aboutsummaryrefslogtreecommitdiffstats
path: root/man/man5/zfs-module-parameters.5
blob: fe31e292a792f254c63907b93f01bf1dfbbb9b57 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
'\" te
.\" Copyright (c) 2013 by Turbo Fredriksson <turbo@bayour.com>. All rights reserved.
.\" The contents of this file are subject to the terms of the Common Development
.\" and Distribution License (the "License").  You may not use this file except
.\" in compliance with the License. You can obtain a copy of the license at
.\" usr/src/OPENSOLARIS.LICENSE or http://www.opensolaris.org/os/licensing.
.\"
.\" See the License for the specific language governing permissions and
.\" limitations under the License. When distributing Covered Code, include this
.\" CDDL HEADER in each file and include the License file at
.\" usr/src/OPENSOLARIS.LICENSE.  If applicable, add the following below this
.\" CDDL HEADER, with the fields enclosed by brackets "[]" replaced with your
.\" own identifying information:
.\" Portions Copyright [yyyy] [name of copyright owner]
.TH ZFS-MODULE-PARAMETERS 5 "Nov 16, 2013"
.SH NAME
zfs\-module\-parameters \- ZFS module parameters
.SH DESCRIPTION
.sp
.LP
Description of the different parameters to the ZFS module.

.SS "Module parameters"
.sp
.LP

.sp
.ne 2
.na
\fBl2arc_feed_again\fR (int)
.ad
.RS 12n
Turbo L2ARC warmup
.sp
Use \fB1\fR for yes (default) and \fB0\fR to disable.
.RE

.sp
.ne 2
.na
\fBl2arc_feed_min_ms\fR (ulong)
.ad
.RS 12n
Min feed interval in milliseconds
.sp
Default value: \fB200\fR.
.RE

.sp
.ne 2
.na
\fBl2arc_feed_secs\fR (ulong)
.ad
.RS 12n
Seconds between L2ARC writing
.sp
Default value: \fB1\fR.
.RE

.sp
.ne 2
.na
\fBl2arc_headroom\fR (ulong)
.ad
.RS 12n
Number of max device writes to precache
.sp
Default value: \fB2\fR.
.RE

.sp
.ne 2
.na
\fBl2arc_headroom_boost\fR (ulong)
.ad
.RS 12n
Compressed l2arc_headroom multiplier
.sp
Default value: \fB200\fR.
.RE

.sp
.ne 2
.na
\fBl2arc_nocompress\fR (int)
.ad
.RS 12n
Skip compressing L2ARC buffers
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE

.sp
.ne 2
.na
\fBl2arc_noprefetch\fR (int)
.ad
.RS 12n
Skip caching prefetched buffers
.sp
Use \fB1\fR for yes (default) and \fB0\fR to disable.
.RE

.sp
.ne 2
.na
\fBl2arc_norw\fR (int)
.ad
.RS 12n
No reads during writes
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE

.sp
.ne 2
.na
\fBl2arc_write_boost\fR (ulong)
.ad
.RS 12n
Extra write bytes during device warmup
.sp
Default value: \fB8,388,608\fR.
.RE

.sp
.ne 2
.na
\fBl2arc_write_max\fR (ulong)
.ad
.RS 12n
Max write bytes per interval
.sp
Default value: \fB8,388,608\fR.
.RE

.sp
.ne 2
.na
\fBmetaslab_bias_enabled\fR (int)
.ad
.RS 12n
Enable metaslab group biasing based on its vdev's over- or under-utilization
relative to the pool.
.sp
Use \fB1\fR for yes (default) and \fB0\fR for no.
.RE

.sp
.ne 2
.na
\fBmetaslab_debug_load\fR (int)
.ad
.RS 12n
Load all metaslabs during pool import.
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE

.sp
.ne 2
.na
\fBmetaslab_debug_unload\fR (int)
.ad
.RS 12n
Prevent metaslabs from being unloaded.
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE

.sp
.ne 2
.na
\fBmetaslab_fragmentation_factor_enabled\fR (int)
.ad
.RS 12n
Enable use of the fragmentation metric in computing metaslab weights.
.sp
Use \fB1\fR for yes (default) and \fB0\fR for no.
.RE

.sp
.ne 2
.na
\fBmetaslabs_per_vdev\fR (int)
.ad
.RS 12n
When a vdev is added, it will be divided into approximately (but no more than) this number of metaslabs.
.sp
Default value: \fB200\fR.
.RE

.sp
.ne 2
.na
\fBmetaslab_preload_enabled\fR (int)
.ad
.RS 12n
Enable metaslab group preloading.
.sp
Use \fB1\fR for yes (default) and \fB0\fR for no.
.RE

.sp
.ne 2
.na
\fBmetaslab_lba_weighting_enabled\fR (int)
.ad
.RS 12n
Give more weight to metaslabs with lower LBAs, assuming they have
greater bandwidth as is typically the case on a modern constant
angular velocity disk drive.
.sp
Use \fB1\fR for yes (default) and \fB0\fR for no.
.RE

