuating them to reduce the total size of the pool.
.Pp
This feature becomes
.Sy active
when the
.Nm zpool Cm remove
command is used
on a top-level vdev, and will never return to being
.Sy enabled .
.
.feature org.openzfs draid no
This feature enables use of the
.Sy draid
vdev type.
dRAID is a variant of RAID-Z which provides integrated distributed
hot spares that allow faster resilvering while retaining the benefits of RAID-Z.
Data, parity, and spare space are organized in redundancy groups
and distributed evenly over all of the devices.
.Pp
This feature becomes
.Sy active
when creating a pool which uses the
.Sy draid
vdev type, or when adding a new
.Sy draid
vdev to an existing pool.
.
.feature org.illumos edonr no extensible_dataset
This feature enables the use of the Edon-R hash algorithm for checksum,
including for nopwrite
.Po if compression is also enabled, an overwrite of
a block whose checksum matches the data being written will be ignored
.Pc .
In an abundance of caution, Edon-R requires verification when used with
dedup:
.Nm zfs Cm set Sy dedup Ns = Ns Sy edonr , Ns Sy verify
.Po see Xr zfs-set 8 Pc .
.Pp
Edon-R is a very high-performance hash algorithm that was part
of the NIST SHA-3 competition.
It provides extremely high hash performance
.Pq over 350% faster than SHA-256 ,
but was not selected because of its unsuitability
as a general purpose secure hash algorithm.
This implementation utilizes the new salted checksumming functionality
in ZFS, which means that the checksum is pre-seeded with a secret
256-bit random key
.Pq stored on the pool
before being fed the data block to be checksummed.
Thus the produced checksums are unique to a given pool,
preventing hash collision attacks on systems with dedup.
.Pp
.checksum-spiel edonr
.
.feature com.delphix embedded_data no
This feature improves the performance and compression ratio of
highly-compressible blocks.
Blocks whose contents can compress to 112 bytes
or smaller can take advantage of this feature.
.Pp
When this feature is enabled, the contents of highly-compressible blocks are
stored in the block
.Dq pointer
itself
.Po a misnomer in this case, as it contains
the compressed data, rather than a pointer to its location on disk
.Pc .
Thus the space of the block
.Pq one sector, typically 512 B or 4 KiB
is saved, and no additional I/O is needed to read and write the data block.
.
\*[instant-never]
.
.feature com.delphix empty_bpobj yes
This feature increases the performance of creating and using a large
number of snapshots of a single filesystem or volume, and also reduces
the disk space required.
.Pp
When there are many snapshots, each snapshot uses many Block Pointer
Objects
.Pq bpobjs
to track blocks associated with that snapshot.
However, in common use cases, most of these bpobjs are empty.
This feature allows us to create each bpobj on-demand,
thus eliminating the empty bpobjs.
.Pp
This feature is
.Sy active
while there are any filesystems, volumes,
or snapshots which were created after enabling this feature.
.
.feature com.delphix enabled_txg yes
Once this feature is enabled, ZFS records the transaction group number
in which new features are enabled.
This has no user-visible impact, but other features may depend on this feature.
.Pp
This feature becomes
.Sy active
as soon as it is enabled and will never return to being
.Sy enabled .
.
.feature com.datto encryption no bookmark_v2 extensible_dataset
This feature enables the creation and management of natively encrypted datasets.
.Pp
This feature becomes
.Sy active
when an encrypted dataset is created and will be returned to the
.Sy enabled
state when all datasets that use this feature are destroyed.
.
.feature com.delphix extensible_dataset no
This feature allows more flexible use of internal ZFS data structures,
and exists for other features to depend on.
.Pp
This feature will be
.Sy active
when the first dependent feature uses it, and will be returned to the
.Sy enabled
state when all datasets that use this feature are destroyed.
.
.feature com.joyent filesystem_limits yes extensible_dataset
This feature enables filesystem and snapshot limits.
These limits can be used to control how many filesystems and/or snapshots
can be created at the point in the tree on which the limits are set.
