1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2015 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, 2022 by Delphix. All rights reserved.
* Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
* Copyright 2017 RackTop Systems.
* Copyright (c) 2018 Datto Inc.
* Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
*/
/*
* Routines to manage ZFS mounts. We separate all the nasty routines that have
* to deal with the OS. The following functions are the main entry points --
* they are used by mount and unmount and when changing a filesystem's
* mountpoint.
*
* zfs_is_mounted()
* zfs_mount()
* zfs_mount_at()
* zfs_unmount()
* zfs_unmountall()
*
* This file also contains the functions used to manage sharing filesystems:
*
* zfs_is_shared()
* zfs_share()
* zfs_unshare()
* zfs_unshareall()
* zfs_commit_shares()
*
* The following functions are available for pool consumers, and will
* mount/unmount and share/unshare all datasets within pool:
*
* zpool_enable_datasets()
* zpool_disable_datasets()
*/
#include <dirent.h>
#include <dlfcn.h>
#include <errno.h>
#include <fcntl.h>
#include <libgen.h>
#include <libintl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <zone.h>
#include <sys/mntent.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/vfs.h>
#include <sys/dsl_crypt.h>
#include <libzfs.h>
#include "libzfs_impl.h"
#include <thread_pool.h>
#include <libshare.h>
#include <sys/systeminfo.h>
#define MAXISALEN 257 /* based on sysinfo(2) man page */
static int mount_tp_nthr = 512; /* tpool threads for multi-threaded mounting */
static void zfs_mount_task(void *);
static const proto_table_t proto_table[SA_PROTOCOL_COUNT] = {
[SA_PROTOCOL_NFS] =
{ZFS_PROP_SHARENFS, EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED},
[SA_PROTOCOL_SMB] =
{ZFS_PROP_SHARESMB, EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED},
};
static const enum sa_protocol share_all_proto[SA_PROTOCOL_COUNT + 1] = {
SA_PROTOCOL_NFS,
SA_PROTOCOL_SMB,
SA_NO_PROTOCOL
};
static boolean_t
dir_is_empty_stat(const char *dirname)
{
struct stat st;
/*
* We only want to return false if the given path is a non empty
* directory, all other errors are handled elsewhere.
*/
if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) {
return (B_TRUE);
}
/*
* An empty directory will still have two entries in it, one
* entry for each of "." and "..".
*/
if (st.st_size > 2) {
return (B_FALSE);
}
return (B_TRUE);
}
static boolean_t
dir_is_empty_readdir(const char *dirname)
{
DIR *dirp;
struct dirent64 *dp;
int dirfd;
if ((dirfd = openat(AT_FDCWD, dirname,
O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) {
return (B_TRUE);
}
if ((dirp = fdopendir(dirfd)) == NULL) {
(void) close(dirfd);
return (B_TRUE);
}
while ((dp = readdir64(dirp)) != NULL) {
if (strcmp(dp->d_name, ".") == 0 ||
strcmp(dp->d_name, "..") == 0)
continue;
(void) closedir(dirp);
return (B_FALSE);
}
(void) closedir(dirp);
return (B_TRUE);
}
/*
* Returns true if the specified directory is empty. If we can't open the
* directory at all, return true so that the mount can fail with a more
* informative error message.
*/
static boolean_t
dir_is_empty(const char *dirname)
{
struct statfs64 st;
/*
* If the statvfs call fails or the filesystem is not a ZFS
* filesystem, fall back to the slow path which uses readdir.
*/
if ((statfs64(dirname, &st) != 0) ||
(st.f_type != ZFS_SUPER_MAGIC)) {
return (dir_is_empty_readdir(dirname));
}
/*
* At this point, we know the provided path is on a ZFS
* filesystem, so we can use stat instead of readdir to
* determine if the directory is empty or not. We try to avoid
* using readdir because that requires opening "dirname"; this
* open file descriptor can potentially end up in a child
* process if there's a concurrent fork, thus preventing the
* zfs_mount() from otherwise succeeding (the open file
* descriptor inherited by the child process will cause the
* parent's mount to fail with EBUSY). The performance
* implications of replacing the open, read, and close with a
* single stat is nice; but is not the main motivation for the
* added complexity.
*/
return (dir_is_empty_stat(dirname));
}
/*
* Checks to see if the mount is active. If the filesystem is mounted, we fill
* in 'where' with the current mountpoint, and return 1. Otherwise, we return
* 0.
*/
boolean_t
is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where)
{
struct mnttab entry;
if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0)
return (B_FALSE);
if (where != NULL)
*where = zfs_strdup(zfs_hdl, entry.mnt_mountp);
return (B_TRUE);
}
boolean_t
zfs_is_mounted(zfs_handle_t *zhp, char **where)
{
return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where));
}
/*
* Checks any higher order concerns about whether the given dataset is
* mountable, false otherwise. zfs_is_mountable_internal specifically assumes
* that the caller has verified the sanity of mounting the dataset at
* its mountpoint to the extent the caller wants.