.sp
.ne 2
.na
\fBspa_config_path\fR (charp)
.ad
.RS 12n
SPA config file
.sp
Default value: \fB/etc/zfs/zpool.cache\fR.
.RE

.sp
.ne 2
.na
\fBspa_asize_inflation\fR (int)
.ad
.RS 12n
Multiplication factor used to estimate actual disk consumption from the
size of data being written. The default value is a worst case estimate,
but lower values may be valid for a given pool depending on its
configuration.  Pool administrators who understand the factors involved
may wish to specify a more realistic inflation factor, particularly if
they operate close to quota or capacity limits.
.sp
Default value: 24
.RE

.sp
.ne 2
.na
\fBspa_load_verify_data\fR (int)
.ad
.RS 12n
Whether to traverse data blocks during an "extreme rewind" (\fB-X\fR)
import.  Use 0 to disable and 1 to enable.

An extreme rewind import normally performs a full traversal of all
blocks in the pool for verification.  If this parameter is set to 0,
the traversal skips non-metadata blocks.  It can be toggled once the
import has started to stop or start the traversal of non-metadata blocks.
.sp
Default value: 1
.RE

.sp
.ne 2
.na
\fBspa_load_verify_metadata\fR (int)
.ad
.RS 12n
Whether to traverse blocks during an "extreme rewind" (\fB-X\fR)
pool import.  Use 0 to disable and 1 to enable.

An extreme rewind import normally performs a full traversal of all
blocks in the pool for verification.  If this parameter is set to 1,
the traversal is not performed.  It can be toggled once the import has
started to stop or start the traversal.
.sp
Default value: 1
.RE

.sp
.ne 2
.na
\fBspa_load_verify_maxinflight\fR (int)
.ad
.RS 12n
Maximum concurrent I/Os during the traversal performed during an "extreme
rewind" (\fB-X\fR) pool import.
.sp
Default value: 10000
.RE

.sp
.ne 2
.na
\fBzfetch_array_rd_sz\fR (ulong)
.ad
.RS 12n
If prefetching is enabled, disable prefetching for reads larger than this size.
.sp
Default value: \fB1,048,576\fR.
.RE

.sp
.ne 2
.na
\fBzfetch_block_cap\fR (uint)
.ad
.RS 12n
Max number of blocks to prefetch at a time
.sp
Default value: \fB256\fR.
.RE

.sp
.ne 2
.na
\fBzfetch_max_streams\fR (uint)
.ad
.RS 12n
Max number of streams per zfetch (prefetch streams per file).
.sp
Default value: \fB8\fR.
.RE

.sp
.ne 2
.na
\fBzfetch_min_sec_reap\fR (uint)
.ad
.RS 12n
Min time before an active prefetch stream can be reclaimed
.sp
Default value: \fB2\fR.
.RE

.sp
.ne 2
.na
\fBzfs_arc_average_blocksize\fR (int)
.ad
.RS 12n
The ARC's buffer hash table is sized based on the assumption of an average
block size of \fBzfs_arc_average_blocksize\fR (default 8K).  This works out
to roughly 1MB of hash table per 1GB of physical memory with 8-byte pointers.
For configurations with a known larger average block size this value can be
increased to reduce the memory footprint.

.sp
Default value: \fB8192\fR.
.RE

.sp
.ne 2
.na
\fBzfs_arc_grow_retry\fR (int)
.ad
.RS 12n
Seconds before growing arc size
.sp
Default value: \fB5\fR.
.RE

.sp
.ne 2
.na
\fBzfs_arc_max\fR (ulong)
.ad
.RS 12n
Max arc size
.sp
Default value: \fB0\fR.
.RE

.sp
.ne 2
.na
\fBzfs_arc_memory_throttle_disable\fR (int)
.ad
.RS 12n
Disable memory throttle
.sp
Use \fB1\fR for yes (default) and \fB0\fR to disable.
.RE

.sp
.ne 2
.na
\fBzfs_arc_meta_limit\fR (ulong)
.ad
.RS 12n
The maximum allowed size in bytes that meta data buffers are allowed to
consume in the ARC.  When this limit is reached meta data buffers will
be reclaimed even if the overall arc_c_max has not been reached.  This
value defaults to 0 which indicates that 3/4 of the ARC may be used
for meta data.
.sp
Default value: \fB0\fR.
.RE

.sp
.ne 2
.na
\fBzfs_arc_meta_prune\fR (int)
.ad
.RS 12n
The number of dentries and inodes to be scanned looking for entries
which can be dropped.  This may be required when the ARC reaches the
\fBzfs_arc_meta_limit\fR because dentries and inodes can pin buffers
in the ARC.  Increasing this value will cause to dentry and inode caches
to be pruned more aggressively.  Setting this value to 0 will disable
pruning the inode and dentry caches.
.sp
Default value: \fB10,000\fR.
.RE

.sp
.ne 2
.na
\fBzfs_arc_meta_adjust_restarts\fR (ulong)
.ad
.RS 12n
The number of restart passes to make while scanning the ARC attempting
the free buffers in order to stay below the \fBzfs_arc_meta_limit\fR.
This value should not need to be tuned but is available to facilitate
performance analysis.
.sp
Default value: \fB4096\fR.
.RE