.Pp
This feature is
.Sy active
once either of the limit properties has been set on a dataset
and will never return to being
.Sy enabled .
.
.feature com.delphix head_errlog no
This feature enables the upgraded version of errlog, which required an on-disk
error log format change.
Now the error log of each head dataset is stored separately in the zap object
and keyed by the head id.
With this feature enabled, every dataset affected by an error block is listed
in the output of
.Nm zpool Cm status .
.Pp
\*[instant-never]
.
.feature com.delphix hole_birth no enabled_txg
This feature has/had bugs, the result of which is that, if you do a
.Nm zfs Cm send Fl i
.Pq or Fl R , No since it uses Fl i
from an affected dataset, the receiving party will not see any checksum
or other errors, but the resulting destination snapshot
will not match the source.
Its use by
.Nm zfs Cm send Fl i
has been disabled by default
.Po
see
.Sy send_holes_without_birth_time
in
.Xr zfs 4
.Pc .
.Pp
This feature improves performance of incremental sends
.Pq Nm zfs Cm send Fl i
and receives for objects with many holes.
The most common case of hole-filled objects is zvols.
.Pp
An incremental send stream from snapshot
.Sy A No to snapshot Sy B
contains information about every block that changed between
.Sy A No and Sy B .
Blocks which did not change between those snapshots can be
identified and omitted from the stream using a piece of metadata called
the
.Dq block birth time ,
but birth times are not recorded for holes
.Pq blocks filled only with zeroes .
Since holes created after
.Sy A No cannot be distinguished from holes created before Sy A ,
information about every hole in the entire filesystem or zvol
is included in the send stream.
.Pp
For workloads where holes are rare this is not a problem.
However, when incrementally replicating filesystems or zvols with many holes
.Pq for example a zvol formatted with another filesystem
a lot of time will be spent sending and receiving unnecessary information
about holes that already exist on the receiving side.
.Pp
Once the
.Sy hole_birth
feature has been enabled the block birth times
of all new holes will be recorded.
Incremental sends between snapshots created after this feature is enabled
will use this new metadata to avoid sending information about holes that
already exist on the receiving side.
.Pp
\*[instant-never]
.
.feature org.open-zfs large_blocks no extensible_dataset
This feature allows the record size on a dataset to be set larger than 128 KiB.
.Pp
This feature becomes
.Sy active
once a dataset contains a file with a block size larger than 128 KiB,
and will return to being
.Sy enabled
once all filesystems that have ever had their recordsize larger than 128 KiB
are destroyed.
.
.feature org.zfsonlinux large_dnode no extensible_dataset
This feature allows the size of dnodes in a dataset to be set larger than 512 B.
.
This feature becomes
.Sy active
once a dataset contains an object with a dnode larger than 512 B,
which occurs as a result of setting the
.Sy dnodesize
dataset property to a value other than
.Sy legacy .
The feature will return to being
.Sy enabled
once all filesystems that have ever contained a dnode larger than 512 B
are destroyed.
Large dnodes allow more data to be stored in the bonus buffer,
thus potentially improving performance by avoiding the use of spill blocks.
.
.feature com.delphix livelist yes
This feature allows clones to be deleted faster than the traditional method
when a large number of random/sparse writes have been made to the clone.
All blocks allocated and freed after a clone is created are tracked by the
the clone's livelist which is referenced during the deletion of the clone.
The feature is activated when a clone is created and remains
.Sy active
until all clones have been destroyed.
.
.feature com.delphix log_spacemap yes com.delphix:spacemap_v2
This feature improves performance for heavily-fragmented pools,
especially when workloads are heavy in random-writes.
It does so by logging all the metaslab changes on a single spacemap every TXG
instead of scattering multiple writes to all the metaslab spacemaps.
.Pp
\*[instant-never]
.
.feature org.illumos lz4_compress no
.Sy lz4
is a high-performance real-time compression algorithm that
features significantly faster compression and decompression as well as a
higher compression ratio than the older
.Sy lzjb
compression.