*/
static boolean_t
zfs_is_mountable_internal(zfs_handle_t *zhp)
{
if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) &&
getzoneid() == GLOBAL_ZONEID)
return (B_FALSE);
return (B_TRUE);
}
/*
* Returns true if the given dataset is mountable, false otherwise. Returns the
* mountpoint in 'buf'.
*/
static boolean_t
zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen,
zprop_source_t *source, int flags)
{
char sourceloc[MAXNAMELEN];
zprop_source_t sourcetype;
if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type,
B_FALSE))
return (B_FALSE);
verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen,
&sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0);
if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 ||
strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0)
return (B_FALSE);
if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF)
return (B_FALSE);
if (!zfs_is_mountable_internal(zhp))
return (B_FALSE);
if (zfs_prop_get_int(zhp, ZFS_PROP_REDACTED) && !(flags & MS_FORCE))
return (B_FALSE);
if (source)
*source = sourcetype;
return (B_TRUE);
}
/*
* The filesystem is mounted by invoking the system mount utility rather
* than by the system call mount(2). This ensures that the /etc/mtab
* file is correctly locked for the update. Performing our own locking
* and /etc/mtab update requires making an unsafe assumption about how
* the mount utility performs its locking. Unfortunately, this also means
* in the case of a mount failure we do not have the exact errno. We must
* make due with return value from the mount process.
*
* In the long term a shared library called libmount is under development
* which provides a common API to address the locking and errno issues.
* Once the standard mount utility has been updated to use this library
* we can add an autoconf check to conditionally use it.
*
* http://www.kernel.org/pub/linux/utils/util-linux/libmount-docs/index.html
*/
static int
zfs_add_option(zfs_handle_t *zhp, char *options, int len,
zfs_prop_t prop, const char *on, const char *off)
{
char *source;
uint64_t value;
/* Skip adding duplicate default options */
if ((strstr(options, on) != NULL) || (strstr(options, off) != NULL))
return (0);
/*
* zfs_prop_get_int() is not used to ensure our mount options
* are not influenced by the current /proc/self/mounts contents.
*/
value = getprop_uint64(zhp, prop, &source);
(void) strlcat(options, ",", len);
(void) strlcat(options, value ? on : off, len);
return (0);
}
static int
zfs_add_options(zfs_handle_t *zhp, char *options, int len)
{
int error = 0;
error = zfs_add_option(zhp, options, len,
ZFS_PROP_ATIME, MNTOPT_ATIME, MNTOPT_NOATIME);
/*
* don't add relatime/strictatime when atime=off, otherwise strictatime
* will force atime=on
*/
if (strstr(options, MNTOPT_NOATIME) == NULL) {
error = zfs_add_option(zhp, options, len,
ZFS_PROP_RELATIME, MNTOPT_RELATIME, MNTOPT_STRICTATIME);
}
error = error ? error : zfs_add_option(zhp, options, len,
ZFS_PROP_DEVICES, MNTOPT_DEVICES, MNTOPT_NODEVICES);
error = error ? error : zfs_add_option(zhp, options, len,
ZFS_PROP_EXEC, MNTOPT_EXEC, MNTOPT_NOEXEC);
error = error ? error : zfs_add_option(zhp, options, len,
ZFS_PROP_READONLY, MNTOPT_RO, MNTOPT_RW);
error = error ? error : zfs_add_option(zhp, options, len,
ZFS_PROP_SETUID, MNTOPT_SETUID, MNTOPT_NOSETUID);
error = error ? error : zfs_add_option(zhp, options, len,
ZFS_PROP_NBMAND, MNTOPT_NBMAND, MNTOPT_NONBMAND);
return (error);
}
int
zfs_mount(zfs_handle_t *zhp, const char *options, int flags)
{
char mountpoint[ZFS_MAXPROPLEN];
if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL,
flags))
return (0);
return (zfs_mount_at(zhp, options, flags, mountpoint));
}
/*
* Mount the given filesystem.