.sp
.ne 2
.na
\fBzfs_arc_min\fR (ulong)
.ad
.RS 12n
Min arc size
.sp
Default value: \fB100\fR.
.RE

.sp
.ne 2
.na
\fBzfs_arc_min_prefetch_lifespan\fR (int)
.ad
.RS 12n
Min life of prefetch block
.sp
Default value: \fB100\fR.
.RE

.sp
.ne 2
.na
\fBzfs_arc_p_aggressive_disable\fR (int)
.ad
.RS 12n
Disable aggressive arc_p growth
.sp
Use \fB1\fR for yes (default) and \fB0\fR to disable.
.RE

.sp
.ne 2
.na
\fBzfs_arc_p_dampener_disable\fR (int)
.ad
.RS 12n
Disable arc_p adapt dampener
.sp
Use \fB1\fR for yes (default) and \fB0\fR to disable.
.RE

.sp
.ne 2
.na
\fBzfs_arc_shrink_shift\fR (int)
.ad
.RS 12n
log2(fraction of arc to reclaim)
.sp
Default value: \fB5\fR.
.RE

.sp
.ne 2
.na
\fBzfs_autoimport_disable\fR (int)
.ad
.RS 12n
Disable pool import at module load by ignoring the cache file (typically \fB/etc/zfs/zpool.cache\fR).
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE

.sp
.ne 2
.na
\fBzfs_dbuf_state_index\fR (int)
.ad
.RS 12n
Calculate arc header index
.sp
Default value: \fB0\fR.
.RE

.sp
.ne 2
.na
\fBzfs_deadman_enabled\fR (int)
.ad
.RS 12n
Enable deadman timer
.sp
Use \fB1\fR for yes (default) and \fB0\fR to disable.
.RE

.sp
.ne 2
.na
\fBzfs_deadman_synctime_ms\fR (ulong)
.ad
.RS 12n
Expiration time in milliseconds. This value has two meanings. First it is
used to determine when the spa_deadman() logic should fire. By default the
spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
Secondly, the value determines if an I/O is considered "hung". Any I/O that
has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
in a zevent being logged.
.sp
Default value: \fB1,000,000\fR.
.RE

.sp
.ne 2
.na
\fBzfs_dedup_prefetch\fR (int)
.ad
.RS 12n
Enable prefetching dedup-ed blks
.sp
Use \fB1\fR for yes and \fB0\fR to disable (default).
.RE

.sp
.ne 2
.na
\fBzfs_delay_min_dirty_percent\fR (int)
.ad
.RS 12n
Start to delay each transaction once there is this amount of dirty data,
expressed as a percentage of \fBzfs_dirty_data_max\fR.
This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
See the section "ZFS TRANSACTION DELAY".
.sp
Default value: \fB60\fR.
.RE

.sp
.ne 2
.na
\fBzfs_delay_scale\fR (int)
.ad
.RS 12n
This controls how quickly the transaction delay approaches infinity.
Larger values cause longer delays for a given amount of dirty data.
.sp
For the smoothest delay, this value should be about 1 billion divided
by the maximum number of operations per second.  This will smoothly
handle between 10x and 1/10th this number.
.sp
See the section "ZFS TRANSACTION DELAY".
.sp
Note: \fBzfs_delay_scale\fR * \fBzfs_dirty_data_max\fR must be < 2^64.
.sp
Default value: \fB500,000\fR.
.RE

.sp
.ne 2
.na
\fBzfs_dirty_data_max\fR (int)
.ad
.RS 12n
Determines the dirty space limit in bytes.  Once this limit is exceeded, new
writes are halted until space frees up. This parameter takes precedence
over \fBzfs_dirty_data_max_percent\fR.
See the section "ZFS TRANSACTION DELAY".
.sp
Default value: 10 percent of all memory, capped at \fBzfs_dirty_data_max_max\fR.
.RE

.sp
.ne 2
.na
\fBzfs_dirty_data_max_max\fR (int)
.ad
.RS 12n
Maximum allowable value of \fBzfs_dirty_data_max\fR, expressed in bytes.
This limit is only enforced at module load time, and will be ignored if
\fBzfs_dirty_data_max\fR is later changed.  This parameter takes
precedence over \fBzfs_dirty_data_max_max_percent\fR. See the section
"ZFS TRANSACTION DELAY".
.sp
Default value: 25% of physical RAM.
.RE

.sp
.ne 2
.na
\fBzfs_dirty_data_max_max_percent\fR (int)
.ad
.RS 12n
Maximum allowable value of \fBzfs_dirty_data_max\fR, expressed as a
percentage of physical RAM.  This limit is only enforced at module load
time, and will be ignored if \fBzfs_dirty_data_max\fR is later changed.
The parameter \fBzfs_dirty_data_max_max\fR takes precedence over this
one. See the section "ZFS TRANSACTION DELAY".
.sp
Default value: 25
.RE

