aboutsummaryrefslogtreecommitdiffstats
path: root/include/sys/metaslab_impl.h
blob: cc6e8b796d40baeeba104482f71338efc2abe267 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

/*
 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
 */

#ifndef _SYS_METASLAB_IMPL_H
#define	_SYS_METASLAB_IMPL_H

#include <sys/metaslab.h>
#include <sys/space_map.h>
#include <sys/range_tree.h>
#include <sys/vdev.h>
#include <sys/txg.h>
#include <sys/avl.h>

#ifdef	__cplusplus
extern "C" {
#endif

/*
 * Metaslab allocation tracing record.
 */
typedef struct metaslab_alloc_trace {
	list_node_t			mat_list_node;
	metaslab_group_t		*mat_mg;
	metaslab_t			*mat_msp;
	uint64_t			mat_size;
	uint64_t			mat_weight;
	uint32_t			mat_dva_id;
	uint64_t			mat_offset;
	int					mat_allocator;
} metaslab_alloc_trace_t;

/*
 * Used by the metaslab allocation tracing facility to indicate
 * error conditions. These errors are stored to the offset member
 * of the metaslab_alloc_trace_t record and displayed by mdb.
 */
typedef enum trace_alloc_type {
	TRACE_ALLOC_FAILURE	= -1ULL,
	TRACE_TOO_SMALL		= -2ULL,
	TRACE_FORCE_GANG	= -3ULL,
	TRACE_NOT_ALLOCATABLE	= -4ULL,
	TRACE_GROUP_FAILURE	= -5ULL,
	TRACE_ENOSPC		= -6ULL,
	TRACE_CONDENSING	= -7ULL,
	TRACE_VDEV_ERROR	= -8ULL
} trace_alloc_type_t;

#define	METASLAB_WEIGHT_PRIMARY		(1ULL << 63)
#define	METASLAB_WEIGHT_SECONDARY	(1ULL << 62)
#define	METASLAB_WEIGHT_CLAIM		(1ULL << 61)
#define	METASLAB_WEIGHT_TYPE		(1ULL << 60)
#define	METASLAB_ACTIVE_MASK		\
	(METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY | \
	METASLAB_WEIGHT_CLAIM)

/*
 * The metaslab weight is used to encode the amount of free space in a
 * metaslab, such that the "best" metaslab appears first when sorting the
 * metaslabs by weight. The weight (and therefore the "best" metaslab) can
 * be determined in two different ways: by computing a weighted sum of all
 * the free space in the metaslab (a space based weight) or by counting only
 * the free segments of the largest size (a segment based weight). We prefer
 * the segment based weight because it reflects how the free space is
 * comprised, but we cannot always use it -- legacy pools do not have the
 * space map histogram information necessary to determine the largest
 * contiguous regions. Pools that have the space map histogram determine
 * the segment weight by looking at each bucket in the histogram and
 * determining the free space whose size in bytes is in the range:
 *	[2^i, 2^(i+1))
 * We then encode the largest index, i, that contains regions into the
 * segment-weighted value.
 *
 * Space-based weight:
 *
 *      64      56      48      40      32      24      16      8       0
 *      +-------+-------+-------+-------+-------+-------+-------+-------+
 *      |PSC1|                  weighted-free space                     |
 *      +-------+-------+-------+-------+-------+-------+-------+-------+
 *
 *	PS - indicates primary and secondary activation
 *	C - indicates activation for claimed block zio
 *	space - the fragmentation-weighted space
 *
 * Segment-based weight:
 *
 *      64      56      48      40      32      24      16      8       0
 *      +-------+-------+-------+-------+-------+-------+-------+-------+
 *      |PSC0| idx|            count of segments in region              |
 *      +-------+-------+-------+-------+-------+-------+-------+-------+
 *
 *	PS - indicates primary and secondary activation
 *	C - indicates activation for claimed block zio
 *	idx - index for the highest bucket in the histogram
 *	count - number of segments in the specified bucket
 */
#define	WEIGHT_GET_ACTIVE(weight)		BF64_GET((weight), 61, 3)
#define	WEIGHT_SET_ACTIVE(weight, x)		BF64_SET((weight), 61, 3, x)