Typically,
.Sy lz4
compression is approximately 50% faster on compressible data and 200% faster
on incompressible data than
.Sy lzjb .
It is also approximately 80% faster on decompression,
while giving approximately a 10% better compression ratio.
.Pp
When the
.Sy lz4_compress
feature is set to
.Sy enabled ,
the administrator can turn on
.Sy lz4
compression on any dataset on the pool using the
.Xr zfs-set 8
command.
All newly written metadata will be compressed with the
.Sy lz4
algorithm.
.Pp
\*[instant-never]
.
.feature com.joyent multi_vdev_crash_dump no
This feature allows a dump device to be configured with a pool comprised
of multiple vdevs.
Those vdevs may be arranged in any mirrored or raidz configuration.
.Pp
When the
.Sy multi_vdev_crash_dump
feature is set to
.Sy enabled ,
the administrator can use
.Xr dumpadm 8
to configure a dump device on a pool comprised of multiple vdevs.
.Pp
Under
.Fx
and Linux this feature is unused, but registered for compatibility.
New pools created on these systems will have the feature
.Sy enabled
but will never transition to
.Sy active ,
as this functionality is not required for crash dump support.
Existing pools where this feature is
.Sy active
can be imported.
.
.feature com.delphix obsolete_counts yes device_removal
This feature is an enhancement of
.Sy device_removal ,
which will over time reduce the memory used to track removed devices.
When indirect blocks are freed or remapped,
we note that their part of the indirect mapping is
.Dq obsolete
– no longer needed.
.Pp
This feature becomes
.Sy active
when the
.Nm zpool Cm remove
command is used on a top-level vdev, and will never return to being
.Sy enabled .
.
.feature org.zfsonlinux project_quota yes extensible_dataset
This feature allows administrators to account the spaces and objects usage
information against the project identifier
.Pq ID .
.Pp
The project ID is an object-based attribute.
When upgrading an existing filesystem,
objects without a project ID will be assigned a zero project ID.
When this feature is enabled, newly created objects inherit
their parent directories' project ID if the parent's inherit flag is set
.Pq via Nm chattr Sy [+-]P No or Nm zfs Cm project Fl s Ns | Ns Fl C .
Otherwise, the new object's project ID will be zero.
An object's project ID can be changed at any time by the owner
.Pq or privileged user
via
.Nm chattr Fl p Ar prjid
or
.Nm zfs Cm project Fl p Ar prjid .
.Pp
This feature will become
.Sy active
as soon as it is enabled and will never return to being
.Sy disabled .
\*[remount-upgrade]
.
.feature com.delphix redaction_bookmarks no bookmarks extensible_dataset
This feature enables the use of redacted
.Nm zfs Cm send Ns s ,
which create redaction bookmarks storing the list of blocks
redacted by the send that created them.
For more information about redacted sends, see
.Xr zfs-send 8 .
.
.feature com.delphix redacted_datasets no extensible_dataset
This feature enables the receiving of redacted
.Nm zfs Cm send
streams, which create redacted datasets when received.
These datasets are missing some of their blocks,
and so cannot be safely mounted, and their contents cannot be safely read.
For more information about redacted receives, see
.Xr zfs-send 8 .
.
.feature com.datto resilver_defer yes
This feature allows ZFS to postpone new resilvers if an existing one is already
in progress.
Without this feature, any new resilvers will cause the currently
running one to be immediately restarted from the beginning.
.Pp
This feature becomes
.Sy active
once a resilver has been deferred, and returns to being
.Sy enabled
when the deferred resilver begins.
.
.feature org.illumos sha512 no extensible_dataset
This feature enables the use of the SHA-512/256 truncated hash algorithm
.Pq FIPS 180-4
for checksum and dedup.
The native 64-bit arithmetic of SHA-512 provides an approximate 50%
performance boost over SHA-256 on 64-bit hardware
and is thus a good minimum-change replacement candidate
for systems where hash performance is important,
but these systems cannot for whatever reason utilize the faster
.Sy skein No and Sy edonr
algorithms.