.sp
.ne 2
.na
\fBzfs_dirty_data_max_percent\fR (int)
.ad
.RS 12n
Determines the dirty space limit, expressed as a percentage of all
memory.  Once this limit is exceeded, new writes are halted until space frees
up.  The parameter \fBzfs_dirty_data_max\fR takes precedence over this
one.  See the section "ZFS TRANSACTION DELAY".
.sp
Default value: 10%, subject to \fBzfs_dirty_data_max_max\fR.
.RE

.sp
.ne 2
.na
\fBzfs_dirty_data_sync\fR (int)
.ad
.RS 12n
Start syncing out a transaction group if there is at least this much dirty data.
.sp
Default value: \fB67,108,864\fR.
.RE

.sp
.ne 2
.na
\fBzfs_free_max_blocks\fR (ulong)
.ad
.RS 12n
Maximum number of blocks freed in a single txg.
.sp
Default value: \fB100,000\fR.
.RE

.sp
.ne 2
.na
\fBzfs_vdev_async_read_max_active\fR (int)
.ad
.RS 12n
Maxium asynchronous read I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB3\fR.
.RE

.sp
.ne 2
.na
\fBzfs_vdev_async_read_min_active\fR (int)
.ad
.RS 12n
Minimum asynchronous read I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB1\fR.
.RE

.sp
.ne 2
.na
\fBzfs_vdev_async_write_active_max_dirty_percent\fR (int)
.ad
.RS 12n
When the pool has more than
\fBzfs_vdev_async_write_active_max_dirty_percent\fR dirty data, use
\fBzfs_vdev_async_write_max_active\fR to limit active async writes.  If
the dirty data is between min and max, the active I/O limit is linearly
interpolated. See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB60\fR.
.RE

.sp
.ne 2
.na
\fBzfs_vdev_async_write_active_min_dirty_percent\fR (int)
.ad
.RS 12n
When the pool has less than
\fBzfs_vdev_async_write_active_min_dirty_percent\fR dirty data, use
\fBzfs_vdev_async_write_min_active\fR to limit active async writes.  If
the dirty data is between min and max, the active I/O limit is linearly
interpolated. See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB30\fR.
.RE

.sp
.ne 2
.na
\fBzfs_vdev_async_write_max_active\fR (int)
.ad
.RS 12n
Maxium asynchronous write I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB10\fR.
.RE

.sp
.ne 2
.na
\fBzfs_vdev_async_write_min_active\fR (int)
.ad
.RS 12n
Minimum asynchronous write I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB1\fR.
.RE

.sp
.ne 2
.na
\fBzfs_vdev_max_active\fR (int)
.ad
.RS 12n
The maximum number of I/Os active to each device.  Ideally, this will be >=
the sum of each queue's max_active.  It must be at least the sum of each
queue's min_active.  See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB1,000\fR.
.RE

.sp
.ne 2
.na
\fBzfs_vdev_scrub_max_active\fR (int)
.ad
.RS 12n
Maxium scrub I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB2\fR.
.RE

.sp
.ne 2
.na
\fBzfs_vdev_scrub_min_active\fR (int)
.ad
.RS 12n
Minimum scrub I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB1\fR.
.RE

.sp
.ne 2
.na
\fBzfs_vdev_sync_read_max_active\fR (int)
.ad
.RS 12n
Maxium synchronous read I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB10\fR.
.RE

.sp
.ne 2
.na
\fBzfs_vdev_sync_read_min_active\fR (int)
.ad
.RS 12n
Minimum synchronous read I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB10\fR.
.RE

.sp
.ne 2
.na
\fBzfs_vdev_sync_write_max_active\fR (int)
.ad
.RS 12n
Maxium synchronous write I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB10\fR.
.RE

.sp
.ne 2
.na
\fBzfs_vdev_sync_write_min_active\fR (int)
.ad
.RS 12n
Minimum synchronous write I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB10\fR.
.RE

.sp
.ne 2
.na
\fBzfs_disable_dup_eviction\fR (int)
.ad
.RS 12n
Disable duplicate buffer eviction
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE

.sp
.ne 2
.na
\fBzfs_expire_snapshot\fR (int)
.ad
.RS 12n
Seconds to expire .zfs/snapshot
.sp
Default value: \fB300\fR.
.RE

.sp
.ne 2
.na
\fBzfs_flags\fR (int)
.ad
.RS 12n
Set additional debugging flags. The following flags may be bitwise-or'd
together.
.sp
.TS
box;
rB lB
lB lB
r l.
Value	Symbolic Name
	Description
_
1	ZFS_DEBUG_DPRINTF
	Enable dprintf entries in the debug log.
_
2	ZFS_DEBUG_DBUF_VERIFY *
	Enable extra dbuf verifications.
_
4	ZFS_DEBUG_DNODE_VERIFY *
	Enable extra dnode verifications.
_
8	ZFS_DEBUG_SNAPNAMES
	Enable snapshot name verification.
_
16	ZFS_DEBUG_MODIFY
	Check for illegally modified ARC buffers.
_
32	ZFS_DEBUG_SPA
	Enable spa_dbgmsg entries in the debug log.
_
64	ZFS_DEBUG_ZIO_FREE
	Enable verification of block frees.
_
128	ZFS_DEBUG_HISTOGRAM_VERIFY
	Enable extra spacemap histogram verifications.
.TE
.sp
* Requires debug build.
.sp
Default value: \fB0\fR.
.RE

