aboutsummaryrefslogtreecommitdiffstats
path: root/lib/libefi/rdwr_efi.c
blob: 3501c3ea391cf23a900d4a2e9e1f632162131398 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or https://opensource.org/licenses/CDDL-1.0.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */

/*
 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
 * Copyright 2012 Nexenta Systems, Inc.  All rights reserved.
 * Copyright (c) 2018 by Delphix. All rights reserved.
 */

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <uuid/uuid.h>
#include <zlib.h>
#include <libintl.h>
#include <sys/types.h>
#include <sys/dkio.h>
#include <sys/mhd.h>
#include <sys/param.h>
#include <sys/dktp/fdisk.h>
#include <sys/efi_partition.h>
#include <sys/byteorder.h>
#include <sys/vdev_disk.h>
#include <linux/fs.h>
#include <linux/blkpg.h>

static struct uuid_to_ptag {
	struct uuid	uuid;
} conversion_array[] = {
	{ EFI_UNUSED },
	{ EFI_BOOT },
	{ EFI_ROOT },
	{ EFI_SWAP },
	{ EFI_USR },
	{ EFI_BACKUP },
	{ EFI_UNUSED },		/* STAND is never used */
	{ EFI_VAR },
	{ EFI_HOME },
	{ EFI_ALTSCTR },
	{ EFI_UNUSED },		/* CACHE (cachefs) is never used */
	{ EFI_RESERVED },
	{ EFI_SYSTEM },
	{ EFI_LEGACY_MBR },
	{ EFI_SYMC_PUB },
	{ EFI_SYMC_CDS },
	{ EFI_MSFT_RESV },
	{ EFI_DELL_BASIC },
	{ EFI_DELL_RAID },
	{ EFI_DELL_SWAP },
	{ EFI_DELL_LVM },
	{ EFI_DELL_RESV },
	{ EFI_AAPL_HFS },
	{ EFI_AAPL_UFS },
	{ EFI_FREEBSD_BOOT },
	{ EFI_FREEBSD_SWAP },
	{ EFI_FREEBSD_UFS },
	{ EFI_FREEBSD_VINUM },
	{ EFI_FREEBSD_ZFS },
	{ EFI_BIOS_BOOT },
	{ EFI_INTC_RS },
	{ EFI_SNE_BOOT },
	{ EFI_LENOVO_BOOT },
	{ EFI_MSFT_LDMM },
	{ EFI_MSFT_LDMD },
	{ EFI_MSFT_RE },
	{ EFI_IBM_GPFS },
	{ EFI_MSFT_STORAGESPACES },
	{ EFI_HPQ_DATA },
	{ EFI_HPQ_SVC },
	{ EFI_RHT_DATA },
	{ EFI_RHT_HOME },
	{ EFI_RHT_SRV },
	{ EFI_RHT_DMCRYPT },
	{ EFI_RHT_LUKS },
	{ EFI_FREEBSD_DISKLABEL },
	{ EFI_AAPL_RAID },
	{ EFI_AAPL_RAIDOFFLINE },
	{ EFI_AAPL_BOOT },
	{ EFI_AAPL_LABEL },
	{ EFI_AAPL_TVRECOVERY },
	{ EFI_AAPL_CORESTORAGE },
	{ EFI_NETBSD_SWAP },
	{ EFI_NETBSD_FFS },
	{ EFI_NETBSD_LFS },
	{ EFI_NETBSD_RAID },
	{ EFI_NETBSD_CAT },
	{ EFI_NETBSD_CRYPT },
	{ EFI_GOOG_KERN },
	{ EFI_GOOG_ROOT },
	{ EFI_GOOG_RESV },
	{ EFI_HAIKU_BFS },
	{ EFI_MIDNIGHTBSD_BOOT },
	{ EFI_MIDNIGHTBSD_DATA },
	{ EFI_MIDNIGHTBSD_SWAP },
	{ EFI_MIDNIGHTBSD_UFS },
	{ EFI_MIDNIGHTBSD_VINUM },
	{ EFI_MIDNIGHTBSD_ZFS },
	{ EFI_CEPH_JOURNAL },
	{ EFI_CEPH_DMCRYPTJOURNAL },
	{ EFI_CEPH_OSD },
	{ EFI_CEPH_DMCRYPTOSD },
	{ EFI_CEPH_CREATE },
	{ EFI_CEPH_DMCRYPTCREATE },
	{ EFI_OPENBSD_DISKLABEL },
	{ EFI_BBRY_QNX },
	{ EFI_BELL_PLAN9 },
	{ EFI_VMW_KCORE },
	{ EFI_VMW_VMFS },
	{ EFI_VMW_RESV },
	{ EFI_RHT_ROOTX86 },
	{ EFI_RHT_ROOTAMD64 },
	{ EFI_RHT_ROOTARM },
	{ EFI_RHT_ROOTARM64 },
	{ EFI_ACRONIS_SECUREZONE },
	{ EFI_ONIE_BOOT },
	{ EFI_ONIE_CONFIG },
	{ EFI_IBM_PPRPBOOT },
	{ EFI_FREEDESKTOP_BOOT }
};

int efi_debug = 0;

static int efi_read(int, struct dk_gpt *);

/*
 * Return a 32-bit CRC of the contents of the buffer.  Pre-and-post
 * one's conditioning will be handled by crc32() internally.
 */
static uint32_t
efi_crc32(const unsigned char *buf, unsigned int size)
{
	uint32_t crc = crc32(0, Z_NULL, 0);

	crc = crc32(crc, buf, size);

	return (crc);
}

static int
read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
{
	int sector_size;
	unsigned long long capacity_size;

	if (ioctl(fd, BLKSSZGET, &sector_size) < 0)
		return (-1);

	if (ioctl(fd, BLKGETSIZE64, &capacity_size) < 0)
		return (-1);

	*lbsize = (uint_t)sector_size;
	*capacity = (diskaddr_t)(capacity_size / sector_size);

	return (0);
}

/*
 * Return back the device name associated with the file descriptor. The
 * caller is responsible for freeing the memory associated with the
 * returned string.
 */
static char *
efi_get_devname(int fd)
{
	char path[32];

	/*
	 * The libefi API only provides the open fd and not the file path.
	 * To handle this realpath(3) is used to resolve the block device
	 * name from /proc/self/fd/<fd>.
	 */
	(void) snprintf(path, sizeof (path), "/proc/self/fd/%d", fd);
	return (realpath(path, NULL));
}

static int
efi_get_info(int fd, struct dk_cinfo *dki_info)
{
	char *dev_path;
	int rval = 0;

	memset(dki_info, 0, sizeof (*dki_info));