.Pp
.checksum-spiel sha512
.
.feature org.illumos skein no extensible_dataset
This feature enables the use of the Skein hash algorithm for checksum and dedup.
Skein is a high-performance secure hash algorithm that was a
finalist in the NIST SHA-3 competition.
It provides a very high security margin and high performance on 64-bit hardware
.Pq 80% faster than SHA-256 .
This implementation also utilizes the new salted checksumming
functionality in ZFS, which means that the checksum is pre-seeded with a
secret 256-bit random key
.Pq stored on the pool
before being fed the data block to be checksummed.
Thus the produced checksums are unique to a given pool,
preventing hash collision attacks on systems with dedup.
.Pp
.checksum-spiel skein
.
.feature com.delphix spacemap_histogram yes
This features allows ZFS to maintain more information about how free space
is organized within the pool.
If this feature is
.Sy enabled ,
it will be activated when a new space map object is created, or
an existing space map is upgraded to the new format,
and never returns back to being
.Sy enabled .
.
.feature com.delphix spacemap_v2 yes
This feature enables the use of the new space map encoding which
consists of two words
.Pq instead of one
whenever it is advantageous.
The new encoding allows space maps to represent large regions of
space more efficiently on-disk while also increasing their maximum
addressable offset.
.Pp
This feature becomes
.Sy active
once it is
.Sy enabled ,
and never returns back to being
.Sy enabled .
.
.feature org.zfsonlinux userobj_accounting yes extensible_dataset
This feature allows administrators to account the object usage information
by user and group.
.Pp
\*[instant-never]
\*[remount-upgrade]
.
.feature org.openzfs zilsaxattr yes extensible_dataset
This feature enables
.Sy xattr Ns = Ns Sy sa
extended attribute logging in the ZIL.
If enabled, extended attribute changes
.Pq both Sy xattrdir Ns = Ns Sy dir No and Sy xattr Ns = Ns Sy sa
are guaranteed to be durable if either the dataset had
.Sy sync Ns = Ns Sy always
set at the time the changes were made, or
.Xr sync 2
is called on the dataset after the changes were made.
.Pp
This feature becomes
.Sy active
when a ZIL is created for at least one dataset and will be returned to the
.Sy enabled
state when it is destroyed for all datasets that use this feature.
.
.feature com.delphix zpool_checkpoint yes
This feature enables the
.Nm zpool Cm checkpoint
command that can checkpoint the state of the pool
at the time it was issued and later rewind back to it or discard it.
.Pp
This feature becomes
.Sy active
when the
.Nm zpool Cm checkpoint
command is used to checkpoint the pool.
The feature will only return back to being
.Sy enabled
when the pool is rewound or the checkpoint has been discarded.
.
.feature org.freebsd zstd_compress no extensible_dataset
.Sy zstd
is a high-performance compression algorithm that features a
combination of high compression ratios and high speed.
Compared to
.Sy gzip ,
.Sy zstd
offers slightly better compression at much higher speeds.
Compared to
.Sy lz4 ,
.Sy zstd
offers much better compression while being only modestly slower.
Typically,
.Sy zstd
compression speed ranges from 250 to 500 MB/s per thread
and decompression speed is over 1 GB/s per thread.
.Pp
When the
.Sy zstd
feature is set to
.Sy enabled ,
the administrator can turn on
.Sy zstd
compression of any dataset using
.Nm zfs Cm set Sy compress Ns = Ns Sy zstd Ar dset
.Po see Xr zfs-set 8 Pc .
This feature becomes
.Sy active
once a
.Sy compress
property has been set to
.Sy zstd ,
and will return to being
.Sy enabled
once all filesystems that have ever had their
.Sy compress
property set to
.Sy zstd
are destroyed.
.El
.
.Sh SEE ALSO
.Xr zfs 8 ,
.Xr zpool 8