.sp
.ne 2
.na
\fBzfs_free_leak_on_eio\fR (int)
.ad
.RS 12n
If destroy encounters an EIO while reading metadata (e.g. indirect
blocks), space referenced by the missing metadata can not be freed.
Normally this causes the background destroy to become "stalled", as
it is unable to make forward progress.  While in this stalled state,
all remaining space to free from the error-encountering filesystem is
"temporarily leaked".  Set this flag to cause it to ignore the EIO,
permanently leak the space from indirect blocks that can not be read,
and continue to free everything else that it can.

The default, "stalling" behavior is useful if the storage partially
fails (i.e. some but not all i/os fail), and then later recovers.  In
this case, we will be able to continue pool operations while it is
partially failed, and when it recovers, we can continue to free the
space, with no leaks.  However, note that this case is actually
fairly rare.

Typically pools either (a) fail completely (but perhaps temporarily,
e.g. a top-level vdev going offline), or (b) have localized,
permanent errors (e.g. disk returns the wrong data due to bit flip or
firmware bug).  In case (a), this setting does not matter because the
pool will be suspended and the sync thread will not be able to make
forward progress regardless.  In case (b), because the error is
permanent, the best we can do is leak the minimum amount of space,
which is what setting this flag will do.  Therefore, it is reasonable
for this flag to normally be set, but we chose the more conservative
approach of not setting it, so that there is no possibility of
leaking space in the "partial temporary" failure case.
.sp
Default value: \fB0\fR.
.RE

.sp
.ne 2
.na
\fBzfs_free_min_time_ms\fR (int)
.ad
.RS 12n
Min millisecs to free per txg
.sp
Default value: \fB1,000\fR.
.RE

.sp
.ne 2
.na
\fBzfs_immediate_write_sz\fR (long)
.ad
.RS 12n
Largest data block to write to zil
.sp
Default value: \fB32,768\fR.
.RE

.sp
.ne 2
.na
\fBzfs_mdcomp_disable\fR (int)
.ad
.RS 12n
Disable meta data compression
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE

.sp
.ne 2
.na
\fBzfs_metaslab_fragmentation_threshold\fR (int)
.ad
.RS 12n
Allow metaslabs to keep their active state as long as their fragmentation
percentage is less than or equal to this value. An active metaslab that
exceeds this threshold will no longer keep its active status allowing
better metaslabs to be selected.
.sp
Default value: \fB70\fR.
.RE

.sp
.ne 2
.na
\fBzfs_mg_fragmentation_threshold\fR (int)
.ad
.RS 12n
Metaslab groups are considered eligible for allocations if their
fragmenation metric (measured as a percentage) is less than or equal to
this value. If a metaslab group exceeds this threshold then it will be
skipped unless all metaslab groups within the metaslab class have also
crossed this threshold.
.sp
Default value: \fB85\fR.
.RE

.sp
.ne 2
.na
\fBzfs_mg_noalloc_threshold\fR (int)
.ad
.RS 12n
Defines a threshold at which metaslab groups should be eligible for
allocations.  The value is expressed as a percentage of free space
beyond which a metaslab group is always eligible for allocations.
If a metaslab group's free space is less than or equal to the
the threshold, the allocator will avoid allocating to that group
unless all groups in the pool have reached the threshold.  Once all
groups have reached the threshold, all groups are allowed to accept
allocations.  The default value of 0 disables the feature and causes
all metaslab groups to be eligible for allocations.

This parameter allows to deal with pools having heavily imbalanced
vdevs such as would be the case when a new vdev has been added.
Setting the threshold to a non-zero percentage will stop allocations
from being made to vdevs that aren't filled to the specified percentage
and allow lesser filled vdevs to acquire more allocations than they
otherwise would under the old \fBzfs_mg_alloc_failures\fR facility.
.sp
Default value: \fB0\fR.
.RE

.sp
.ne 2
.na
\fBzfs_no_scrub_io\fR (int)
.ad
.RS 12n
Set for no scrub I/O
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE

.sp
.ne 2
.na
\fBzfs_no_scrub_prefetch\fR (int)
.ad
.RS 12n
Set for no scrub prefetching
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE

.sp
.ne 2
.na
\fBzfs_nocacheflush\fR (int)
.ad
.RS 12n
Disable cache flushes
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE

.sp
.ne 2
.na
\fBzfs_nopwrite_enabled\fR (int)
.ad
.RS 12n
Enable NOP writes
.sp
Use \fB1\fR for yes (default) and \fB0\fR to disable.
.RE

.sp
.ne 2
.na
\fBzfs_pd_blks_max\fR (int)
.ad
.RS 12n
Max number of blocks to prefetch
.sp
Default value: \fB100\fR.
.RE