*/
int
zfs_mount_at(zfs_handle_t *zhp, const char *options, int flags,
const char *mountpoint)
{
struct stat buf;
char mntopts[MNT_LINE_MAX];
char overlay[ZFS_MAXPROPLEN];
char prop_encroot[MAXNAMELEN];
boolean_t is_encroot;
zfs_handle_t *encroot_hp = zhp;
libzfs_handle_t *hdl = zhp->zfs_hdl;
uint64_t keystatus;
int remount = 0, rc;
if (options == NULL) {
(void) strlcpy(mntopts, MNTOPT_DEFAULTS, sizeof (mntopts));
} else {
(void) strlcpy(mntopts, options, sizeof (mntopts));
}
if (strstr(mntopts, MNTOPT_REMOUNT) != NULL)
remount = 1;
/* Potentially duplicates some checks if invoked by zfs_mount(). */
if (!zfs_is_mountable_internal(zhp))
return (0);
/*
* If the pool is imported read-only then all mounts must be read-only
*/
if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL))
(void) strlcat(mntopts, "," MNTOPT_RO, sizeof (mntopts));
/*
* Append default mount options which apply to the mount point.
* This is done because under Linux (unlike Solaris) multiple mount
* points may reference a single super block. This means that just
* given a super block there is no back reference to update the per
* mount point options.
*/
rc = zfs_add_options(zhp, mntopts, sizeof (mntopts));
if (rc) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"default options unavailable"));
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
mountpoint));
}
/*
* If the filesystem is encrypted the key must be loaded in order to
* mount. If the key isn't loaded, the MS_CRYPT flag decides whether
* or not we attempt to load the keys. Note: we must call
* zfs_refresh_properties() here since some callers of this function
* (most notably zpool_enable_datasets()) may implicitly load our key
* by loading the parent's key first.
*/
if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
zfs_refresh_properties(zhp);
keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
/*
* If the key is unavailable and MS_CRYPT is set give the
* user a chance to enter the key. Otherwise just fail
* immediately.
*/
if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
if (flags & MS_CRYPT) {
rc = zfs_crypto_get_encryption_root(zhp,
&is_encroot, prop_encroot);
if (rc) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"Failed to get encryption root for "
"'%s'."), zfs_get_name(zhp));
return (rc);
}
if (!is_encroot) {
encroot_hp = zfs_open(hdl, prop_encroot,
ZFS_TYPE_DATASET);
if (encroot_hp == NULL)
return (hdl->libzfs_error);
}
rc = zfs_crypto_load_key(encroot_hp,
B_FALSE, NULL);
if (!is_encroot)
zfs_close(encroot_hp);
if (rc)
return (rc);
} else {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"encryption key not loaded"));
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
mountpoint));
}
}
}
/*
* Append zfsutil option so the mount helper allow the mount
*/
strlcat(mntopts, "," MNTOPT_ZFSUTIL, sizeof (mntopts));
/* Create the directory if it doesn't already exist */
if (lstat(mountpoint, &buf) != 0) {
if (mkdirp(mountpoint, 0755) != 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"failed to create mountpoint: %s"),
strerror(errno));
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
mountpoint));
}
}
/*
* Overlay mounts are enabled by default but may be disabled
* via the 'overlay' property. The -O flag remains for compatibility.
*/
if (!(flags & MS_OVERLAY)) {
if (zfs_prop_get(zhp, ZFS_PROP_OVERLAY, overlay,
sizeof (overlay), NULL, NULL, 0, B_FALSE) == 0) {
if (strcmp(overlay, "on") == 0) {
flags |= MS_OVERLAY;
}
}
}
/*
* Determine if the mountpoint is empty. If so, refuse to perform the
* mount. We don't perform this check if 'remount' is
* specified or if overlay option (-O) is given
*/
if ((flags & MS_OVERLAY) == 0 && !remount &&
!dir_is_empty(mountpoint)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"directory is not empty"));
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint));
}
/* perform the mount */
rc = do_mount(zhp, mountpoint, mntopts, flags);
if (rc) {
/*
* Generic errors are nasty, but there are just way too many
* from mount(), and they're well-understood. We pick a few
* common ones to improve upon.
*/
if (rc == EBUSY) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"mountpoint or dataset is busy"));
} else if (rc == EPERM) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"Insufficient privileges"));
} else if (rc == ENOTSUP) {
int spa_version;
VERIFY(zfs_spa_version(zhp, &spa_version) == 0);
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"Can't mount a version %llu "
"file system on a version %d pool. Pool must be"
" upgraded to mount this file system."),
(u_longlong_t)zfs_prop_get_int(zhp,
ZFS_PROP_VERSION), spa_version);
} else {
zfs_error_aux(hdl, "%s", strerror(rc));
}
return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
zhp->zfs_name));
}
/* remove the mounted entry before re-adding on remount */
if (remount)
libzfs_mnttab_remove(hdl, zhp->zfs_name);
/* add the mounted entry into our cache */
libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, mntopts);
return (0);
}
/*
* Unmount a single filesystem.
