/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC. * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). * Rewritten for Linux by Brian Behlendorf . * LLNL-CODE-403049. * * ZFS volume emulation driver. * * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes. * Volumes are accessed through the symbolic links named: * * /dev// * * Volumes are persistent through reboot and module load. No user command * needs to be run before opening and using a device. * * Copyright 2014 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2016 Actifio, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include unsigned int zvol_inhibit_dev = 0; unsigned int zvol_major = ZVOL_MAJOR; unsigned int zvol_prefetch_bytes = (128 * 1024); unsigned long zvol_max_discard_blocks = 16384; static kmutex_t zvol_state_lock; static list_t zvol_state_list; static char *zvol_tag = "zvol_tag"; /* * The in-core state of each volume. */ typedef struct zvol_state { char zv_name[MAXNAMELEN]; /* name */ uint64_t zv_volsize; /* advertised space */ uint64_t zv_volblocksize; /* volume block size */ objset_t *zv_objset; /* objset handle */ uint32_t zv_flags; /* ZVOL_* flags */ uint32_t zv_open_count; /* open counts */ uint32_t zv_changed; /* disk changed */ zilog_t *zv_zilog; /* ZIL handle */ znode_t zv_znode; /* for range locking */ dmu_buf_t *zv_dbuf; /* bonus handle */ dev_t zv_dev; /* device id */ struct gendisk *zv_disk; /* generic disk */ struct request_queue *zv_queue; /* request queue */ list_node_t zv_next; /* next zvol_state_t linkage */ } zvol_state_t; typedef enum { ZVOL_ASYNC_CREATE_MINORS, ZVOL_ASYNC_REMOVE_MINORS, ZVOL_ASYNC_RENAME_MINORS, ZVOL_ASYNC_SET_SNAPDEV, ZVOL_ASYNC_MAX } zvol_async_op_t; typedef struct { zvol_async_op_t op; char pool[MAXNAMELEN]; char name1[MAXNAMELEN]; char name2[MAXNAMELEN]; zprop_source_t source; uint64_t snapdev; } zvol_task_t; #define ZVOL_RDONLY 0x1 /* * Find the next available range of ZVOL_MINORS minor numbers. The * zvol_state_list is kept in ascending minor order so we simply need * to scan the list for the first gap in the sequence. This allows us * to recycle minor number as devices are created and removed. */ static int zvol_find_minor(unsigned *minor) { zvol_state_t *zv; *minor = 0; ASSERT(MUTEX_HELD(&zvol_state_lock)); for (zv = list_head(&zvol_state_list); zv != NULL; zv = list_next(&zvol_state_list, zv), *minor += ZVOL_MINORS) { if (MINOR(zv->zv_dev) != MINOR(*minor)) break; } /* All minors are in use */ if (*minor >= (1 << MINORBITS)) return (SET_ERROR(ENXIO)); return (0); } /* * Find a zvol_state_t given the full major+minor dev_t. */ static zvol_state_t * zvol_find_by_dev(dev_t dev) { zvol_state_t *zv; ASSERT(MUTEX_HELD(&zvol_state_lock)); for (zv = list_head(&zvol_state_list); zv != NULL; zv = list_next(&zvol_state_list, zv)) { if (zv->zv_dev == dev) return (zv); } return (NULL); } /* * Find a zvol_state_t given the name provided at zvol_alloc() time. */ static zvol_state_t * zvol_find_by_name(const char *name) { zvol_state_t *zv; ASSERT(MUTEX_HELD(&zvol_state_lock)); for (zv = list_head(&zvol_state_list); zv != NULL; zv = list_next(&zvol_state_list, zv)) { if (strncmp(zv->zv_name, name, MAXNAMELEN) == 0) return (zv); } return (NULL); } /* * Given a path, return TRUE if path is a ZVOL. */ boolean_t zvol_is_zvol(const char *device) { struct block_device *bdev; unsigned int major; bdev = lookup_bdev(device); if (IS_ERR(bdev)) return (B_FALSE); major = MAJOR(bdev->bd_dev); bdput(bdev); if (major == zvol_major) return (B_TRUE); return (B_FALSE); } /* * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation. */ void zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) { zfs_creat_t *zct = arg; nvlist_t *nvprops = zct->zct_props; int error; uint64_t volblocksize, volsize; VERIFY(nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0); if (nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0) volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE); /* * These properties must be removed from the list so the generic * property setting step won't apply to them. */ VERIFY(nvlist_remove_all(nvprops, zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0); (void) nvlist_remove_all(nvprops, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE)); error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize, DMU_OT_NONE, 0, tx); ASSERT(error == 0); error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP, DMU_OT_NONE, 0, tx); ASSERT(error == 0); error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx); ASSERT(error == 0); } /* * ZFS_IOC_OBJSET_STATS entry point. */ int