.sp
.ne 2
.na
\fBzfs_prefetch_disable\fR (int)
.ad
.RS 12n
Disable all ZFS prefetching
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE

.sp
.ne 2
.na
\fBzfs_read_chunk_size\fR (long)
.ad
.RS 12n
Bytes to read per chunk
.sp
Default value: \fB1,048,576\fR.
.RE

.sp
.ne 2
.na
\fBzfs_read_history\fR (int)
.ad
.RS 12n
Historic statistics for the last N reads
.sp
Default value: \fB0\fR.
.RE

.sp
.ne 2
.na
\fBzfs_read_history_hits\fR (int)
.ad
.RS 12n
Include cache hits in read history
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE

.sp
.ne 2
.na
\fBzfs_recover\fR (int)
.ad
.RS 12n
Set to attempt to recover from fatal errors. This should only be used as a
last resort, as it typically results in leaked space, or worse.
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE

.sp
.ne 2
.na
\fBzfs_resilver_delay\fR (int)
.ad
.RS 12n
Number of ticks to delay prior to issuing a resilver I/O operation when
a non-resilver or non-scrub I/O operation has occurred within the past
\fBzfs_scan_idle\fR ticks.
.sp
Default value: \fB2\fR.
.RE

.sp
.ne 2
.na
\fBzfs_resilver_min_time_ms\fR (int)
.ad
.RS 12n
Min millisecs to resilver per txg
.sp
Default value: \fB3,000\fR.
.RE

.sp
.ne 2
.na
\fBzfs_scan_idle\fR (int)
.ad
.RS 12n
Idle window in clock ticks.  During a scrub or a resilver, if
a non-scrub or non-resilver I/O operation has occurred during this
window, the next scrub or resilver operation is delayed by, respectively
\fBzfs_scrub_delay\fR or \fBzfs_resilver_delay\fR ticks.
.sp
Default value: \fB50\fR.
.RE

.sp
.ne 2
.na
\fBzfs_scan_min_time_ms\fR (int)
.ad
.RS 12n
Min millisecs to scrub per txg
.sp
Default value: \fB1,000\fR.
.RE

.sp
.ne 2
.na
\fBzfs_scrub_delay\fR (int)
.ad
.RS 12n
Number of ticks to delay prior to issuing a scrub I/O operation when
a non-scrub or non-resilver I/O operation has occurred within the past
\fBzfs_scan_idle\fR ticks.
.sp
Default value: \fB4\fR.
.RE

.sp
.ne 2
.na
\fBzfs_send_corrupt_data\fR (int)
.ad
.RS 12n
Allow to send corrupt data (ignore read/checksum errors when sending data)
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE

.sp
.ne 2
.na
\fBzfs_sync_pass_deferred_free\fR (int)
.ad
.RS 12n
Defer frees starting in this pass
.sp
Default value: \fB2\fR.
.RE

.sp
.ne 2
.na
\fBzfs_sync_pass_dont_compress\fR (int)
.ad
.RS 12n
Don't compress starting in this pass
.sp
Default value: \fB5\fR.
.RE

.sp
.ne 2
.na
\fBzfs_sync_pass_rewrite\fR (int)
.ad
.RS 12n
Rewrite new bps starting in this pass
.sp
Default value: \fB2\fR.
.RE

.sp
.ne 2
.na
\fBzfs_top_maxinflight\fR (int)
.ad
.RS 12n
Max I/Os per top-level vdev during scrub or resilver operations.
.sp
Default value: \fB32\fR.
.RE

.sp
.ne 2
.na
\fBzfs_txg_history\fR (int)
.ad
.RS 12n
Historic statistics for the last N txgs
.sp
Default value: \fB0\fR.
.RE

.sp
.ne 2
.na
\fBzfs_txg_timeout\fR (int)
.ad
.RS 12n
Max seconds worth of delta per txg
.sp
Default value: \fB5\fR.
.RE

.sp
.ne 2
.na
\fBzfs_vdev_aggregation_limit\fR (int)
.ad
.RS 12n
Max vdev I/O aggregation size
.sp
Default value: \fB131,072\fR.
.RE

.sp
.ne 2
.na
\fBzfs_vdev_cache_bshift\fR (int)
.ad
.RS 12n
Shift size to inflate reads too
.sp
Default value: \fB16\fR.
.RE

.sp
.ne 2
.na
\fBzfs_vdev_cache_max\fR (int)
.ad
.RS 12n
Inflate reads small than max
.RE

.sp
.ne 2
.na
\fBzfs_vdev_cache_size\fR (int)
.ad
.RS 12n
Total size of the per-disk cache
.sp
Default value: \fB0\fR.
.RE

.sp
.ne 2
.na
\fBzfs_vdev_mirror_switch_us\fR (int)
.ad
.RS 12n
Switch mirrors every N usecs
.sp
Default value: \fB10,000\fR.
.RE

.sp
.ne 2
.na
\fBzfs_vdev_read_gap_limit\fR (int)
.ad
.RS 12n
Aggregate read I/O over gap
.sp
Default value: \fB32,768\fR.
.RE