*/
static int
unmount_one(zfs_handle_t *zhp, const char *mountpoint, int flags)
{
int error;
error = do_unmount(zhp, mountpoint, flags);
if (error != 0) {
int libzfs_err;
switch (error) {
case EBUSY:
libzfs_err = EZFS_BUSY;
break;
case EIO:
libzfs_err = EZFS_IO;
break;
case ENOENT:
libzfs_err = EZFS_NOENT;
break;
case ENOMEM:
libzfs_err = EZFS_NOMEM;
break;
case EPERM:
libzfs_err = EZFS_PERM;
break;
default:
libzfs_err = EZFS_UMOUNTFAILED;
}
if (zhp) {
return (zfs_error_fmt(zhp->zfs_hdl, libzfs_err,
dgettext(TEXT_DOMAIN, "cannot unmount '%s'"),
mountpoint));
} else {
return (-1);
}
}
return (0);
}
/*
* Unmount the given filesystem.
*/
int
zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags)
{
libzfs_handle_t *hdl = zhp->zfs_hdl;
struct mnttab entry;
char *mntpt = NULL;
boolean_t encroot, unmounted = B_FALSE;
/* check to see if we need to unmount the filesystem */
if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) {
/*
* mountpoint may have come from a call to
* getmnt/getmntany if it isn't NULL. If it is NULL,
* we know it comes from libzfs_mnttab_find which can
* then get freed later. We strdup it to play it safe.
*/
if (mountpoint == NULL)
mntpt = zfs_strdup(hdl, entry.mnt_mountp);
else
mntpt = zfs_strdup(hdl, mountpoint);
/*
* Unshare and unmount the filesystem
*/
if (zfs_unshare(zhp, mntpt, share_all_proto) != 0) {
free(mntpt);
return (-1);
}
zfs_commit_shares(NULL);
if (unmount_one(zhp, mntpt, flags) != 0) {
free(mntpt);
(void) zfs_share(zhp, NULL);
zfs_commit_shares(NULL);
return (-1);
}
libzfs_mnttab_remove(hdl, zhp->zfs_name);
free(mntpt);
unmounted = B_TRUE;
}
/*
* If the MS_CRYPT flag is provided we must ensure we attempt to
* unload the dataset's key regardless of whether we did any work
* to unmount it. We only do this for encryption roots.
*/
if ((flags & MS_CRYPT) != 0 &&
zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
zfs_refresh_properties(zhp);
if (zfs_crypto_get_encryption_root(zhp, &encroot, NULL) != 0 &&
unmounted) {
(void) zfs_mount(zhp, NULL, 0);
return (-1);
}
if (encroot && zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
ZFS_KEYSTATUS_AVAILABLE &&
zfs_crypto_unload_key(zhp) != 0) {
(void) zfs_mount(zhp, NULL, 0);
return (-1);
}
}
zpool_disable_volume_os(zhp->zfs_name);
return (0);
}
/*
* Unmount this filesystem and any children inheriting the mountpoint property.
* To do this, just act like we're changing the mountpoint property, but don't
* remount the filesystems afterwards.
*/
int
zfs_unmountall(zfs_handle_t *zhp, int flags)
{
prop_changelist_t *clp;
int ret;
clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT,
CL_GATHER_ITER_MOUNTED, flags);
if (clp == NULL)
return (-1);
ret = changelist_prefix(clp);
changelist_free(clp);
return (ret);
}
/*
* Unshare a filesystem by mountpoint.
*/
static int
unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint,
enum sa_protocol proto)
{
int err = sa_disable_share(mountpoint, proto);
if (err != SA_OK)
return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
name, sa_errorstr(err)));
return (0);
}
/*
* Share the given filesystem according to the options in the specified
* protocol specific properties (sharenfs, sharesmb). We rely
* on "libshare" to do the dirty work for us.
*/
int
zfs_share(zfs_handle_t *zhp, const enum sa_protocol *proto)
{
char mountpoint[ZFS_MAXPROPLEN];
char shareopts[ZFS_MAXPROPLEN];
char sourcestr[ZFS_MAXPROPLEN];
const enum sa_protocol *curr_proto;
zprop_source_t sourcetype;
int err = 0;
if (proto == NULL)
proto = share_all_proto;
if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL, 0))
return (0);
for (curr_proto = proto; *curr_proto != SA_NO_PROTOCOL; curr_proto++) {
/*
* Return success if there are no share options.
*/
if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop,
shareopts, sizeof (shareopts), &sourcetype, sourcestr,
ZFS_MAXPROPLEN, B_FALSE) != 0 ||
strcmp(shareopts, "off") == 0)
continue;
/*
* If the 'zoned' property is set, then zfs_is_mountable()
* will have already bailed out if we are in the global zone.
* But local zones cannot be NFS servers, so we ignore it for
* local zones as well.