	/*
	 * The simplest way to get the partition number under linux is
	 * to parse it out of the /dev/<disk><partition> block device name.
	 * The kernel creates this using the partition number when it
	 * populates /dev/ so it may be trusted.  The tricky bit here is
	 * that the naming convention is based on the block device type.
	 * So we need to take this in to account when parsing out the
	 * partition information.  Aside from the partition number we collect
	 * some additional device info.
	 */
	dev_path = efi_get_devname(fd);
	if (dev_path == NULL)
		goto error;

	if ((strncmp(dev_path, "/dev/sd", 7) == 0)) {
		strcpy(dki_info->dki_cname, "sd");
		dki_info->dki_ctype = DKC_SCSI_CCS;
		rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
		    dki_info->dki_dname,
		    &dki_info->dki_partition);
	} else if ((strncmp(dev_path, "/dev/hd", 7) == 0)) {
		strcpy(dki_info->dki_cname, "hd");
		dki_info->dki_ctype = DKC_DIRECT;
		rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
		    dki_info->dki_dname,
		    &dki_info->dki_partition);
	} else if ((strncmp(dev_path, "/dev/md", 7) == 0)) {
		strcpy(dki_info->dki_cname, "pseudo");
		dki_info->dki_ctype = DKC_MD;
		strcpy(dki_info->dki_dname, "md");
		rval = sscanf(dev_path, "/dev/md%[0-9]p%hu",
		    dki_info->dki_dname + 2,
		    &dki_info->dki_partition);
	} else if ((strncmp(dev_path, "/dev/vd", 7) == 0)) {
		strcpy(dki_info->dki_cname, "vd");
		dki_info->dki_ctype = DKC_MD;
		rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
		    dki_info->dki_dname,
		    &dki_info->dki_partition);
	} else if ((strncmp(dev_path, "/dev/xvd", 8) == 0)) {
		strcpy(dki_info->dki_cname, "xvd");
		dki_info->dki_ctype = DKC_MD;
		rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
		    dki_info->dki_dname,
		    &dki_info->dki_partition);
	} else if ((strncmp(dev_path, "/dev/zd", 7) == 0)) {
		strcpy(dki_info->dki_cname, "zd");
		dki_info->dki_ctype = DKC_MD;
		strcpy(dki_info->dki_dname, "zd");
		rval = sscanf(dev_path, "/dev/zd%[0-9]p%hu",
		    dki_info->dki_dname + 2,
		    &dki_info->dki_partition);
	} else if ((strncmp(dev_path, "/dev/dm-", 8) == 0)) {
		strcpy(dki_info->dki_cname, "pseudo");
		dki_info->dki_ctype = DKC_VBD;
		strcpy(dki_info->dki_dname, "dm-");
		rval = sscanf(dev_path, "/dev/dm-%[0-9]p%hu",
		    dki_info->dki_dname + 3,
		    &dki_info->dki_partition);
	} else if ((strncmp(dev_path, "/dev/ram", 8) == 0)) {
		strcpy(dki_info->dki_cname, "pseudo");
		dki_info->dki_ctype = DKC_PCMCIA_MEM;
		strcpy(dki_info->dki_dname, "ram");
		rval = sscanf(dev_path, "/dev/ram%[0-9]p%hu",
		    dki_info->dki_dname + 3,
		    &dki_info->dki_partition);
	} else if ((strncmp(dev_path, "/dev/loop", 9) == 0)) {
		strcpy(dki_info->dki_cname, "pseudo");
		dki_info->dki_ctype = DKC_VBD;
		strcpy(dki_info->dki_dname, "loop");
		rval = sscanf(dev_path, "/dev/loop%[0-9]p%hu",
		    dki_info->dki_dname + 4,
		    &dki_info->dki_partition);
	} else if ((strncmp(dev_path, "/dev/nvme", 9) == 0)) {
		strcpy(dki_info->dki_cname, "nvme");
		dki_info->dki_ctype = DKC_SCSI_CCS;
		strcpy(dki_info->dki_dname, "nvme");
		(void) sscanf(dev_path, "/dev/nvme%[0-9]",
		    dki_info->dki_dname + 4);
		size_t controller_length = strlen(
		    dki_info->dki_dname);
		strcpy(dki_info->dki_dname + controller_length,
		    "n");
		rval = sscanf(dev_path,
		    "/dev/nvme%*[0-9]n%[0-9]p%hu",
		    dki_info->dki_dname + controller_length + 1,
		    &dki_info->dki_partition);
	} else {
		strcpy(dki_info->dki_dname, "unknown");
		strcpy(dki_info->dki_cname, "unknown");
		dki_info->dki_ctype = DKC_UNKNOWN;
	}

	switch (rval) {
	case 0:
		errno = EINVAL;
		goto error;
	case 1:
		dki_info->dki_partition = 0;
	}

	free(dev_path);

	return (0);
error:
	if (efi_debug)
		(void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);

	switch (errno) {
	case EIO:
		return (VT_EIO);
	case EINVAL:
		return (VT_EINVAL);
	default:
		return (VT_ERROR);
	}
}

/*
 * the number of blocks the EFI label takes up (round up to nearest
 * block)
 */
#define	NBLOCKS(p, l)	(1 + ((((p) * (int)sizeof (efi_gpe_t))  + \
				((l) - 1)) / (l)))
/* number of partitions -- limited by what we can malloc */
#define	MAX_PARTS	((4294967295UL - sizeof (struct dk_gpt)) / \
			    sizeof (struct dk_part))

int
efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
{
	diskaddr_t	capacity = 0;
	uint_t		lbsize = 0;
	uint_t		nblocks;
	size_t		length;
	struct dk_gpt	*vptr;
	struct uuid	uuid;
	struct dk_cinfo	dki_info;

	if (read_disk_info(fd, &capacity, &lbsize) != 0)
		return (-1);

	if (efi_get_info(fd, &dki_info) != 0)
		return (-1);

	if (dki_info.dki_partition != 0)
		return (-1);

	if ((dki_info.dki_ctype == DKC_PCMCIA_MEM) ||
	    (dki_info.dki_ctype == DKC_VBD) ||
	    (dki_info.dki_ctype == DKC_UNKNOWN))
		return (-1);

	nblocks = NBLOCKS(nparts, lbsize);
	if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
		/* 16K plus one block for the GPT */
		nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
	}

	if (nparts > MAX_PARTS) {
		if (efi_debug) {
			(void) fprintf(stderr,
			"the maximum number of partitions supported is %lu\n",
			    MAX_PARTS);
		}
		return (-1);
	}

	length = sizeof (struct dk_gpt) +
	    sizeof (struct dk_part) * (nparts - 1);

	vptr = calloc(1, length);
	if (vptr == NULL)
		return (-1);