.sp
.ne 2
.na
\fBzfs_vdev_scheduler\fR (charp)
.ad
.RS 12n
I/O scheduler
.sp
Default value: \fBnoop\fR.
.RE

.sp
.ne 2
.na
\fBzfs_vdev_write_gap_limit\fR (int)
.ad
.RS 12n
Aggregate write I/O over gap
.sp
Default value: \fB4,096\fR.
.RE

.sp
.ne 2
.na
\fBzfs_zevent_cols\fR (int)
.ad
.RS 12n
Max event column width
.sp
Default value: \fB80\fR.
.RE

.sp
.ne 2
.na
\fBzfs_zevent_console\fR (int)
.ad
.RS 12n
Log events to the console
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE

.sp
.ne 2
.na
\fBzfs_zevent_len_max\fR (int)
.ad
.RS 12n
Max event queue length
.sp
Default value: \fB0\fR.
.RE

.sp
.ne 2
.na
\fBzil_replay_disable\fR (int)
.ad
.RS 12n
Disable intent logging replay
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE

.sp
.ne 2
.na
\fBzil_slog_limit\fR (ulong)
.ad
.RS 12n
Max commit bytes to separate log device
.sp
Default value: \fB1,048,576\fR.
.RE

.sp
.ne 2
.na
\fBzio_delay_max\fR (int)
.ad
.RS 12n
Max zio millisec delay before posting event
.sp
Default value: \fB30,000\fR.
.RE

.sp
.ne 2
.na
\fBzio_injection_enabled\fR (int)
.ad
.RS 12n
Enable fault injection
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE

.sp
.ne 2
.na
\fBzio_requeue_io_start_cut_in_line\fR (int)
.ad
.RS 12n
Prioritize requeued I/O
.sp
Default value: \fB0\fR.
.RE

.sp
.ne 2
.na
\fBzvol_inhibit_dev\fR (uint)
.ad
.RS 12n
Do not create zvol device nodes
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE

.sp
.ne 2
.na
\fBzvol_major\fR (uint)
.ad
.RS 12n
Major number for zvol device
.sp
Default value: \fB230\fR.
.RE

.sp
.ne 2
.na
\fBzvol_max_discard_blocks\fR (ulong)
.ad
.RS 12n
Max number of blocks to discard at once
.sp
Default value: \fB16,384\fR.
.RE

.sp
.ne 2
.na
\fBzvol_threads\fR (uint)
.ad
.RS 12n
Number of threads for zvol device
.sp
Default value: \fB32\fR.
.RE

.SH ZFS I/O SCHEDULER
ZFS issues I/O operations to leaf vdevs to satisfy and complete I/Os.
The I/O scheduler determines when and in what order those operations are
issued.  The I/O scheduler divides operations into five I/O classes
prioritized in the following order: sync read, sync write, async read,
async write, and scrub/resilver.  Each queue defines the minimum and
maximum number of concurrent operations that may be issued to the
device.  In addition, the device has an aggregate maximum,
\fBzfs_vdev_max_active\fR. Note that the sum of the per-queue minimums
must not exceed the aggregate maximum.  If the sum of the per-queue
maximums exceeds the aggregate maximum, then the number of active I/Os
may reach \fBzfs_vdev_max_active\fR, in which case no further I/Os will
be issued regardless of whether all per-queue minimums have been met.
.sp
For many physical devices, throughput increases with the number of
concurrent operations, but latency typically suffers. Further, physical
devices typically have a limit at which more concurrent operations have no
effect on throughput or can actually cause it to decrease.
.sp
The scheduler selects the next operation to issue by first looking for an
I/O class whose minimum has not been satisfied. Once all are satisfied and
the aggregate maximum has not been hit, the scheduler looks for classes
whose maximum has not been satisfied. Iteration through the I/O classes is
done in the order specified above. No further operations are issued if the
aggregate maximum number of concurrent operations has been hit or if there
are no operations queued for an I/O class that has not hit its maximum.
Every time an I/O is queued or an operation completes, the I/O scheduler
looks for new operations to issue.
.sp
In general, smaller max_active's will lead to lower latency of synchronous
operations.  Larger max_active's may lead to higher overall throughput,
depending on underlying storage.
.sp
The ratio of the queues' max_actives determines the balance of performance
between reads, writes, and scrubs.  E.g., increasing
\fBzfs_vdev_scrub_max_active\fR will cause the scrub or resilver to complete
more quickly, but reads and writes to have higher latency and lower throughput.
.sp
All I/O classes have a fixed maximum number of outstanding operations
except for the async write class. Asynchronous writes represent the data
that is committed to stable storage during the syncing stage for
transaction groups. Transaction groups enter the syncing state
periodically so the number of queued async writes will quickly burst up
and then bleed down to zero. Rather than servicing them as quickly as
possible, the I/O scheduler changes the maximum number of active async
write I/Os according to the amount of dirty data in the pool.  Since
both throughput and latency typically increase with the number of
concurrent operations issued to physical devices, reducing the
burstiness in the number of concurrent operations also stabilizes the
response time of operations from other -- and in particular synchronous
-- queues. In broad strokes, the I/O scheduler will issue more
concurrent operations from the async write queue as there's more dirty
data in the pool.
.sp
Async Writes
.sp
The number of concurrent operations issued for the async write I/O class
follows a piece-wise linear function defined by a few adjustable points.
.nf