*/
if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED))
continue;
err = sa_enable_share(zfs_get_name(zhp), mountpoint, shareopts,
*curr_proto);
if (err != SA_OK) {
return (zfs_error_fmt(zhp->zfs_hdl,
proto_table[*curr_proto].p_share_err,
dgettext(TEXT_DOMAIN, "cannot share '%s: %s'"),
zfs_get_name(zhp), sa_errorstr(err)));
}
}
return (0);
}
/*
* Check to see if the filesystem is currently shared.
*/
boolean_t
zfs_is_shared(zfs_handle_t *zhp, char **where,
const enum sa_protocol *proto)
{
char *mountpoint;
if (proto == NULL)
proto = share_all_proto;
if (ZFS_IS_VOLUME(zhp))
return (B_FALSE);
if (!zfs_is_mounted(zhp, &mountpoint))
return (B_FALSE);
for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p)
if (sa_is_shared(mountpoint, *p)) {
if (where != NULL)
*where = mountpoint;
else
free(mountpoint);
return (B_TRUE);
}
free(mountpoint);
return (B_FALSE);
}
void
zfs_commit_shares(const enum sa_protocol *proto)
{
if (proto == NULL)
proto = share_all_proto;
for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p)
sa_commit_shares(*p);
}
void
zfs_truncate_shares(const enum sa_protocol *proto)
{
if (proto == NULL)
proto = share_all_proto;
for (const enum sa_protocol *p = proto; *p != SA_NO_PROTOCOL; ++p)
sa_truncate_shares(*p);
}
/*
* Unshare the given filesystem.
*/
int
zfs_unshare(zfs_handle_t *zhp, const char *mountpoint,
const enum sa_protocol *proto)
{
libzfs_handle_t *hdl = zhp->zfs_hdl;
struct mnttab entry;
if (proto == NULL)
proto = share_all_proto;
if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) {
/* check to see if need to unmount the filesystem */
const char *mntpt = mountpoint ?: entry.mnt_mountp;
for (const enum sa_protocol *curr_proto = proto;
*curr_proto != SA_NO_PROTOCOL; curr_proto++)
if (sa_is_shared(mntpt, *curr_proto) &&
unshare_one(hdl, zhp->zfs_name,
mntpt, *curr_proto) != 0)
return (-1);
}
return (0);
}
/*
* Same as zfs_unmountall(), but for NFS and SMB unshares.
*/
int
zfs_unshareall(zfs_handle_t *zhp, const enum sa_protocol *proto)
{
prop_changelist_t *clp;
int ret;
if (proto == NULL)
proto = share_all_proto;
clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0);
if (clp == NULL)
return (-1);
ret = changelist_unshare(clp, proto);
changelist_free(clp);
return (ret);
}
/*
* Remove the mountpoint associated with the current dataset, if necessary.
* We only remove the underlying directory if:
*
* - The mountpoint is not 'none' or 'legacy'
* - The mountpoint is non-empty
* - The mountpoint is the default or inherited
* - The 'zoned' property is set, or we're in a local zone
*
* Any other directories we leave alone.
*/
void
remove_mountpoint(zfs_handle_t *zhp)
{
char mountpoint[ZFS_MAXPROPLEN];
zprop_source_t source;
if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint),
&source, 0))
return;
if (source == ZPROP_SRC_DEFAULT ||
source == ZPROP_SRC_INHERITED) {
/*
* Try to remove the directory, silently ignoring any errors.
* The filesystem may have since been removed or moved around,
* and this error isn't really useful to the administrator in
* any way.
*/
(void) rmdir(mountpoint);
}
}
/*
* Add the given zfs handle to the cb_handles array, dynamically reallocating
* the array if it is out of space.
*/
void
libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp)
{
if (cbp->cb_alloc == cbp->cb_used) {
size_t newsz;
zfs_handle_t **newhandles;
newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64;
newhandles = zfs_realloc(zhp->zfs_hdl,
cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *),
newsz * sizeof (zfs_handle_t *));
cbp->cb_handles = newhandles;
cbp->cb_alloc = newsz;
}
cbp->cb_handles[cbp->cb_used++] = zhp;
}
/*
* Recursive helper function used during file system enumeration
*/
static int
zfs_iter_cb(zfs_handle_t *zhp, void *data)
{
get_all_cb_t *cbp = data;
if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) {
zfs_close(zhp);
return (0);
}
if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) {
zfs_close(zhp);
return (0);
}
if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
ZFS_KEYSTATUS_UNAVAILABLE) {
zfs_close(zhp);
return (0);
}
/*
* If this filesystem is inconsistent and has a receive resume
* token, we can not mount it.