	*vtoc = vptr;

	vptr->efi_version = EFI_VERSION_CURRENT;
	vptr->efi_lbasize = lbsize;
	vptr->efi_nparts = nparts;
	/*
	 * add one block here for the PMBR; on disks with a 512 byte
	 * block size and 128 or fewer partitions, efi_first_u_lba
	 * should work out to "34"
	 */
	vptr->efi_first_u_lba = nblocks + 1;
	vptr->efi_last_lba = capacity - 1;
	vptr->efi_altern_lba = capacity -1;
	vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;

	(void) uuid_generate((uchar_t *)&uuid);
	UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
	return (0);
}

/*
 * Read EFI - return partition number upon success.
 */
int
efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
{
	int			rval;
	uint32_t		nparts;
	int			length;
	struct dk_gpt		*vptr;

	/* figure out the number of entries that would fit into 16K */
	nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
	length = (int) sizeof (struct dk_gpt) +
	    (int) sizeof (struct dk_part) * (nparts - 1);
	vptr = calloc(1, length);

	if (vptr == NULL)
		return (VT_ERROR);

	vptr->efi_nparts = nparts;
	rval = efi_read(fd, vptr);

	if ((rval == VT_EINVAL) && vptr->efi_nparts > nparts) {
		void *tmp;
		length = (int) sizeof (struct dk_gpt) +
		    (int) sizeof (struct dk_part) * (vptr->efi_nparts - 1);
		if ((tmp = realloc(vptr, length)) == NULL) {
			/* cppcheck-suppress doubleFree */
			free(vptr);
			*vtoc = NULL;
			return (VT_ERROR);
		} else {
			vptr = tmp;
			rval = efi_read(fd, vptr);
		}
	}

	if (rval < 0) {
		if (efi_debug) {
			(void) fprintf(stderr,
			    "read of EFI table failed, rval=%d\n", rval);
		}
		free(vptr);
		*vtoc = NULL;
	} else {
		*vtoc = vptr;
	}

	return (rval);
}

static int
efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
{
	void *data = dk_ioc->dki_data;
	int error;
	diskaddr_t capacity;
	uint_t lbsize;

	/*
	 * When the IO is not being performed in kernel as an ioctl we need
	 * to know the sector size so we can seek to the proper byte offset.
	 */
	if (read_disk_info(fd, &capacity, &lbsize) == -1) {
		if (efi_debug)
			fprintf(stderr, "unable to read disk info: %d", errno);

		errno = EIO;
		return (-1);
	}

	switch (cmd) {
	case DKIOCGETEFI:
		if (lbsize == 0) {
			if (efi_debug)
				(void) fprintf(stderr, "DKIOCGETEFI assuming "
				    "LBA %d bytes\n", DEV_BSIZE);

			lbsize = DEV_BSIZE;
		}

		error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
		if (error == -1) {
			if (efi_debug)
				(void) fprintf(stderr, "DKIOCGETEFI lseek "
				    "error: %d\n", errno);
			return (error);
		}

		error = read(fd, data, dk_ioc->dki_length);
		if (error == -1) {
			if (efi_debug)
				(void) fprintf(stderr, "DKIOCGETEFI read "
				    "error: %d\n", errno);
			return (error);
		}

		if (error != dk_ioc->dki_length) {
			if (efi_debug)
				(void) fprintf(stderr, "DKIOCGETEFI short "
				    "read of %d bytes\n", error);
			errno = EIO;
			return (-1);
		}
		error = 0;
		break;

	case DKIOCSETEFI:
		if (lbsize == 0) {
			if (efi_debug)
				(void) fprintf(stderr, "DKIOCSETEFI unknown "
				    "LBA size\n");
			errno = EIO;
			return (-1);
		}

		error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
		if (error == -1) {
			if (efi_debug)
				(void) fprintf(stderr, "DKIOCSETEFI lseek "
				    "error: %d\n", errno);
			return (error);
		}

		error = write(fd, data, dk_ioc->dki_length);
		if (error == -1) {
			if (efi_debug)
				(void) fprintf(stderr, "DKIOCSETEFI write "
				    "error: %d\n", errno);
			return (error);
		}

		if (error != dk_ioc->dki_length) {
			if (efi_debug)
				(void) fprintf(stderr, "DKIOCSETEFI short "
				    "write of %d bytes\n", error);
			errno = EIO;
			return (-1);
		}

		/* Sync the new EFI table to disk */
		error = fsync(fd);
		if (error == -1)
			return (error);

		/* Ensure any local disk cache is also flushed */
		if (ioctl(fd, BLKFLSBUF, 0) == -1)
			return (error);

		error = 0;
		break;

	default:
		if (efi_debug)
			(void) fprintf(stderr, "unsupported ioctl()\n");

		errno = EIO;
		return (-1);
	}

	return (error);
}

int
efi_rescan(int fd)
{
	int retry = 10;

	/* Notify the kernel a devices partition table has been updated */
	while (ioctl(fd, BLKRRPART) != 0) {
		if ((--retry == 0) || (errno != EBUSY)) {
			(void) fprintf(stderr, "the kernel failed to rescan "
			    "the partition table: %d\n", errno);
			return (-1);
		}
		usleep(50000);
	}

	return (0);
}

static int
check_label(int fd, dk_efi_t *dk_ioc)
{
	efi_gpt_t		*efi;
	uint_t			crc;

	if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
		switch (errno) {
		case EIO:
			return (VT_EIO);
		default:
			return (VT_ERROR);
		}
	}
	efi = dk_ioc->dki_data;
	if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
		if (efi_debug)
			(void) fprintf(stderr,
			    "Bad EFI signature: 0x%llx != 0x%llx\n",
			    (long long)efi->efi_gpt_Signature,
			    (long long)LE_64(EFI_SIGNATURE));
		return (VT_EINVAL);
	}