zvol_get_stats(objset_t *os, nvlist_t *nv) { int error; dmu_object_info_t *doi; uint64_t val; error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val); if (error) return (SET_ERROR(error)); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val); doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP); error = dmu_object_info(os, ZVOL_OBJ, doi); if (error == 0) { dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE, doi->doi_data_block_size); } kmem_free(doi, sizeof (dmu_object_info_t)); return (SET_ERROR(error)); } static void zvol_size_changed(zvol_state_t *zv, uint64_t volsize) { struct block_device *bdev; bdev = bdget_disk(zv->zv_disk, 0); if (bdev == NULL) return; set_capacity(zv->zv_disk, volsize >> 9); zv->zv_volsize = volsize; check_disk_size_change(zv->zv_disk, bdev); bdput(bdev); } /* * Sanity check volume size. */ int zvol_check_volsize(uint64_t volsize, uint64_t blocksize) { if (volsize == 0) return (SET_ERROR(EINVAL)); if (volsize % blocksize != 0) return (SET_ERROR(EINVAL)); #ifdef _ILP32 if (volsize - 1 > MAXOFFSET_T) return (SET_ERROR(EOVERFLOW)); #endif return (0); } /* * Ensure the zap is flushed then inform the VFS of the capacity change. */ static int zvol_update_volsize(uint64_t volsize, objset_t *os) { dmu_tx_t *tx; int error; uint64_t txg; ASSERT(MUTEX_HELD(&zvol_state_lock)); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); dmu_tx_mark_netfree(tx); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); return (SET_ERROR(error)); } txg = dmu_tx_get_txg(tx); error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx); dmu_tx_commit(tx); txg_wait_synced(dmu_objset_pool(os), txg); if (error == 0) error = dmu_free_long_range(os, ZVOL_OBJ, volsize, DMU_OBJECT_END); return (error); } static int zvol_update_live_volsize(zvol_state_t *zv, uint64_t volsize) { zvol_size_changed(zv, volsize); /* * We should post a event here describing the expansion. However, * the zfs_ereport_post() interface doesn't nicely support posting * events for zvols, it assumes events relate to vdevs or zios. */ return (0); } /* * Set ZFS_PROP_VOLSIZE set entry point. */ int zvol_set_volsize(const char *name, uint64_t volsize) { zvol_state_t *zv = NULL; objset_t *os = NULL; int error; dmu_object_info_t *doi; uint64_t readonly; boolean_t owned = B_FALSE; error = dsl_prop_get_integer(name, zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL); if (error != 0) return (SET_ERROR(error)); if (readonly) return (SET_ERROR(EROFS)); mutex_enter(&zvol_state_lock); zv = zvol_find_by_name(name); if (zv == NULL || zv->zv_objset == NULL) { if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, FTAG, &os)) != 0) { mutex_exit(&zvol_state_lock); return (SET_ERROR(error)); } owned = B_TRUE; if (zv != NULL) zv->zv_objset = os; } else { os = zv->zv_objset; } doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP); if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) || (error = zvol_check_volsize(volsize, doi->doi_data_block_size))) goto out; error = zvol_update_volsize(volsize, os); kmem_free(doi, sizeof (dmu_object_info_t)); if (error == 0 && zv != NULL) error = zvol_update_live_volsize(zv, volsize); out: if (owned) { dmu_objset_disown(os, FTAG); if (zv != NULL) zv->zv_objset = NULL; } mutex_exit(&zvol_state_lock); return (error); } /* * Sanity check volume block size. */ int zvol_check_volblocksize(const char *name, uint64_t volblocksize) { /* Record sizes above 128k need the feature to be enabled */ if (volblocksize > SPA_OLD_MAXBLOCKSIZE) { spa_t *spa; int error; if ((error = spa_open(name, &spa, FTAG)) != 0) return (error); if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } /* * We don't allow setting the property above 1MB, * unless the tunable has been changed. */ if (volblocksize > zfs_max_recordsize) return (SET_ERROR(EDOM)); spa_close(spa, FTAG); } if (volblocksize < SPA_MINBLOCKSIZE || volblocksize > SPA_MAXBLOCKSIZE || !ISP2(volblocksize)) return (SET_ERROR(EDOM)); return (0); } /* * Set ZFS_PROP_VOLBLOCKSIZE set entry point. */ int zvol_set_volblocksize(const char *name, uint64_t volblocksize) { zvol_state_t *zv; dmu_tx_t *tx; int error; mutex_enter(&zvol_state_lock); zv = zvol_find_by_name(name); if (zv == NULL) { error = SET_ERROR(ENXIO); goto out; } if (zv->zv_flags & ZVOL_RDONLY) { error = SET_ERROR(EROFS); goto out; } tx = dmu_tx_create(zv->zv_objset); dmu_tx_hold_bonus(tx, ZVOL_OBJ); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); } else { error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ, volblocksize, 0, tx); if (error == ENOTSUP) error = SET_ERROR(EBUSY); dmu_tx_commit(tx); if (error == 0) zv->zv_volblocksize = volblocksize; } out: mutex_exit(&zvol_state_lock); return (SET_ERROR(error)); } /* * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we * implement DKIOCFREE/free-long-range. */ static int zvol_replay_truncate(zvol_state_t *zv, lr_truncate_t *lr, boolean_t byteswap) { uint64_t offset, length; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); offset = lr->lr_offset; length = lr->lr_length; return (dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset, length)); } /* * Replay a TX_WRITE ZIL transaction that didn't get committed * after a system failure */ static int zvol_replay_write(zvol_state_t *zv, lr_write_t *lr, boolean_t byteswap) { objset_t *os = zv->zv_objset; char *data = (char *)(lr + 1); /* data follows lr_write_t */ uint64_t off = lr->lr_offset; uint64_t len = lr->lr_length; dmu_tx_t *tx; int error; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); tx = dmu_tx_create(os); dmu_tx_hold_write(tx, ZVOL_OBJ, off, len); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); } else { dmu_write(os, ZVOL_OBJ, off, len, data, tx); dmu_tx_commit(tx); } return (SET_ERROR(error)); } static int zvol_replay_err(zvol_state_t *zv, lr_t *lr, boolean_t byteswap) { return (SET_ERROR(ENOTSUP)); } /* * Callback vectors for replaying records. * Only TX_WRITE and TX_TRUNCATE are needed for zvol. */ zil_replay_func_t zvol_replay_vector[TX_MAX_TYPE] = { (zil_replay_func_t)zvol_replay_err, /* no such transaction type */ (zil_replay_func_t)zvol_replay_err, /* TX_CREATE */ (zil_replay_func_t)zvol_replay_err, /* TX_MKDIR */ (zil_replay_func_t)zvol_replay_err, /* TX_MKXATTR */ (zil_replay_func_t)zvol_replay_err, /* TX_SYMLINK */ (zil_replay_func_t)zvol_replay_err, /* TX_REMOVE */ (zil_replay_func_t)zvol_replay_err, /* TX_RMDIR */ (zil_replay_func_t)zvol_replay_err, /* TX_LINK */ (zil_replay_func_t)zvol_replay_err, /* TX_RENAME */ (zil_replay_func_t)zvol_replay_write, /* TX_WRITE */ (zil_replay_func_t)zvol_replay_truncate, /* TX_TRUNCATE */ (zil_replay_func_t)zvol_replay_err, /* TX_SETATTR */ (zil_replay_func_t)zvol_replay_err, /* TX_ACL */ }; /* * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions. * * We store data in the log buffers if it's small enough. * Otherwise we will later flush the data out via dmu_sync(). */ ssize_t zvol_immediate_write_sz = 32768; static void zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset, uint64_t size, int sync) { uint32_t blocksize = zv->zv_volblocksize; zilog_t *zilog = zv->zv_zilog; boolean_t slogging; ssize_t immediate_write_sz; if (zil_replaying(zilog, tx)) return; immediate_write_sz = (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT) ? 0 : zvol_immediate_write_sz; slogging = spa_has_slogs(zilog->zl_spa) && (zilog->zl_logbias == ZFS_LOGBIAS_LATENCY); while (size) { itx_t *itx; lr_write_t *lr; ssize_t len; itx_wr_state_t write_state; /* * Unlike zfs_log_write() we can be called with * up to DMU_MAX_ACCESS/2 (5MB) writes. */ if (blocksize > immediate_write_sz && !slogging && size >= blocksize && offset % blocksize == 0) { write_state = WR_INDIRECT; /* uses dmu_sync */ len = blocksize; } else if (sync) { write_state = WR_COPIED; len = MIN(ZIL_MAX_LOG_DATA, size); } else { write_state = WR_NEED_COPY; len = MIN(ZIL_MAX_LOG_DATA, size); } itx = zil_itx_create(TX_WRITE, sizeof (*lr) + (write_state == WR_COPIED ? len : 0)); lr = (lr_write_t *)&itx->itx_lr; if (write_state == WR_COPIED && dmu_read(zv->zv_objset, ZVOL_OBJ, offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) { zil_itx_destroy(itx); itx = zil_itx_create(TX_WRITE, sizeof (*lr)); lr = (lr_write_t *)&itx->itx_lr; write_state = WR_NEED_COPY; } itx->itx_wr_state = write_state; if (write_state == WR_NEED_COPY) itx->itx_sod += len; lr->lr_foid = ZVOL_OBJ; lr->lr_offset = offset; lr->lr_length = len; lr->lr_blkoff = 0; BP_ZERO(&lr->lr_blkptr); itx->itx_private = zv; itx->itx_sync = sync; (void) zil_itx_assign(zilog, itx, tx); offset += len; size -= len; } } static int zvol_write(zvol_state_t *zv, uio_t *uio, boolean_t sync) { uint64_t volsize = zv->zv_volsize; rl_t *rl; int error = 0; ASSERT(zv && zv->zv_open_count > 0); rl = zfs_range_lock(&zv->zv_znode, uio->uio_loffset, uio->uio_resid, RL_WRITER); while (uio->uio_resid > 0 && uio->uio_loffset < volsize) { uint64_t bytes = MIN(uio->uio_resid, DMU_MAX_ACCESS >> 1); uint64_t off = uio->uio_loffset; dmu_tx_t *tx = dmu_tx_create(zv->zv_objset); if (bytes > volsize - off) /* don't write past the end */ bytes = volsize - off; dmu_tx_hold_write(tx, ZVOL_OBJ, off, bytes); /* This will only fail for ENOSPC */ error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); break; } error = dmu_write_uio_dbuf(zv->zv_dbuf, uio, bytes, tx); if (error == 0) zvol_log_write(zv, tx, off, bytes, sync); dmu_tx_commit(tx); if (error) break; } zfs_range_unlock(rl); if (sync) zil_commit(zv->zv_zilog, ZVOL_OBJ); return (error); } /* * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE. */ static void zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len, boolean_t sync) { itx_t *itx; lr_truncate_t *lr; zilog_t *zilog = zv->zv_zilog; if (zil_replaying(zilog, tx)) return; itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); lr = (lr_truncate_t *)&itx->itx_lr; lr->lr_foid = ZVOL_OBJ; lr->lr_offset = off; lr->lr_length = len; itx->itx_sync = sync; zil_itx_assign(zilog, itx, tx); } static int zvol_discard(struct bio *bio) { zvol_state_t *zv = bio->bi_bdev->bd_disk->private_data; uint64_t start = BIO_BI_SECTOR(bio) << 9; uint64_t size = BIO_BI_SIZE(bio); uint64_t end = start + size; int error; rl_t *rl; dmu_tx_t *tx; ASSERT(zv && zv->zv_open_count > 0); if (end > zv->zv_volsize) return (SET_ERROR(EIO)); /* * Align the request to volume block boundaries when REQ_SECURE is * available, but not requested. If we don't, then this will force * dnode_free_range() to zero out the unaligned parts, which is slow * (read-modify-write) and useless since we are not freeing any space * by doing so. Kernels that do not support REQ_SECURE (2.6.32 through * 2.6.35) will not receive this optimization. */ #ifdef REQ_SECURE if (!(bio->bi_rw & REQ_SECURE)) { start = P2ROUNDUP(start, zv->zv_volblocksize); end = P2ALIGN(end, zv->zv_volblocksize); size = end - start; } #endif if (start >= end) return (0); rl = zfs_range_lock(&zv->zv_znode, start, size, RL_WRITER); tx = dmu_tx_create(zv->zv_objset); dmu_tx_mark_netfree(tx); error = dmu_tx_assign(tx, TXG_WAIT); if (error != 0) { dmu_tx_abort(tx); } else { zvol_log_truncate(zv, tx, start, size, B_TRUE); dmu_tx_commit(tx); error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, start, size); } zfs_range_unlock(rl); return (error); } static int zvol_read(zvol_state_t *zv, uio_t *uio) { uint64_t volsize = zv->zv_volsize; rl_t *rl; int error = 0; ASSERT(zv && zv->zv_open_count > 0); rl = zfs_range_lock(&zv->zv_znode, uio->uio_loffset, uio->uio_resid, RL_READER); while (uio->uio_resid > 0 && uio->uio_loffset < volsize) { uint64_t bytes = MIN(uio->uio_resid, DMU_MAX_ACCESS >> 1); /* don't read past the end */ if (bytes > volsize - uio->uio_loffset) bytes = volsize - uio->uio_loffset; error = dmu_read_uio_dbuf(zv->zv_dbuf, uio, bytes); if (error) { /* convert checksum errors into IO errors */ if (error == ECKSUM) error = SET_ERROR(EIO); break; } } zfs_range_unlock(rl); return (error); } static MAKE_REQUEST_FN_RET zvol_request(struct request_queue *q, struct bio *bio) { uio_t uio; zvol_state_t *zv = q->queuedata; fstrans_cookie_t cookie = spl_fstrans_mark(); int rw = bio_data_dir(bio); #ifdef HAVE_GENERIC_IO_ACCT unsigned long start = jiffies; #endif int error = 0; uio.uio_bvec = &bio->bi_io_vec[BIO_BI_IDX(bio)]; uio.uio_skip = BIO_BI_SKIP(bio); uio.uio_resid = BIO_BI_SIZE(bio); uio.uio_iovcnt = bio->bi_vcnt - BIO_BI_IDX(bio); uio.uio_loffset = BIO_BI_SECTOR(bio) << 9; uio.uio_limit = MAXOFFSET_T; uio.uio_segflg = UIO_BVEC; if (bio_has_data(bio) && uio.uio_loffset + uio.uio_resid > zv->zv_volsize) { printk(KERN_INFO "%s: bad access: offset=%llu, size=%lu\n", zv->zv_disk->disk_name, (long long unsigned)uio.uio_loffset, (long unsigned)uio.uio_resid); error = SET_ERROR(EIO); goto out1; } generic_start_io_acct(rw, bio_sectors(bio), &zv->zv_disk->part0); if (rw == WRITE) { if (unlikely(zv->zv_flags & ZVOL_RDONLY)) { error = SET_ERROR(EROFS); goto out2; } if (bio->bi_rw & VDEV_REQ_DISCARD) { error = zvol_discard(bio); goto out2; } /* * Some requests are just for flush and nothing else. */ if (uio.uio_resid == 0) { if (bio->bi_rw & VDEV_REQ_FLUSH) zil_commit(zv->zv_zilog, ZVOL_OBJ); goto out2; } error = zvol_write(zv, &uio, ((bio->bi_rw & (VDEV_REQ_FUA|VDEV_REQ_FLUSH)) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS)); } else error = zvol_read(zv, &uio); out2: generic_end_io_acct(rw, &zv->zv_disk->part0, start); out1: BIO_END_IO(bio, -error); spl_fstrans_unmark(cookie); #ifdef HAVE_MAKE_REQUEST_FN_RET_INT return (0); #elif defined(HAVE_MAKE_REQUEST_FN_RET_QC) return (BLK_QC_T_NONE); #endif } static void zvol_get_done(zgd_t *zgd, int error) { if (zgd->zgd_db) dmu_buf_rele(zgd->zgd_db, zgd); zfs_range_unlock(zgd->zgd_rl); if (error == 0 && zgd->zgd_bp) zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); kmem_free(zgd, sizeof (zgd_t)); } /* * Get data to generate a TX_WRITE intent log record. */ static int zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) { zvol_state_t *zv = arg; objset_t *os = zv->zv_objset; uint64_t object = ZVOL_OBJ; uint64_t offset = lr->lr_offset; uint64_t size = lr->lr_length; blkptr_t *bp = &lr->lr_blkptr; dmu_buf_t *db; zgd_t *zgd; int error; ASSERT(zio != NULL); ASSERT(size != 0); zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); zgd->zgd_zilog = zv->zv_zilog; zgd->zgd_rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_READER); /* * Write records come in two flavors: immediate and indirect. * For small writes it's cheaper to store the data with the * log record (immediate); for large writes it's cheaper to * sync the data and get a pointer to it (indirect) so that * we don't have to write the data twice. */ if (buf != NULL) { /* immediate write */ error = dmu_read(os, object, offset, size, buf, DMU_READ_NO_PREFETCH); } else { size = zv->zv_volblocksize; offset = P2ALIGN_TYPED(offset, size, uint64_t); error = dmu_buf_hold(os, object, offset, zgd, &db, DMU_READ_NO_PREFETCH); if (error == 0) { blkptr_t *obp = dmu_buf_get_blkptr(db); if (obp) { ASSERT(BP_IS_HOLE(bp)); *bp = *obp; } zgd->zgd_db = db; zgd->zgd_bp = &lr->lr_blkptr; ASSERT(db != NULL); ASSERT(db->db_offset == offset); ASSERT(db->db_size == size); error = dmu_sync(zio, lr->lr_common.lrc_txg, zvol_get_done, zgd); if (error == 0) return (0); } } zvol_get_done(zgd, error); return (SET_ERROR(error)); } /* * The zvol_state_t's are inserted in increasing MINOR(dev_t) order. */ static void zvol_insert(zvol_state_t *zv_insert) { zvol_state_t *zv = NULL; ASSERT(MUTEX_HELD(&zvol_state_lock)); ASSERT3U(MINOR(zv_insert->zv_dev) & ZVOL_MINOR_MASK, ==, 0); for (zv = list_head(&zvol_state_list); zv != NULL; zv = list_next(&zvol_state_list, zv)) { if (MINOR(zv->zv_dev) > MINOR(zv_insert->zv_dev)) break; } list_insert_before(&zvol_state_list, zv, zv_insert); } /* * Simply remove the zvol from to list of zvols. */ static void zvol_remove(zvol_state_t *zv_remove) { ASSERT(MUTEX_HELD(&zvol_state_lock)); list_remove(&zvol_state_list, zv_remove); } static int zvol_first_open(zvol_state_t *zv) { objset_t *os; uint64_t volsize; int locked = 0; int error; uint64_t ro; /* * In all other cases the spa_namespace_lock is taken before the * bdev->bd_mutex lock. But in this case the Linux __blkdev_get() * function calls fops->open() with the bdev->bd_mutex lock held. * * To avoid a potential lock inversion deadlock we preemptively * try to take the spa_namespace_lock(). Normally it will not * be contended and this is safe because spa_open_common() handles * the case where the caller already holds the spa_namespace_lock. * * When it is contended we risk a lock inversion if we were to * block waiting for the lock. Luckily, the __blkdev_get() * function allows us to return -ERESTARTSYS which will result in * bdev->bd_mutex being dropped, reacquired, and fops->open() being * called again. This process can be repeated safely until both * locks are acquired. */ if (!mutex_owned(&spa_namespace_lock)) { locked = mutex_tryenter(&spa_namespace_lock); if (!locked) return (-SET_ERROR(ERESTARTSYS)); } error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL); if (error) goto out_mutex; /* lie and say we're read-only */ error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, 1, zvol_tag, &os); if (error) goto out_mutex; error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize); if (error) { dmu_objset_disown(os, zvol_tag); zv->zv_objset = NULL; goto out_mutex; } zv->zv_objset = os; error = dmu_bonus_hold(os, ZVOL_OBJ, zvol_tag, &zv->zv_dbuf); if (error) { dmu_objset_disown(os, zvol_tag); zv->zv_objset = NULL; goto out_mutex; } set_capacity(zv->zv_disk, volsize >> 9); zv->zv_volsize = volsize; zv->zv_zilog = zil_open(os, zvol_get_data); if (ro || dmu_objset_is_snapshot(os) || !spa_writeable(dmu_objset_spa(os))) { set_disk_ro(zv->zv_disk, 1); zv->zv_flags |= ZVOL_RDONLY; } else { set_disk_ro(zv->zv_disk, 0); zv->zv_flags &= ~ZVOL_RDONLY; } out_mutex: if (locked) mutex_exit(&spa_namespace_lock); return (SET_ERROR(-error)); } static void zvol_last_close(zvol_state_t *zv) { zil_close(zv->zv_zilog); zv->zv_zilog = NULL; dmu_buf_rele(zv->zv_dbuf, zvol_tag); zv->zv_dbuf = NULL; /* * Evict cached data */ if (dsl_dataset_is_dirty(dmu_objset_ds(zv->zv_objset)) && !