*/
if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) &&
zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
NULL, 0, NULL, NULL, 0, B_TRUE) == 0) {
zfs_close(zhp);
return (0);
}
libzfs_add_handle(cbp, zhp);
if (zfs_iter_filesystems(zhp, 0, zfs_iter_cb, cbp) != 0) {
zfs_close(zhp);
return (-1);
}
return (0);
}
/*
* Sort comparator that compares two mountpoint paths. We sort these paths so
* that subdirectories immediately follow their parents. This means that we
* effectively treat the '/' character as the lowest value non-nul char.
* Since filesystems from non-global zones can have the same mountpoint
* as other filesystems, the comparator sorts global zone filesystems to
* the top of the list. This means that the global zone will traverse the
* filesystem list in the correct order and can stop when it sees the
* first zoned filesystem. In a non-global zone, only the delegated
* filesystems are seen.
*
* An example sorted list using this comparator would look like:
*
* /foo
* /foo/bar
* /foo/bar/baz
* /foo/baz
* /foo.bar
* /foo (NGZ1)
* /foo (NGZ2)
*
* The mounting code depends on this ordering to deterministically iterate
* over filesystems in order to spawn parallel mount tasks.
*/
static int
mountpoint_cmp(const void *arga, const void *argb)
{
zfs_handle_t *const *zap = arga;
zfs_handle_t *za = *zap;
zfs_handle_t *const *zbp = argb;
zfs_handle_t *zb = *zbp;
char mounta[MAXPATHLEN];
char mountb[MAXPATHLEN];
const char *a = mounta;
const char *b = mountb;
boolean_t gota, gotb;
uint64_t zoneda, zonedb;
zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED);
zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED);
if (zoneda && !zonedb)
return (1);
if (!zoneda && zonedb)
return (-1);
gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM);
if (gota) {
verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta,
sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0);
}
gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM);
if (gotb) {
verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb,
sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0);
}
if (gota && gotb) {
while (*a != '\0' && (*a == *b)) {
a++;
b++;
}
if (*a == *b)
return (0);
if (*a == '\0')
return (-1);
if (*b == '\0')
return (1);
if (*a == '/')
return (-1);
if (*b == '/')
return (1);
return (*a < *b ? -1 : *a > *b);
}
if (gota)
return (-1);
if (gotb)
return (1);
/*
* If neither filesystem has a mountpoint, revert to sorting by
* dataset name.
*/
return (strcmp(zfs_get_name(za), zfs_get_name(zb)));
}
/*
* Return true if path2 is a child of path1 or path2 equals path1 or
* path1 is "/" (path2 is always a child of "/").
*/
static boolean_t
libzfs_path_contains(const char *path1, const char *path2)
{
return (strcmp(path1, path2) == 0 || strcmp(path1, "/") == 0 ||
(strstr(path2, path1) == path2 && path2[strlen(path1)] == '/'));
}
/*
* Given a mountpoint specified by idx in the handles array, find the first
* non-descendent of that mountpoint and return its index. Descendant paths
* start with the parent's path. This function relies on the ordering
* enforced by mountpoint_cmp().
*/
static int
non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx)
{
char parent[ZFS_MAXPROPLEN];
char child[ZFS_MAXPROPLEN];
int i;
verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent,
sizeof (parent), NULL, NULL, 0, B_FALSE) == 0);
for (i = idx + 1; i < num_handles; i++) {
verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child,
sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
if (!libzfs_path_contains(parent, child))
break;
}
return (i);
}
typedef struct mnt_param {
libzfs_handle_t *mnt_hdl;
tpool_t *mnt_tp;
zfs_handle_t **mnt_zhps; /* filesystems to mount */
size_t mnt_num_handles;
int mnt_idx; /* Index of selected entry to mount */
zfs_iter_f mnt_func;
void *mnt_data;
} mnt_param_t;
/*
* Allocate and populate the parameter struct for mount function, and
* schedule mounting of the entry selected by idx.
*/
static void
zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles,
size_t num_handles, int idx, zfs_iter_f func, void *data, tpool_t *tp)
{
mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t));
mnt_param->mnt_hdl = hdl;
mnt_param->mnt_tp = tp;
mnt_param->mnt_zhps = handles;
mnt_param->mnt_num_handles = num_handles;
mnt_param->mnt_idx = idx;
mnt_param->mnt_func = func;
mnt_param->mnt_data = data;
(void) tpool_dispatch(tp, zfs_mount_task, (void*)mnt_param);
}
/*
* This is the structure used to keep state of mounting or sharing operations
* during a call to zpool_enable_datasets().
*/
typedef struct mount_state {
/*
* ms_mntstatus is set to -1 if any mount fails. While multiple threads
* could update this variable concurrently, no synchronization is
* needed as it's only ever set to -1.