#define	WEIGHT_IS_SPACEBASED(weight)		\
	((weight) == 0 || BF64_GET((weight), 60, 1))
#define	WEIGHT_SET_SPACEBASED(weight)		BF64_SET((weight), 60, 1, 1)

/*
 * These macros are only applicable to segment-based weighting.
 */
#define	WEIGHT_GET_INDEX(weight)		BF64_GET((weight), 54, 6)
#define	WEIGHT_SET_INDEX(weight, x)		BF64_SET((weight), 54, 6, x)
#define	WEIGHT_GET_COUNT(weight)		BF64_GET((weight), 0, 54)
#define	WEIGHT_SET_COUNT(weight, x)		BF64_SET((weight), 0, 54, x)

/*
 * A metaslab class encompasses a category of allocatable top-level vdevs.
 * Each top-level vdev is associated with a metaslab group which defines
 * the allocatable region for that vdev. Examples of these categories include
 * "normal" for data block allocations (i.e. main pool allocations) or "log"
 * for allocations designated for intent log devices (i.e. slog devices).
 * When a block allocation is requested from the SPA it is associated with a
 * metaslab_class_t, and only top-level vdevs (i.e. metaslab groups) belonging
 * to the class can be used to satisfy that request. Allocations are done
 * by traversing the metaslab groups that are linked off of the mc_rotor field.
 * This rotor points to the next metaslab group where allocations will be
 * attempted. Allocating a block is a 3 step process -- select the metaslab
 * group, select the metaslab, and then allocate the block. The metaslab
 * class defines the low-level block allocator that will be used as the
 * final step in allocation. These allocators are pluggable allowing each class
 * to use a block allocator that best suits that class.
 */
struct metaslab_class {
	kmutex_t		mc_lock;
	spa_t			*mc_spa;
	metaslab_group_t	*mc_rotor;
	metaslab_ops_t		*mc_ops;
	uint64_t		mc_aliquot;

	/*
	 * Track the number of metaslab groups that have been initialized
	 * and can accept allocations. An initialized metaslab group is
	 * one has been completely added to the config (i.e. we have
	 * updated the MOS config and the space has been added to the pool).
	 */
	uint64_t		mc_groups;

	/*
	 * Toggle to enable/disable the allocation throttle.
	 */
	boolean_t		mc_alloc_throttle_enabled;

	/*
	 * The allocation throttle works on a reservation system. Whenever
	 * an asynchronous zio wants to perform an allocation it must
	 * first reserve the number of blocks that it wants to allocate.
	 * If there aren't sufficient slots available for the pending zio
	 * then that I/O is throttled until more slots free up. The current
	 * number of reserved allocations is maintained by the mc_alloc_slots
	 * refcount. The mc_alloc_max_slots value determines the maximum
	 * number of allocations that the system allows. Gang blocks are
	 * allowed to reserve slots even if we've reached the maximum
	 * number of allocations allowed.
	 */
	uint64_t		*mc_alloc_max_slots;
	refcount_t		*mc_alloc_slots;

	uint64_t		mc_alloc_groups; /* # of allocatable groups */

	uint64_t		mc_alloc;	/* total allocated space */
	uint64_t		mc_deferred;	/* total deferred frees */
	uint64_t		mc_space;	/* total space (alloc + free) */
	uint64_t		mc_dspace;	/* total deflated space */
	uint64_t		mc_histogram[RANGE_TREE_HISTOGRAM_SIZE];
};

/*
 * Metaslab groups encapsulate all the allocatable regions (i.e. metaslabs)
 * of a top-level vdev. They are linked together to form a circular linked
 * list and can belong to only one metaslab class. Metaslab groups may become
 * ineligible for allocations for a number of reasons such as limited free
 * space, fragmentation, or going offline. When this happens the allocator will
 * simply find the next metaslab group in the linked list and attempt
 * to allocate from that group instead.
 */
struct metaslab_group {
	kmutex_t		mg_lock;
	metaslab_t		**mg_primaries;
	metaslab_t		**mg_secondaries;
	avl_tree_t		mg_metaslab_tree;
	uint64_t		mg_aliquot;
	boolean_t		mg_allocatable;		/* can we allocate? */
	uint64_t		mg_ms_ready;