	/*
	 * check CRC of the header; the size of the header should
	 * never be larger than one block
	 */
	crc = efi->efi_gpt_HeaderCRC32;
	efi->efi_gpt_HeaderCRC32 = 0;
	len_t headerSize = (len_t)LE_32(efi->efi_gpt_HeaderSize);

	if (headerSize < EFI_MIN_LABEL_SIZE || headerSize > EFI_LABEL_SIZE) {
		if (efi_debug)
			(void) fprintf(stderr,
			    "Invalid EFI HeaderSize %llu.  Assuming %d.\n",
			    headerSize, EFI_MIN_LABEL_SIZE);
	}

	if ((headerSize > dk_ioc->dki_length) ||
	    crc != LE_32(efi_crc32((unsigned char *)efi, headerSize))) {
		if (efi_debug)
			(void) fprintf(stderr,
			    "Bad EFI CRC: 0x%x != 0x%x\n",
			    crc, LE_32(efi_crc32((unsigned char *)efi,
			    headerSize)));
		return (VT_EINVAL);
	}

	return (0);
}

static int
efi_read(int fd, struct dk_gpt *vtoc)
{
	int			i, j;
	int			label_len;
	int			rval = 0;
	int			md_flag = 0;
	int			vdc_flag = 0;
	diskaddr_t		capacity = 0;
	uint_t			lbsize = 0;
	struct dk_minfo		disk_info;
	dk_efi_t		dk_ioc;
	efi_gpt_t		*efi;
	efi_gpe_t		*efi_parts;
	struct dk_cinfo		dki_info;
	uint32_t		user_length;
	boolean_t		legacy_label = B_FALSE;

	/*
	 * get the partition number for this file descriptor.
	 */
	if ((rval = efi_get_info(fd, &dki_info)) != 0)
		return (rval);

	if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
	    (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
		md_flag++;
	} else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
	    (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
		/*
		 * The controller and drive name "vdc" (virtual disk client)
		 * indicates a LDoms virtual disk.
		 */
		vdc_flag++;
	}

	/* get the LBA size */
	if (read_disk_info(fd, &capacity, &lbsize) == -1) {
		if (efi_debug) {
			(void) fprintf(stderr,
			    "unable to read disk info: %d",
			    errno);
		}
		return (VT_EINVAL);
	}

	disk_info.dki_lbsize = lbsize;
	disk_info.dki_capacity = capacity;

	if (disk_info.dki_lbsize == 0) {
		if (efi_debug) {
			(void) fprintf(stderr,
			    "efi_read: assuming LBA 512 bytes\n");
		}
		disk_info.dki_lbsize = DEV_BSIZE;
	}
	/*
	 * Read the EFI GPT to figure out how many partitions we need
	 * to deal with.
	 */
	dk_ioc.dki_lba = 1;
	if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
		label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
	} else {
		label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
		    disk_info.dki_lbsize;
		if (label_len % disk_info.dki_lbsize) {
			/* pad to physical sector size */
			label_len += disk_info.dki_lbsize;
			label_len &= ~(disk_info.dki_lbsize - 1);
		}
	}

	if (posix_memalign((void **)&dk_ioc.dki_data,
	    disk_info.dki_lbsize, label_len))
		return (VT_ERROR);

	memset(dk_ioc.dki_data, 0, label_len);
	dk_ioc.dki_length = disk_info.dki_lbsize;
	user_length = vtoc->efi_nparts;
	efi = dk_ioc.dki_data;
	if (md_flag) {
		dk_ioc.dki_length = label_len;
		if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
			switch (errno) {
			case EIO:
				return (VT_EIO);
			default:
				return (VT_ERROR);
			}
		}
	} else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
		/*
		 * No valid label here; try the alternate. Note that here
		 * we just read GPT header and save it into dk_ioc.data,
		 * Later, we will read GUID partition entry array if we
		 * can get valid GPT header.
		 */

		/*
		 * This is a workaround for legacy systems. In the past, the
		 * last sector of SCSI disk was invisible on x86 platform. At
		 * that time, backup label was saved on the next to the last
		 * sector. It is possible for users to move a disk from previous
		 * solaris system to present system. Here, we attempt to search
		 * legacy backup EFI label first.
		 */
		dk_ioc.dki_lba = disk_info.dki_capacity - 2;
		dk_ioc.dki_length = disk_info.dki_lbsize;
		rval = check_label(fd, &dk_ioc);
		if (rval == VT_EINVAL) {
			/*
			 * we didn't find legacy backup EFI label, try to
			 * search backup EFI label in the last block.
			 */
			dk_ioc.dki_lba = disk_info.dki_capacity - 1;
			dk_ioc.dki_length = disk_info.dki_lbsize;
			rval = check_label(fd, &dk_ioc);
			if (rval == 0) {
				legacy_label = B_TRUE;
				if (efi_debug)
					(void) fprintf(stderr,
					    "efi_read: primary label corrupt; "
					    "using EFI backup label located on"
					    " the last block\n");
			}
		} else {
			if ((efi_debug) && (rval == 0))
				(void) fprintf(stderr, "efi_read: primary label"
				    " corrupt; using legacy EFI backup label "
				    " located on the next to last block\n");
		}

		if (rval == 0) {
			dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
			vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
			vtoc->efi_nparts =
			    LE_32(efi->efi_gpt_NumberOfPartitionEntries);
			/*
			 * Partition tables are between backup GPT header
			 * table and ParitionEntryLBA (the starting LBA of
			 * the GUID partition entries array). Now that we
			 * already got valid GPT header and saved it in
			 * dk_ioc.dki_data, we try to get GUID partition
			 * entry array here.
			 */
			/* LINTED */
			dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
			    + disk_info.dki_lbsize);
			if (legacy_label)
				dk_ioc.dki_length = disk_info.dki_capacity - 1 -
				    dk_ioc.dki_lba;
			else
				dk_ioc.dki_length = disk_info.dki_capacity - 2 -
				    dk_ioc.dki_lba;
			dk_ioc.dki_length *= disk_info.dki_lbsize;
			if (dk_ioc.dki_length >
			    ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
				rval = VT_EINVAL;
			} else {
				/*
				 * read GUID partition entry array
				 */
				rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
			}
		}

	} else if (rval == 0) {

		dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
		/* LINTED */
		dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
		    + disk_info.dki_lbsize);
		dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
		rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);