(zv->zv_flags & ZVOL_RDONLY)) txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); (void) dmu_objset_evict_dbufs(zv->zv_objset); dmu_objset_disown(zv->zv_objset, zvol_tag); zv->zv_objset = NULL; } static int zvol_open(struct block_device *bdev, fmode_t flag) { zvol_state_t *zv; int error = 0, drop_mutex = 0; /* * If the caller is already holding the mutex do not take it * again, this will happen as part of zvol_create_minor_impl(). * Once add_disk() is called the device is live and the kernel * will attempt to open it to read the partition information. */ if (!mutex_owned(&zvol_state_lock)) { mutex_enter(&zvol_state_lock); drop_mutex = 1; } /* * Obtain a copy of private_data under the lock to make sure * that either the result of zvol_freeg() setting * bdev->bd_disk->private_data to NULL is observed, or zvol_free() * is not called on this zv because of the positive zv_open_count. */ zv = bdev->bd_disk->private_data; if (zv == NULL) { error = -ENXIO; goto out_mutex; } if (zv->zv_open_count == 0) { error = zvol_first_open(zv); if (error) goto out_mutex; } if ((flag & FMODE_WRITE) && (zv->zv_flags & ZVOL_RDONLY)) { error = -EROFS; goto out_open_count; } zv->zv_open_count++; check_disk_change(bdev); out_open_count: if (zv->zv_open_count == 0) zvol_last_close(zv); out_mutex: if (drop_mutex) mutex_exit(&zvol_state_lock); return (SET_ERROR(error)); } #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_VOID static void #else static int #endif zvol_release(struct gendisk *disk, fmode_t mode) { zvol_state_t *zv = disk->private_data; int drop_mutex = 0; ASSERT(zv && zv->zv_open_count > 0); if (!mutex_owned(&zvol_state_lock)) { mutex_enter(&zvol_state_lock); drop_mutex = 1; } zv->zv_open_count--; if (zv->zv_open_count == 0) zvol_last_close(zv); if (drop_mutex) mutex_exit(&zvol_state_lock); #ifndef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_VOID return (0); #endif } static int zvol_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { zvol_state_t *zv = bdev->bd_disk->private_data; int error = 0; ASSERT(zv && zv->zv_open_count > 0); switch (cmd) { case BLKFLSBUF: zil_commit(zv->zv_zilog, ZVOL_OBJ); break; case BLKZNAME: error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN); break; default: error = -ENOTTY; break; } return (SET_ERROR(error)); } #ifdef CONFIG_COMPAT static int zvol_compat_ioctl(struct block_device *bdev, fmode_t mode, unsigned cmd, unsigned long arg) { return (zvol_ioctl(bdev, mode, cmd, arg)); } #else #define zvol_compat_ioctl NULL #endif static int zvol_media_changed(struct gendisk *disk) { zvol_state_t *zv = disk->private_data; ASSERT(zv && zv->zv_open_count > 0); return (zv->zv_changed); } static int zvol_revalidate_disk(struct gendisk *disk) { zvol_state_t *zv = disk->private_data; ASSERT(zv && zv->zv_open_count > 0); zv->zv_changed = 0; set_capacity(zv->zv_disk, zv->zv_volsize >> 9); return (0); } /* * Provide a simple virtual geometry for legacy compatibility. For devices * smaller than 1 MiB a small head and sector count is used to allow very * tiny devices. For devices over 1 Mib a standard head and sector count * is used to keep the cylinders count reasonable. */ static int zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo) { zvol_state_t *zv = bdev->bd_disk->private_data; sector_t sectors; ASSERT(zv && zv->zv_open_count > 0); sectors = get_capacity(zv->zv_disk); if (sectors > 2048) { geo->heads = 16; geo->sectors = 63; } else { geo->heads = 2; geo->sectors = 4; } geo->start = 0; geo->cylinders = sectors / (geo->heads * geo->sectors); return (0); } static struct kobject * zvol_probe(dev_t dev, int *part, void *arg) { zvol_state_t *zv; struct kobject *kobj; mutex_enter(&zvol_state_lock); zv = zvol_find_by_dev(dev); kobj = zv ? get_disk(zv->zv_disk) : NULL; mutex_exit(&zvol_state_lock); return (kobj); } #ifdef HAVE_BDEV_BLOCK_DEVICE_OPERATIONS static struct block_device_operations zvol_ops = { .open = zvol_open, .release = zvol_release, .ioctl = zvol_ioctl, .compat_ioctl = zvol_compat_ioctl, .media_changed = zvol_media_changed, .revalidate_disk = zvol_revalidate_disk, .getgeo = zvol_getgeo, .owner = THIS_MODULE, }; #else /* HAVE_BDEV_BLOCK_DEVICE_OPERATIONS */ static int zvol_open_by_inode(struct inode *inode, struct file *file) { return (zvol_open(inode->i_bdev, file->f_mode)); } static int zvol_release_by_inode(struct inode *inode, struct file *file) { return (zvol_release(inode->i_bdev->bd_disk, file->f_mode)); } static int zvol_ioctl_by_inode(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { if (file == NULL || inode == NULL) return (SET_ERROR(-EINVAL)); return (zvol_ioctl(inode->i_bdev, file->f_mode, cmd, arg)); } #ifdef CONFIG_COMPAT static long zvol_compat_ioctl_by_inode(struct file *file, unsigned int cmd, unsigned long arg) { if (file == NULL) return (SET_ERROR(-EINVAL)); return (zvol_compat_ioctl(file->f_dentry->d_inode->i_bdev, file->f_mode, cmd, arg)); } #else #define zvol_compat_ioctl_by_inode NULL #endif static struct block_device_operations zvol_ops = { .open = zvol_open_by_inode, .release = zvol_release_by_inode, .ioctl = zvol_ioctl_by_inode, .compat_ioctl = zvol_compat_ioctl_by_inode, .media_changed = zvol_media_changed, .revalidate_disk = zvol_revalidate_disk, .getgeo = zvol_getgeo, .owner = THIS_MODULE, }; #endif /* HAVE_BDEV_BLOCK_DEVICE_OPERATIONS */ /* * Allocate memory for a new zvol_state_t and setup the required * request queue and generic disk structures for the block device. */ static zvol_state_t * zvol_alloc(dev_t dev, const char *name) { zvol_state_t *zv; zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP); list_link_init(&zv->zv_next); zv->zv_queue = blk_alloc_queue(GFP_ATOMIC); if (zv->zv_queue == NULL) goto out_kmem; blk_queue_make_request(zv->zv_queue, zvol_request); #ifdef HAVE_BLK_QUEUE_FLUSH blk_queue_flush(zv->zv_queue, VDEV_REQ_FLUSH | VDEV_REQ_FUA); #else blk_queue_ordered(zv->zv_queue, QUEUE_ORDERED_DRAIN, NULL); #endif /* HAVE_BLK_QUEUE_FLUSH */ zv->zv_disk = alloc_disk(ZVOL_MINORS); if (zv->zv_disk == NULL) goto out_queue; zv->zv_queue->queuedata = zv; zv->zv_dev = dev; zv->zv_open_count = 0; strlcpy(zv->zv_name, name, MAXNAMELEN); mutex_init(&zv->zv_znode.z_range_lock, NULL, MUTEX_DEFAULT, NULL); avl_create(&zv->zv_znode.z_range_avl, zfs_range_compare, sizeof (rl_t), offsetof(rl_t, r_node)); zv->zv_znode.z_is_zvol = TRUE; zv->zv_disk->major = zvol_major; zv->zv_disk->first_minor = (dev & MINORMASK); zv->zv_disk->fops = &zvol_ops; zv->zv_disk->private_data = zv; zv->zv_disk->queue = zv->zv_queue; snprintf(zv->zv_disk->disk_name, DISK_NAME_LEN, "%s%d", ZVOL_DEV_NAME, (dev & MINORMASK)); return (zv); out_queue: blk_cleanup_queue(zv->zv_queue); out_kmem: kmem_free(zv, sizeof (zvol_state_t)); return (NULL); } /* * Cleanup then free a zvol_state_t which was created by zvol_alloc(). */ static void zvol_free(zvol_state_t *zv) { ASSERT(MUTEX_HELD(&zvol_state_lock)); ASSERT(zv->zv_open_count == 0); avl_destroy(&zv->zv_znode.z_range_avl); mutex_destroy(&zv->zv_znode.z_range_lock); zv->zv_disk->private_data = NULL; del_gendisk(zv->zv_disk); blk_cleanup_queue(zv->zv_queue); put_disk(zv->zv_disk); kmem_free(zv, sizeof (zvol_state_t)); } /* * Create a block device minor node and setup the linkage between it * and the specified volume. Once this function returns the block * device is live and ready for use. */ static int zvol_create_minor_impl(const char *name) { zvol_state_t *zv; objset_t *os; dmu_object_info_t *doi; uint64_t volsize; uint64_t len; unsigned minor = 0; int error = 0; mutex_enter(&zvol_state_lock); zv = zvol_find_by_name(name); if (zv) { error = SET_ERROR(EEXIST); goto out; } doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP); error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, zvol_tag, &os); if (error) goto out_doi; error = dmu_object_info(os, ZVOL_OBJ, doi); if (error) goto out_dmu_objset_disown; error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize); if (error) goto out_dmu_objset_disown; error = zvol_find_minor(&minor); if (error) goto out_dmu_objset_disown; zv = zvol_alloc(MKDEV(zvol_major, minor), name); if (zv == NULL) { error = SET_ERROR(EAGAIN); goto out_dmu_objset_disown; } if (dmu_objset_is_snapshot(os)) zv->zv_flags |= ZVOL_RDONLY; zv->zv_volblocksize = doi->doi_data_block_size; zv->zv_volsize = volsize; zv->zv_objset = os; set_capacity(zv->zv_disk, zv->zv_volsize >> 9); blk_queue_max_hw_sectors(zv->zv_queue, (DMU_MAX_ACCESS / 4) >> 9); blk_queue_max_segments(zv->zv_queue, UINT16_MAX); blk_queue_max_segment_size(zv->zv_queue, UINT_MAX); blk_queue_physical_block_size(zv->zv_queue, zv->zv_volblocksize); blk_queue_io_opt(zv->zv_queue, zv->zv_volblocksize); blk_queue_max_discard_sectors(zv->zv_queue, (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9); blk_queue_discard_granularity(zv->zv_queue, zv->zv_volblocksize); queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zv->zv_queue); #ifdef QUEUE_FLAG_NONROT queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zv->zv_queue); #endif #ifdef QUEUE_FLAG_ADD_RANDOM queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zv->zv_queue); #endif if (spa_writeable(dmu_objset_spa(os))) { if (zil_replay_disable) zil_destroy(dmu_objset_zil(os), B_FALSE); else zil_replay(os, zv, zvol_replay_vector); } /* * When udev detects the addition of the device it will immediately * invoke blkid(8) to determine the type of content on the device. * Prefetching the blocks