	/*
	 * A metaslab group is considered to be initialized only after
	 * we have updated the MOS config and added the space to the pool.
	 * We only allow allocation attempts to a metaslab group if it
	 * has been initialized.
	 */
	boolean_t		mg_initialized;

	uint64_t		mg_free_capacity;	/* percentage free */
	int64_t			mg_bias;
	int64_t			mg_activation_count;
	metaslab_class_t	*mg_class;
	vdev_t			*mg_vd;
	taskq_t			*mg_taskq;
	metaslab_group_t	*mg_prev;
	metaslab_group_t	*mg_next;

	/*
	 * In order for the allocation throttle to function properly, we cannot
	 * have too many IOs going to each disk by default; the throttle
	 * operates by allocating more work to disks that finish quickly, so
	 * allocating larger chunks to each disk reduces its effectiveness.
	 * However, if the number of IOs going to each allocator is too small,
	 * we will not perform proper aggregation at the vdev_queue layer,
	 * also resulting in decreased performance. Therefore, we will use a
	 * ramp-up strategy.
	 *
	 * Each allocator in each metaslab group has a current queue depth
	 * (mg_alloc_queue_depth[allocator]) and a current max queue depth
	 * (mg_cur_max_alloc_queue_depth[allocator]), and each metaslab group
	 * has an absolute max queue depth (mg_max_alloc_queue_depth).  We
	 * add IOs to an allocator until the mg_alloc_queue_depth for that
	 * allocator hits the cur_max. Every time an IO completes for a given
	 * allocator on a given metaslab group, we increment its cur_max until
	 * it reaches mg_max_alloc_queue_depth. The cur_max resets every txg to
	 * help protect against disks that decrease in performance over time.
	 *
	 * It's possible for an allocator to handle more allocations than
	 * its max. This can occur when gang blocks are required or when other
	 * groups are unable to handle their share of allocations.
	 */
	uint64_t		mg_max_alloc_queue_depth;
	uint64_t		*mg_cur_max_alloc_queue_depth;
	refcount_t		*mg_alloc_queue_depth;
	int			mg_allocators;
	/*
	 * A metalab group that can no longer allocate the minimum block
	 * size will set mg_no_free_space. Once a metaslab group is out
	 * of space then its share of work must be distributed to other
	 * groups.
	 */
	boolean_t		mg_no_free_space;

	uint64_t		mg_allocations;
	uint64_t		mg_failed_allocations;
	uint64_t		mg_fragmentation;
	uint64_t		mg_histogram[RANGE_TREE_HISTOGRAM_SIZE];
};

/*
 * This value defines the number of elements in the ms_lbas array. The value
 * of 64 was chosen as it covers all power of 2 buckets up to UINT64_MAX.
 * This is the equivalent of highbit(UINT64_MAX).
 */
#define	MAX_LBAS	64