	} else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
		/*
		 * When the device is a LDoms virtual disk, the DKIOCGETEFI
		 * ioctl can fail with EINVAL if the virtual disk backend
		 * is a ZFS volume serviced by a domain running an old version
		 * of Solaris. This is because the DKIOCGETEFI ioctl was
		 * initially incorrectly implemented for a ZFS volume and it
		 * expected the GPT and GPE to be retrieved with a single ioctl.
		 * So we try to read the GPT and the GPE using that old style
		 * ioctl.
		 */
		dk_ioc.dki_lba = 1;
		dk_ioc.dki_length = label_len;
		rval = check_label(fd, &dk_ioc);
	}

	if (rval < 0) {
		free(efi);
		return (rval);
	}

	/* LINTED -- always longlong aligned */
	efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);

	/*
	 * Assemble this into a "dk_gpt" struct for easier
	 * digestibility by applications.
	 */
	vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
	vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
	vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
	vtoc->efi_lbasize = disk_info.dki_lbsize;
	vtoc->efi_last_lba = disk_info.dki_capacity - 1;
	vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
	vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
	vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
	UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);

	/*
	 * If the array the user passed in is too small, set the length
	 * to what it needs to be and return
	 */
	if (user_length < vtoc->efi_nparts) {
		return (VT_EINVAL);
	}

	for (i = 0; i < vtoc->efi_nparts; i++) {
		UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
		    efi_parts[i].efi_gpe_PartitionTypeGUID);

		for (j = 0;
		    j < sizeof (conversion_array)
		    / sizeof (struct uuid_to_ptag); j++) {

			if (memcmp(&vtoc->efi_parts[i].p_guid,
			    &conversion_array[j].uuid,
			    sizeof (struct uuid)) == 0) {
				vtoc->efi_parts[i].p_tag = j;
				break;
			}
		}
		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
			continue;
		vtoc->efi_parts[i].p_flag =
		    LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
		vtoc->efi_parts[i].p_start =
		    LE_64(efi_parts[i].efi_gpe_StartingLBA);
		vtoc->efi_parts[i].p_size =
		    LE_64(efi_parts[i].efi_gpe_EndingLBA) -
		    vtoc->efi_parts[i].p_start + 1;
		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
			vtoc->efi_parts[i].p_name[j] =
			    (uchar_t)LE_16(
			    efi_parts[i].efi_gpe_PartitionName[j]);
		}

		UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
		    efi_parts[i].efi_gpe_UniquePartitionGUID);
	}
	free(efi);

	return (dki_info.dki_partition);
}

/* writes a "protective" MBR */
static int
write_pmbr(int fd, struct dk_gpt *vtoc)
{
	dk_efi_t	dk_ioc;
	struct mboot	mb;
	uchar_t		*cp;
	diskaddr_t	size_in_lba;
	uchar_t		*buf;
	int		len;

	len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
	if (posix_memalign((void **)&buf, len, len))
		return (VT_ERROR);

	/*
	 * Preserve any boot code and disk signature if the first block is
	 * already an MBR.
	 */
	memset(buf, 0, len);
	dk_ioc.dki_lba = 0;
	dk_ioc.dki_length = len;
	/* LINTED -- always longlong aligned */
	dk_ioc.dki_data = (efi_gpt_t *)buf;
	if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
		memset(&mb, 0, sizeof (mb));
		mb.signature = LE_16(MBB_MAGIC);
	} else {
		(void) memcpy(&mb, buf, sizeof (mb));
		if (mb.signature != LE_16(MBB_MAGIC)) {
			memset(&mb, 0, sizeof (mb));
			mb.signature = LE_16(MBB_MAGIC);
		}
	}

	memset(&mb.parts, 0, sizeof (mb.parts));
	cp = (uchar_t *)&mb.parts[0];
	/* bootable or not */
	*cp++ = 0;
	/* beginning CHS; 0xffffff if not representable */
	*cp++ = 0xff;
	*cp++ = 0xff;
	*cp++ = 0xff;
	/* OS type */
	*cp++ = EFI_PMBR;
	/* ending CHS; 0xffffff if not representable */
	*cp++ = 0xff;
	*cp++ = 0xff;
	*cp++ = 0xff;
	/* starting LBA: 1 (little endian format) by EFI definition */
	*cp++ = 0x01;
	*cp++ = 0x00;
	*cp++ = 0x00;
	*cp++ = 0x00;
	/* ending LBA: last block on the disk (little endian format) */
	size_in_lba = vtoc->efi_last_lba;
	if (size_in_lba < 0xffffffff) {
		*cp++ = (size_in_lba & 0x000000ff);
		*cp++ = (size_in_lba & 0x0000ff00) >> 8;
		*cp++ = (size_in_lba & 0x00ff0000) >> 16;
		*cp++ = (size_in_lba & 0xff000000) >> 24;
	} else {
		*cp++ = 0xff;
		*cp++ = 0xff;
		*cp++ = 0xff;
		*cp++ = 0xff;
	}

	(void) memcpy(buf, &mb, sizeof (mb));
	/* LINTED -- always longlong aligned */
	dk_ioc.dki_data = (efi_gpt_t *)buf;
	dk_ioc.dki_lba = 0;
	dk_ioc.dki_length = len;
	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
		free(buf);
		switch (errno) {
		case EIO:
			return (VT_EIO);
		case EINVAL:
			return (VT_EINVAL);
		default:
			return (VT_ERROR);
		}
	}
	free(buf);
	return (0);
}

/* make sure the user specified something reasonable */
static int
check_input(struct dk_gpt *vtoc)
{
	int			resv_part = -1;
	int			i, j;
	diskaddr_t		istart, jstart, isize, jsize, endsect;