       |              o---------| <-- zfs_vdev_async_write_max_active
  ^    |             /^         |
  |    |            / |         |
active |           /  |         |
 I/O   |          /   |         |
count  |         /    |         |
       |        /     |         |
       |-------o      |         | <-- zfs_vdev_async_write_min_active
      0|_______^______|_________|
       0%      |      |       100% of zfs_dirty_data_max
               |      |
               |      `-- zfs_vdev_async_write_active_max_dirty_percent
               `--------- zfs_vdev_async_write_active_min_dirty_percent

.fi
Until the amount of dirty data exceeds a minimum percentage of the dirty
data allowed in the pool, the I/O scheduler will limit the number of
concurrent operations to the minimum. As that threshold is crossed, the
number of concurrent operations issued increases linearly to the maximum at
the specified maximum percentage of the dirty data allowed in the pool.
.sp
Ideally, the amount of dirty data on a busy pool will stay in the sloped
part of the function between \fBzfs_vdev_async_write_active_min_dirty_percent\fR
and \fBzfs_vdev_async_write_active_max_dirty_percent\fR. If it exceeds the
maximum percentage, this indicates that the rate of incoming data is
greater than the rate that the backend storage can handle. In this case, we
must further throttle incoming writes, as described in the next section.

.SH ZFS TRANSACTION DELAY
We delay transactions when we've determined that the backend storage
isn't able to accommodate the rate of incoming writes.
.sp
If there is already a transaction waiting, we delay relative to when
that transaction will finish waiting.  This way the calculated delay time
is independent of the number of threads concurrently executing
transactions.
.sp
If we are the only waiter, wait relative to when the transaction
started, rather than the current time.  This credits the transaction for
"time already served", e.g. reading indirect blocks.
.sp
The minimum time for a transaction to take is calculated as:
.nf
    min_time = zfs_delay_scale * (dirty - min) / (max - dirty)
    min_time is then capped at 100 milliseconds.
.fi
.sp
The delay has two degrees of freedom that can be adjusted via tunables.  The
percentage of dirty data at which we start to delay is defined by
\fBzfs_delay_min_dirty_percent\fR. This should typically be at or above
\fBzfs_vdev_async_write_active_max_dirty_percent\fR so that we only start to
delay after writing at full speed has failed to keep up with the incoming write
rate. The scale of the curve is defined by \fBzfs_delay_scale\fR. Roughly speaking,
this variable determines the amount of delay at the midpoint of the curve.
.sp
.nf
delay
 10ms +-------------------------------------------------------------*+
      |                                                             *|
  9ms +                                                             *+
      |                                                             *|
  8ms +                                                             *+
      |                                                            * |
  7ms +                                                            * +
      |                                                            * |
  6ms +                                                            * +
      |                                                            * |
  5ms +                                                           *  +
      |                                                           *  |
  4ms +                                                           *  +
      |                                                           *  |
  3ms +                                                          *   +
      |                                                          *   |
  2ms +                                              (midpoint) *    +
      |                                                  |    **     |
  1ms +                                                  v ***       +
      |             zfs_delay_scale ---------->     ********         |
    0 +-------------------------------------*********----------------+
      0%                    <- zfs_dirty_data_max ->               100%
.fi
.sp
Note that since the delay is added to the outstanding time remaining on the
most recent transaction, the delay is effectively the inverse of IOPS.
Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
was chosen such that small changes in the amount of accumulated dirty data
in the first 3/4 of the curve yield relatively small differences in the
amount of delay.
.sp
The effects can be easier to understand when the amount of delay is
represented on a log scale:
.sp
.nf
delay
100ms +-------------------------------------------------------------++
      +                                                              +
      |                                                              |
      +                                                             *+
 10ms +                                                             *+
      +                                                           ** +
      |                                              (midpoint)  **  |
      +                                                  |     **    +
  1ms +                                                  v ****      +
      +             zfs_delay_scale ---------->        *****         +
      |                                             ****             |
      +                                          ****                +
100us +                                        **                    +
      +                                       *                      +
      |                                      *                       |
      +                                     *                        +
 10us +                                     *                        +
      +                                                              +
      |                                                              |
      +                                                              +
      +--------------------------------------------------------------+
      0%                    <- zfs_dirty_data_max ->               100%
.fi
.sp
Note here that only as the amount of dirty data approaches its limit does
the delay start to increase rapidly. The goal of a properly tuned system
should be to keep the amount of dirty data out of that range by first
ensuring that the appropriate limits are set for the I/O scheduler to reach
optimal throughput on the backend storage, and then by changing the value
of \fBzfs_delay_scale\fR to increase the steepness of the curve.