*/
int ms_mntstatus;
int ms_mntflags;
const char *ms_mntopts;
} mount_state_t;
static int
zfs_mount_one(zfs_handle_t *zhp, void *arg)
{
mount_state_t *ms = arg;
int ret = 0;
/*
* don't attempt to mount encrypted datasets with
* unloaded keys
*/
if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
ZFS_KEYSTATUS_UNAVAILABLE)
return (0);
if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0)
ret = ms->ms_mntstatus = -1;
return (ret);
}
static int
zfs_share_one(zfs_handle_t *zhp, void *arg)
{
mount_state_t *ms = arg;
int ret = 0;
if (zfs_share(zhp, NULL) != 0)
ret = ms->ms_mntstatus = -1;
return (ret);
}
/*
* Thread pool function to mount one file system. On completion, it finds and
* schedules its children to be mounted. This depends on the sorting done in
* zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries
* each descending from the previous) will have no parallelism since we always
* have to wait for the parent to finish mounting before we can schedule
* its children.
*/
static void
zfs_mount_task(void *arg)
{
mnt_param_t *mp = arg;
int idx = mp->mnt_idx;
zfs_handle_t **handles = mp->mnt_zhps;
size_t num_handles = mp->mnt_num_handles;
char mountpoint[ZFS_MAXPROPLEN];
verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint,
sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0);
if (mp->mnt_func(handles[idx], mp->mnt_data) != 0)
goto out;
/*
* We dispatch tasks to mount filesystems with mountpoints underneath
* this one. We do this by dispatching the next filesystem with a
* descendant mountpoint of the one we just mounted, then skip all of
* its descendants, dispatch the next descendant mountpoint, and so on.
* The non_descendant_idx() function skips over filesystems that are
* descendants of the filesystem we just dispatched.
*/
for (int i = idx + 1; i < num_handles;
i = non_descendant_idx(handles, num_handles, i)) {
char child[ZFS_MAXPROPLEN];
verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT,
child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
if (!libzfs_path_contains(mountpoint, child))
break; /* not a descendant, return */
zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i,
mp->mnt_func, mp->mnt_data, mp->mnt_tp);
}
out:
free(mp);
}
/*
* Issue the func callback for each ZFS handle contained in the handles
* array. This function is used to mount all datasets, and so this function
* guarantees that filesystems for parent mountpoints are called before their
* children. As such, before issuing any callbacks, we first sort the array
* of handles by mountpoint.
*
* Callbacks are issued in one of two ways:
*
* 1. Sequentially: If the parallel argument is B_FALSE or the ZFS_SERIAL_MOUNT
* environment variable is set, then we issue callbacks sequentially.
*
* 2. In parallel: If the parallel argument is B_TRUE and the ZFS_SERIAL_MOUNT
* environment variable is not set, then we use a tpool to dispatch threads
* to mount filesystems in parallel. This function dispatches tasks to mount
* the filesystems at the top-level mountpoints, and these tasks in turn
* are responsible for recursively mounting filesystems in their children
* mountpoints.
*/
void
zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles,
size_t num_handles, zfs_iter_f func, void *data, boolean_t parallel)
{
zoneid_t zoneid = getzoneid();
/*
* The ZFS_SERIAL_MOUNT environment variable is an undocumented
* variable that can be used as a convenience to do a/b comparison
* of serial vs. parallel mounting.
*/
boolean_t serial_mount = !parallel ||
(getenv("ZFS_SERIAL_MOUNT") != NULL);
/*
* Sort the datasets by mountpoint. See mountpoint_cmp for details
* of how these are sorted.
*/
qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp);
if (serial_mount) {
for (int i = 0; i < num_handles; i++) {
func(handles[i], data);
}
return;
}
/*
* Issue the callback function for each dataset using a parallel
* algorithm that uses a thread pool to manage threads.
*/
tpool_t *tp = tpool_create(1, mount_tp_nthr, 0, NULL);
/*
* There may be multiple "top level" mountpoints outside of the pool's
* root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of
* these.
*/
for (int i = 0; i < num_handles;
i = non_descendant_idx(handles, num_handles, i)) {
/*
* Since the mountpoints have been sorted so that the zoned
* filesystems are at the end, a zoned filesystem seen from
* the global zone means that we're done.
*/
if (zoneid == GLOBAL_ZONEID &&
zfs_prop_get_int(handles[i], ZFS_PROP_ZONED))
break;
zfs_dispatch_mount(hdl, handles, num_handles, i, func, data,
tp);
}
tpool_wait(tp); /* wait for all scheduled mounts to complete */
tpool_destroy(tp);
}
/*
* Mount and share all datasets within the given pool. This assumes that no
* datasets within the pool are currently mounted.
*/
int
zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags)
{
get_all_cb_t cb = { 0 };
mount_state_t ms = { 0 };
zfs_handle_t *zfsp;
int ret = 0;
if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name,
ZFS_TYPE_DATASET)) == NULL)
goto out;
/*
* Gather all non-snapshot datasets within the pool. Start by adding
* the root filesystem for this pool to the list, and then iterate
* over all child filesystems.