	/*
	 * Sanity-check the input (make sure no partitions overlap)
	 */
	for (i = 0; i < vtoc->efi_nparts; i++) {
		/* It can't be unassigned and have an actual size */
		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
		    (vtoc->efi_parts[i].p_size != 0)) {
			if (efi_debug) {
				(void) fprintf(stderr, "partition %d is "
				    "\"unassigned\" but has a size of %llu",
				    i, vtoc->efi_parts[i].p_size);
			}
			return (VT_EINVAL);
		}
		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
			if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
				continue;
			/* we have encountered an unknown uuid */
			vtoc->efi_parts[i].p_tag = 0xff;
		}
		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
			if (resv_part != -1) {
				if (efi_debug) {
					(void) fprintf(stderr, "found "
					    "duplicate reserved partition "
					    "at %d\n", i);
				}
				return (VT_EINVAL);
			}
			resv_part = i;
		}
		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
			if (efi_debug) {
				(void) fprintf(stderr,
				    "Partition %d starts at %llu.  ",
				    i,
				    vtoc->efi_parts[i].p_start);
				(void) fprintf(stderr,
				    "It must be between %llu and %llu.\n",
				    vtoc->efi_first_u_lba,
				    vtoc->efi_last_u_lba);
			}
			return (VT_EINVAL);
		}
		if ((vtoc->efi_parts[i].p_start +
		    vtoc->efi_parts[i].p_size <
		    vtoc->efi_first_u_lba) ||
		    (vtoc->efi_parts[i].p_start +
		    vtoc->efi_parts[i].p_size >
		    vtoc->efi_last_u_lba + 1)) {
			if (efi_debug) {
				(void) fprintf(stderr,
				    "Partition %d ends at %llu.  ",
				    i,
				    vtoc->efi_parts[i].p_start +
				    vtoc->efi_parts[i].p_size);
				(void) fprintf(stderr,
				    "It must be between %llu and %llu.\n",
				    vtoc->efi_first_u_lba,
				    vtoc->efi_last_u_lba);
			}
			return (VT_EINVAL);
		}

		for (j = 0; j < vtoc->efi_nparts; j++) {
			isize = vtoc->efi_parts[i].p_size;
			jsize = vtoc->efi_parts[j].p_size;
			istart = vtoc->efi_parts[i].p_start;
			jstart = vtoc->efi_parts[j].p_start;
			if ((i != j) && (isize != 0) && (jsize != 0)) {
				endsect = jstart + jsize -1;
				if ((jstart <= istart) &&
				    (istart <= endsect)) {
					if (efi_debug) {
						(void) fprintf(stderr,
						    "Partition %d overlaps "
						    "partition %d.", i, j);
					}
					return (VT_EINVAL);
				}
			}
		}
	}
	/* just a warning for now */
	if ((resv_part == -1) && efi_debug) {
		(void) fprintf(stderr,
		    "no reserved partition found\n");
	}
	return (0);
}

static int
call_blkpg_ioctl(int fd, int command, diskaddr_t start,
    diskaddr_t size, uint_t pno)
{
	struct blkpg_ioctl_arg ioctl_arg;
	struct blkpg_partition  linux_part;
	memset(&linux_part, 0, sizeof (linux_part));

	char *path = efi_get_devname(fd);
	if (path == NULL) {
		(void) fprintf(stderr, "failed to retrieve device name\n");
		return (VT_EINVAL);
	}

	linux_part.start = start;
	linux_part.length = size;
	linux_part.pno = pno;
	snprintf(linux_part.devname, BLKPG_DEVNAMELTH - 1, "%s%u", path, pno);
	linux_part.devname[BLKPG_DEVNAMELTH - 1] = '\0';
	free(path);

	ioctl_arg.op = command;
	ioctl_arg.flags = 0;
	ioctl_arg.datalen = sizeof (struct blkpg_partition);
	ioctl_arg.data = &linux_part;

	return (ioctl(fd, BLKPG, &ioctl_arg));
}

/*
 * add all the unallocated space to the current label
 */
int
efi_use_whole_disk(int fd)
{
	struct dk_gpt *efi_label = NULL;
	int rval;
	int i;
	uint_t resv_index = 0, data_index = 0;
	diskaddr_t resv_start = 0, data_start = 0;
	diskaddr_t data_size, limit, difference;
	boolean_t sync_needed = B_FALSE;
	uint_t nblocks;

	rval = efi_alloc_and_read(fd, &efi_label);
	if (rval < 0) {
		if (efi_label != NULL)
			efi_free(efi_label);
		return (rval);
	}

	/*
	 * Find the last physically non-zero partition.
	 * This should be the reserved partition.
	 */
	for (i = 0; i < efi_label->efi_nparts; i ++) {
		if (resv_start < efi_label->efi_parts[i].p_start) {
			resv_start = efi_label->efi_parts[i].p_start;
			resv_index = i;
		}
	}

	/*
	 * Find the last physically non-zero partition before that.
	 * This is the data partition.
	 */
	for (i = 0; i < resv_index; i ++) {
		if (data_start < efi_label->efi_parts[i].p_start) {
			data_start = efi_label->efi_parts[i].p_start;
			data_index = i;
		}
	}
	data_size = efi_label->efi_parts[data_index].p_size;

	/*
	 * See the "efi_alloc_and_init" function for more information
	 * about where this "nblocks" value comes from.
	 */
	nblocks = efi_label->efi_first_u_lba - 1;

	/*
	 * Determine if the EFI label is out of sync. We check that:
	 *
	 * 1. the data partition ends at the limit we set, and
	 * 2. the reserved partition starts at the limit we set.
	 *
	 * If either of these conditions is not met, then we need to
	 * resync the EFI label.
	 *
	 * The limit is the last usable LBA, determined by the last LBA
	 * and the first usable LBA fields on the EFI label of the disk
	 * (see the lines directly above). Additionally, we factor in
	 * EFI_MIN_RESV_SIZE (per its use in "zpool_label_disk") and
	 * P2ALIGN it to ensure the partition boundaries are aligned
	 * (for performance reasons). The alignment should match the
	 * alignment used by the "zpool_label_disk" function.
	 */
	limit = P2ALIGN(efi_label->efi_last_lba - nblocks - EFI_MIN_RESV_SIZE,
	    PARTITION_END_ALIGNMENT);
	if (data_start + data_size != limit || resv_start != limit)
		sync_needed = B_TRUE;

	if (efi_debug && sync_needed)
		(void) fprintf(stderr, "efi_use_whole_disk: sync needed\n");

	/*
	 * If alter_lba is 1, we are using the backup label.
	 * Since we can locate the backup label by disk capacity,
	 * there must be no unallocated space.
	 */
	if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
	    >= efi_label->efi_last_lba && !sync_needed)) {
		if (efi_debug) {
			(void) fprintf(stderr,
			    "efi_use_whole_disk: requested space not found\n");
		}
		efi_free(efi_label);
		return (VT_ENOSPC);
	}