/*
 * Each metaslab maintains a set of in-core trees to track metaslab
 * operations.  The in-core free tree (ms_allocatable) contains the list of
 * free segments which are eligible for allocation.  As blocks are
 * allocated, the allocated segment are removed from the ms_allocatable and
 * added to a per txg allocation tree (ms_allocating).  As blocks are
 * freed, they are added to the free tree (ms_freeing).  These trees
 * allow us to process all allocations and frees in syncing context
 * where it is safe to update the on-disk space maps.  An additional set
 * of in-core trees is maintained to track deferred frees
 * (ms_defer).  Once a block is freed it will move from the
 * ms_freed to the ms_defer tree.  A deferred free means that a block
 * has been freed but cannot be used by the pool until TXG_DEFER_SIZE
 * transactions groups later.  For example, a block that is freed in txg
 * 50 will not be available for reallocation until txg 52 (50 +
 * TXG_DEFER_SIZE).  This provides a safety net for uberblock rollback.
 * A pool could be safely rolled back TXG_DEFERS_SIZE transactions
 * groups and ensure that no block has been reallocated.
 *
 * The simplified transition diagram looks like this:
 *
 *
 *      ALLOCATE
 *         |
 *         V
 *    free segment (ms_allocatable) -> ms_allocating[4] -> (write to space map)
 *         ^
 *         |                        ms_freeing <--- FREE
 *         |                             |
 *         |                             v
 *         |                         ms_freed
 *         |                             |
 *         +-------- ms_defer[2] <-------+-------> (write to space map)
 *
 *
 * Each metaslab's space is tracked in a single space map in the MOS,
 * which is only updated in syncing context.  Each time we sync a txg,
 * we append the allocs and frees from that txg to the space map.  The
 * pool space is only updated once all metaslabs have finished syncing.
 *
 * To load the in-core free tree we read the space map from disk.  This
 * object contains a series of alloc and free records that are combined
 * to make up the list of all free segments in this metaslab.  These
 * segments are represented in-core by the ms_allocatable and are stored
 * in an AVL tree.
 *
 * As the space map grows (as a result of the appends) it will
 * eventually become space-inefficient.  When the metaslab's in-core
 * free tree is zfs_condense_pct/100 times the size of the minimal
 * on-disk representation, we rewrite it in its minimized form.  If a
 * metaslab needs to condense then we must set the ms_condensing flag to
 * ensure that allocations are not performed on the metaslab that is
 * being written.
 */
struct metaslab {
	kmutex_t	ms_lock;
	kmutex_t	ms_sync_lock;
	kcondvar_t	ms_load_cv;
	space_map_t	*ms_sm;
	uint64_t	ms_id;
	uint64_t	ms_start;
	uint64_t	ms_size;
	uint64_t	ms_fragmentation;

	range_tree_t	*ms_allocating[TXG_SIZE];
	range_tree_t	*ms_allocatable;

	/*
	 * The following range trees are accessed only from syncing context.
	 * ms_free*tree only have entries while syncing, and are empty
	 * between syncs.
	 */
	range_tree_t	*ms_freeing;	/* to free this syncing txg */
	range_tree_t	*ms_freed;	/* already freed this syncing txg */
	range_tree_t	*ms_defer[TXG_DEFER_SIZE];
	range_tree_t	*ms_checkpointing; /* to add to the checkpoint */

	boolean_t	ms_condensing;	/* condensing? */
	boolean_t	ms_condense_wanted;
	uint64_t	ms_condense_checked_txg;

	/*
	 * We must hold both ms_lock and ms_group->mg_lock in order to
	 * modify ms_loaded.
	 */
	boolean_t	ms_loaded;
	boolean_t	ms_loading;

	int64_t		ms_deferspace;	/* sum of ms_defermap[] space	*/
	uint64_t	ms_weight;	/* weight vs. others in group	*/
	uint64_t	ms_activation_weight;	/* activation weight	*/

	/*
	 * Track of whenever a metaslab is selected for loading or allocation.
	 * We use this value to determine how long the metaslab should
	 * stay cached.
	 */
	uint64_t	ms_selected_txg;

	uint64_t	ms_alloc_txg;	/* last successful alloc (debug only) */
	uint64_t	ms_max_size;	/* maximum allocatable size	*/

	/*
	 * -1 if it's not active in an allocator, otherwise set to the allocator
	 * this metaslab is active for.
	 */
	int		ms_allocator;
	boolean_t	ms_primary; /* Only valid if ms_allocator is not -1 */

	/*
	 * The metaslab block allocators can optionally use a size-ordered
	 * range tree and/or an array of LBAs. Not all allocators use
	 * this functionality. The ms_allocatable_by_size should always
	 * contain the same number of segments as the ms_allocatable. The
	 * only difference is that the ms_allocatable_by_size is ordered by
	 * segment sizes.
	 */
	avl_tree_t	ms_allocatable_by_size;
	uint64_t	ms_lbas[MAX_LBAS];

	metaslab_group_t *ms_group;	/* metaslab group		*/
	avl_node_t	ms_group_node;	/* node in metaslab group tree	*/
	txg_node_t	ms_txg_node;	/* per-txg dirty metaslab links	*/

	boolean_t	ms_new;
};

#ifdef	__cplusplus
}
#endif

#endif	/* _SYS_METASLAB_IMPL_H */