*/
libzfs_add_handle(&cb, zfsp);
if (zfs_iter_filesystems(zfsp, 0, zfs_iter_cb, &cb) != 0)
goto out;
/*
* Mount all filesystems
*/
ms.ms_mntopts = mntopts;
ms.ms_mntflags = flags;
zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
zfs_mount_one, &ms, B_TRUE);
if (ms.ms_mntstatus != 0)
ret = ms.ms_mntstatus;
/*
* Share all filesystems that need to be shared. This needs to be
* a separate pass because libshare is not mt-safe, and so we need
* to share serially.
*/
ms.ms_mntstatus = 0;
zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
zfs_share_one, &ms, B_FALSE);
if (ms.ms_mntstatus != 0)
ret = ms.ms_mntstatus;
else
zfs_commit_shares(NULL);
out:
for (int i = 0; i < cb.cb_used; i++)
zfs_close(cb.cb_handles[i]);
free(cb.cb_handles);
return (ret);
}
struct sets_s {
char *mountpoint;
zfs_handle_t *dataset;
};
static int
mountpoint_compare(const void *a, const void *b)
{
const struct sets_s *mounta = (struct sets_s *)a;
const struct sets_s *mountb = (struct sets_s *)b;
return (strcmp(mountb->mountpoint, mounta->mountpoint));
}
/*
* Unshare and unmount all datasets within the given pool. We don't want to
* rely on traversing the DSL to discover the filesystems within the pool,
* because this may be expensive (if not all of them are mounted), and can fail
* arbitrarily (on I/O error, for example). Instead, we walk /proc/self/mounts
* and gather all the filesystems that are currently mounted.
*/
int
zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force)
{
int used, alloc;
FILE *mnttab;
struct mnttab entry;
size_t namelen;
struct sets_s *sets = NULL;
libzfs_handle_t *hdl = zhp->zpool_hdl;
int i;
int ret = -1;
int flags = (force ? MS_FORCE : 0);
namelen = strlen(zhp->zpool_name);
if ((mnttab = fopen(MNTTAB, "re")) == NULL)
return (ENOENT);
used = alloc = 0;
while (getmntent(mnttab, &entry) == 0) {
/*
* Ignore non-ZFS entries.
*/
if (entry.mnt_fstype == NULL ||
strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
continue;
/*
* Ignore filesystems not within this pool.
*/
if (entry.mnt_mountp == NULL ||
strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 ||
(entry.mnt_special[namelen] != '/' &&
entry.mnt_special[namelen] != '\0'))
continue;
/*
* At this point we've found a filesystem within our pool. Add
* it to our growing list.
*/
if (used == alloc) {
if (alloc == 0) {
sets = zfs_alloc(hdl,
8 * sizeof (struct sets_s));
alloc = 8;
} else {
sets = zfs_realloc(hdl, sets,
alloc * sizeof (struct sets_s),
alloc * 2 * sizeof (struct sets_s));
alloc *= 2;
}
}
sets[used].mountpoint = zfs_strdup(hdl, entry.mnt_mountp);
/*
* This is allowed to fail, in case there is some I/O error. It
* is only used to determine if we need to remove the underlying
* mountpoint, so failure is not fatal.
*/
sets[used].dataset = make_dataset_handle(hdl,
entry.mnt_special);
used++;
}
/*
* At this point, we have the entire list of filesystems, so sort it by
* mountpoint.
*/
if (used != 0)
qsort(sets, used, sizeof (struct sets_s), mountpoint_compare);
/*
* Walk through and first unshare everything.
*/
for (i = 0; i < used; i++) {
for (enum sa_protocol i = 0; i < SA_PROTOCOL_COUNT; ++i) {
if (sa_is_shared(sets[i].mountpoint, i) &&
unshare_one(hdl, sets[i].mountpoint,
sets[i].mountpoint, i) != 0)
goto out;
}
}
zfs_commit_shares(NULL);
/*
* Now unmount everything, removing the underlying directories as
* appropriate.
*/
for (i = 0; i < used; i++) {
if (unmount_one(sets[i].dataset, sets[i].mountpoint,
flags) != 0)
goto out;
}
for (i = 0; i < used; i++) {
if (sets[i].dataset)
remove_mountpoint(sets[i].dataset);
}
zpool_disable_datasets_os(zhp, force);
ret = 0;
out:
(void) fclose(mnttab);
for (i = 0; i < used; i++) {
if (sets[i].dataset)
zfs_close(sets[i].dataset);
free(sets[i].mountpoint);
}
free(sets);
return (ret);
}
|