	/*
	 * Verify that we've found the reserved partition by checking
	 * that it looks the way it did when we created it in zpool_label_disk.
	 * If we've found the incorrect partition, then we know that this
	 * device was reformatted and no longer is solely used by ZFS.
	 */
	if ((efi_label->efi_parts[resv_index].p_size != EFI_MIN_RESV_SIZE) ||
	    (efi_label->efi_parts[resv_index].p_tag != V_RESERVED) ||
	    (resv_index != 8)) {
		if (efi_debug) {
			(void) fprintf(stderr,
			    "efi_use_whole_disk: wholedisk not available\n");
		}
		efi_free(efi_label);
		return (VT_ENOSPC);
	}

	if (data_start + data_size != resv_start) {
		if (efi_debug) {
			(void) fprintf(stderr,
			    "efi_use_whole_disk: "
			    "data_start (%lli) + "
			    "data_size (%lli) != "
			    "resv_start (%lli)\n",
			    data_start, data_size, resv_start);
		}

		return (VT_EINVAL);
	}

	if (limit < resv_start) {
		if (efi_debug) {
			(void) fprintf(stderr,
			    "efi_use_whole_disk: "
			    "limit (%lli) < resv_start (%lli)\n",
			    limit, resv_start);
		}

		return (VT_EINVAL);
	}

	difference = limit - resv_start;

	if (efi_debug)
		(void) fprintf(stderr,
		    "efi_use_whole_disk: difference is %lli\n", difference);

	/*
	 * Move the reserved partition. There is currently no data in
	 * here except fabricated devids (which get generated via
	 * efi_write()). So there is no need to copy data.
	 */
	efi_label->efi_parts[data_index].p_size += difference;
	efi_label->efi_parts[resv_index].p_start += difference;
	efi_label->efi_last_u_lba = efi_label->efi_last_lba - nblocks;

	/*
	 * Rescanning the partition table in the kernel can result
	 * in the device links to be removed (see comment in vdev_disk_open).
	 * If BLKPG_RESIZE_PARTITION is available, then we can resize
	 * the partition table online and avoid having to remove the device
	 * links used by the pool. This provides a very deterministic
	 * approach to resizing devices and does not require any
	 * loops waiting for devices to reappear.
	 */
#ifdef BLKPG_RESIZE_PARTITION
	/*
	 * Delete the reserved partition since we're about to expand
	 * the data partition and it would overlap with the reserved
	 * partition.
	 * NOTE: The starting index for the ioctl is 1 while for the
	 * EFI partitions it's 0. For that reason we have to add one
	 * whenever we make an ioctl call.
	 */
	rval = call_blkpg_ioctl(fd, BLKPG_DEL_PARTITION, 0, 0, resv_index + 1);
	if (rval != 0)
		goto out;

	/*
	 * Expand the data partition
	 */
	rval = call_blkpg_ioctl(fd, BLKPG_RESIZE_PARTITION,
	    efi_label->efi_parts[data_index].p_start * efi_label->efi_lbasize,
	    efi_label->efi_parts[data_index].p_size * efi_label->efi_lbasize,
	    data_index + 1);
	if (rval != 0) {
		(void) fprintf(stderr, "Unable to resize data "
		    "partition:  %d\n", rval);
		/*
		 * Since we failed to resize, we need to reset the start
		 * of the reserve partition and re-create it.
		 */
		efi_label->efi_parts[resv_index].p_start -= difference;
	}

	/*
	 * Re-add the reserved partition. If we've expanded the data partition
	 * then we'll move the reserve partition to the end of the data
	 * partition. Otherwise, we'll recreate the partition in its original
	 * location. Note that we do this as best-effort and ignore any
	 * errors that may arise here. This will ensure that we finish writing
	 * the EFI label.
	 */
	(void) call_blkpg_ioctl(fd, BLKPG_ADD_PARTITION,
	    efi_label->efi_parts[resv_index].p_start * efi_label->efi_lbasize,
	    efi_label->efi_parts[resv_index].p_size * efi_label->efi_lbasize,
	    resv_index + 1);
#endif

	/*
	 * We're now ready to write the EFI label.
	 */
	if (rval == 0) {
		rval = efi_write(fd, efi_label);
		if (rval < 0 && efi_debug) {
			(void) fprintf(stderr, "efi_use_whole_disk:fail "
			    "to write label, rval=%d\n", rval);
		}
	}

out:
	efi_free(efi_label);
	return (rval);
}

/*
 * write EFI label and backup label
 */
int
efi_write(int fd, struct dk_gpt *vtoc)
{
	dk_efi_t		dk_ioc;
	efi_gpt_t		*efi;
	efi_gpe_t		*efi_parts;
	int			i, j;
	struct dk_cinfo		dki_info;
	int			rval;
	int			md_flag = 0;
	int			nblocks;
	diskaddr_t		lba_backup_gpt_hdr;

	if ((rval = efi_get_info(fd, &dki_info)) != 0)
		return (rval);

	/* check if we are dealing with a metadevice */
	if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
	    (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
		md_flag = 1;
	}

	if (check_input(vtoc)) {
		/*
		 * not valid; if it's a metadevice just pass it down
		 * because SVM will do its own checking
		 */
		if (md_flag == 0) {
			return (VT_EINVAL);
		}
	}

	dk_ioc.dki_lba = 1;
	if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
		dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
	} else {
		dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
		    vtoc->efi_lbasize) *
		    vtoc->efi_lbasize;
	}

	/*
	 * the number of blocks occupied by GUID partition entry array
	 */
	nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;

	/*
	 * Backup GPT header is located on the block after GUID
	 * partition entry array. Here, we calculate the address
	 * for backup GPT header.
	 */
	lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
	if (posix_memalign((void **)&dk_ioc.dki_data,
	    vtoc->efi_lbasize, dk_ioc.dki_length))
		return (VT_ERROR);

	memset(dk_ioc.dki_data, 0, dk_ioc.dki_length);
	efi = dk_ioc.dki_data;

	/* stuff user's input into EFI struct */
	efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
	efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
	efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt) - LEN_EFI_PAD);
	efi->efi_gpt_Reserved1 = 0;
	efi->efi_gpt_MyLBA = LE_64(1ULL);
	efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
	efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
	efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
	efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
	efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
	efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
	UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);

	/* LINTED -- always longlong aligned */
	efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);

	for (i = 0; i < vtoc->efi_nparts; i++) {
		for (j = 0;
		    j < sizeof (conversion_array) /
		    sizeof (struct uuid_to_ptag); j++) {

			if (vtoc->efi_parts[i].p_tag == j) {
				UUID_LE_CONVERT(
				    efi_parts[i].efi_gpe_PartitionTypeGUID,
				    conversion_array[j].uuid);
				break;
			}
		}

		if (j == sizeof (conversion_array) /
		    sizeof (struct uuid_to_ptag)) {
			/*
			 * If we didn't have a matching uuid match, bail here.
			 * Don't write a label with unknown uuid.
			 */
			if (efi_debug) {
				(void) fprintf(stderr,
				    "Unknown uuid for p_tag %d\n",
				    vtoc->efi_parts[i].p_tag);
			}
			return (VT_EINVAL);
		}

		/* Zero's should be written for empty partitions */
		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
			continue;

		efi_parts[i].efi_gpe_StartingLBA =
		    LE_64(vtoc->efi_parts[i].p_start);
		efi_parts[i].efi_gpe_EndingLBA =
		    LE_64(vtoc->efi_parts[i].p_start +
		    vtoc->efi_parts[i].p_size - 1);
		efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
		    LE_16(vtoc->efi_parts[i].p_flag);
		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
			efi_parts[i].efi_gpe_PartitionName[j] =
			    LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
		}
		if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
		    uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
			(void) uuid_generate((uchar_t *)
			    &vtoc->efi_parts[i].p_uguid);
		}
		memcpy(&efi_parts[i].efi_gpe_UniquePartitionGUID,
		    &vtoc->efi_parts[i].p_uguid,
		    sizeof (uuid_t));
	}
	efi->efi_gpt_PartitionEntryArrayCRC32 =
	    LE_32(efi_crc32((unsigned char *)efi_parts,
	    vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
	efi->efi_gpt_HeaderCRC32 =
	    LE_32(efi_crc32((unsigned char *)efi,
	    LE_32(efi->efi_gpt_HeaderSize)));

	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
		free(dk_ioc.dki_data);
		switch (errno) {
		case EIO:
			return (VT_EIO);
		case EINVAL:
			return (VT_EINVAL);
		default:
			return (VT_ERROR);
		}
	}
	/* if it's a metadevice we're done */
	if (md_flag) {
		free(dk_ioc.dki_data);
		return (0);
	}

	/* write backup partition array */
	dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
	dk_ioc.dki_length -= vtoc->efi_lbasize;
	/* LINTED */
	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
	    vtoc->efi_lbasize);

	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
		/*
		 * we wrote the primary label okay, so don't fail
		 */
		if (efi_debug) {
			(void) fprintf(stderr,
			    "write of backup partitions to block %llu "
			    "failed, errno %d\n",
			    vtoc->efi_last_u_lba + 1,
			    errno);
		}
	}
	/*
	 * now swap MyLBA and AlternateLBA fields and write backup
	 * partition table header
	 */
	dk_ioc.dki_lba = lba_backup_gpt_hdr;
	dk_ioc.dki_length = vtoc->efi_lbasize;
	/* LINTED */
	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
	    vtoc->efi_lbasize);
	efi->efi_gpt_AlternateLBA = LE_64(1ULL);
	efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
	efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
	efi->efi_gpt_HeaderCRC32 = 0;
	efi->efi_gpt_HeaderCRC32 =
	    LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
	    LE_32(efi->efi_gpt_HeaderSize)));

	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
		if (efi_debug) {
			(void) fprintf(stderr,
			    "write of backup header to block %llu failed, "
			    "errno %d\n",
			    lba_backup_gpt_hdr,
			    errno);
		}
	}
	/* write the PMBR */
	(void) write_pmbr(fd, vtoc);
	free(dk_ioc.dki_data);

	return (0);
}

void
efi_free(struct dk_gpt *ptr)
{
	free(ptr);
}

void
efi_err_check(struct dk_gpt *vtoc)
{
	int			resv_part = -1;
	int			i, j;
	diskaddr_t		istart, jstart, isize, jsize, endsect;
	int			overlap = 0;

	/*
	 * make sure no partitions overlap
	 */
	for (i = 0; i < vtoc->efi_nparts; i++) {
		/* It can't be unassigned and have an actual size */
		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
		    (vtoc->efi_parts[i].p_size != 0)) {
			(void) fprintf(stderr,
			    "partition %d is \"unassigned\" but has a size "
			    "of %llu\n", i, vtoc->efi_parts[i].p_size);
		}
		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
			continue;
		}
		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
			if (resv_part != -1) {
				(void) fprintf(stderr,
				    "found duplicate reserved partition at "
				    "%d\n", i);
			}
			resv_part = i;
			if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
				(void) fprintf(stderr,
				    "Warning: reserved partition size must "
				    "be %d sectors\n", EFI_MIN_RESV_SIZE);
		}
		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
			(void) fprintf(stderr,
			    "Partition %d starts at %llu\n",
			    i,
			    vtoc->efi_parts[i].p_start);
			(void) fprintf(stderr,
			    "It must be between %llu and %llu.\n",
			    vtoc->efi_first_u_lba,
			    vtoc->efi_last_u_lba);
		}
		if ((vtoc->efi_parts[i].p_start +
		    vtoc->efi_parts[i].p_size <
		    vtoc->efi_first_u_lba) ||
		    (vtoc->efi_parts[i].p_start +
		    vtoc->efi_parts[i].p_size >
		    vtoc->efi_last_u_lba + 1)) {
			(void) fprintf(stderr,
			    "Partition %d ends at %llu\n",
			    i,
			    vtoc->efi_parts[i].p_start +
			    vtoc->efi_parts[i].p_size);
			(void) fprintf(stderr,
			    "It must be between %llu and %llu.\n",
			    vtoc->efi_first_u_lba,
			    vtoc->efi_last_u_lba);
		}

		for (j = 0; j < vtoc->efi_nparts; j++) {
			isize = vtoc->efi_parts[i].p_size;
			jsize = vtoc->efi_parts[j].p_size;
			istart = vtoc->efi_parts[i].p_start;
			jstart = vtoc->efi_parts[j].p_start;
			if ((i != j) && (isize != 0) && (jsize != 0)) {
				endsect = jstart + jsize -1;
				if ((jstart <= istart) &&
				    (istart <= endsect)) {
					if (!overlap) {
					(void) fprintf(stderr,
					    "label error: EFI Labels do not "
					    "support overlapping partitions\n");
					}
					(void) fprintf(stderr,
					    "Partition %d overlaps partition "
					    "%d.\n", i, j);
					overlap = 1;
				}
			}
		}
	}
	/* make sure there is a reserved partition */
	if (resv_part == -1) {
		(void) fprintf(stderr,
		    "no reserved partition found\n");
	}
}