commonly scanned by blkid(8) will speed * up this process. */ len = MIN(MAX(zvol_prefetch_bytes, 0), SPA_MAXBLOCKSIZE); if (len > 0) { dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ); dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len, ZIO_PRIORITY_SYNC_READ); } zv->zv_objset = NULL; out_dmu_objset_disown: dmu_objset_disown(os, zvol_tag); out_doi: kmem_free(doi, sizeof (dmu_object_info_t)); out: if (error == 0) { zvol_insert(zv); /* * Drop the lock to prevent deadlock with sys_open() -> * zvol_open(), which first takes bd_disk->bd_mutex and then * takes zvol_state_lock, whereas this code path first takes * zvol_state_lock, and then takes bd_disk->bd_mutex. */ mutex_exit(&zvol_state_lock); add_disk(zv->zv_disk); } else { mutex_exit(&zvol_state_lock); } return (SET_ERROR(error)); } /* * Rename a block device minor mode for the specified volume. */ static void zvol_rename_minor(zvol_state_t *zv, const char *newname) { int readonly = get_disk_ro(zv->zv_disk); ASSERT(MUTEX_HELD(&zvol_state_lock)); strlcpy(zv->zv_name, newname, sizeof (zv->zv_name)); /* * The block device's read-only state is briefly changed causing * a KOBJ_CHANGE uevent to be issued. This ensures udev detects * the name change and fixes the symlinks. This does not change * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never * changes. This would normally be done using kobject_uevent() but * that is a GPL-only symbol which is why we need this workaround. */ set_disk_ro(zv->zv_disk, !readonly); set_disk_ro(zv->zv_disk, readonly); } /* * Mask errors to continue dmu_objset_find() traversal */ static int zvol_create_snap_minor_cb(const char *dsname, void *arg) { const char *name = (const char *)arg; /* skip the designated dataset */ if (name && strcmp(dsname, name) == 0) return (0); /* at this point, the dsname should name a snapshot */ if (strchr(dsname, '@') == 0) { dprintf("zvol_create_snap_minor_cb(): " "%s is not a shapshot name\n", dsname); } else { (void) zvol_create_minor_impl(dsname); } return (0); } /* * Mask errors to continue dmu_objset_find() traversal */ static int zvol_create_minors_cb(const char *dsname, void *arg) { uint64_t snapdev; int error; error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL); if (error) return (0); /* * Given the name and the 'snapdev' property, create device minor nodes * with the linkages to zvols/snapshots as needed. * If the name represents a zvol, create a minor node for the zvol, then * check if its snapshots are 'visible', and if so, iterate over the * snapshots and create device minor nodes for those. */ if (strchr(dsname, '@') == 0) { /* create minor for the 'dsname' explicitly */ error = zvol_create_minor_impl(dsname); if ((error == 0 || error == EEXIST) && (snapdev == ZFS_SNAPDEV_VISIBLE)) { fstrans_cookie_t cookie = spl_fstrans_mark(); /* * traverse snapshots only, do not traverse children, * and skip the 'dsname' */ error = dmu_objset_find((char *)dsname, zvol_create_snap_minor_cb, (void *)dsname, DS_FIND_SNAPSHOTS); spl_fstrans_unmark(cookie); } } else { dprintf("zvol_create_minors_cb(): %s is not a zvol name\n", dsname); } return (0); } /* * Create minors for the specified dataset, including children and snapshots. * Pay attention to the 'snapdev' property and iterate over the snapshots * only if they are 'visible'. This approach allows one to assure that the * snapshot metadata is read from disk only if it is needed. * * The name can represent a dataset to be recursively scanned for zvols and * their snapshots, or a single zvol snapshot. If the name represents a * dataset, the scan is performed in two nested stages: * - scan the dataset for zvols, and * - for each zvol, create a minor node, then check if the zvol's snapshots * are 'visible', and only then iterate over the snapshots if needed * * If the name represents a snapshot, a check is perfromed if the snapshot is * 'visible' (which also verifies that the parent is a zvol), and if so, * a minor node for that snapshot is created. */ static int zvol_create_minors_impl(const char *name) { int error = 0; fstrans_cookie_t cookie; char *atp, *parent; if (zvol_inhibit_dev) return (0); parent = kmem_alloc(MAXPATHLEN, KM_SLEEP); (void) strlcpy(parent, name, MAXPATHLEN); if ((atp = strrchr(parent, '@')) != NULL) { uint64_t snapdev; *atp = '\0'; error = dsl_prop_get_integer(parent, "snapdev", &snapdev, NULL); if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE) error = zvol_create_minor_impl(name); } else { cookie = spl_fstrans_mark(); error = dmu_objset_find(parent, zvol_create_minors_cb, NULL, DS_FIND_CHILDREN); spl_fstrans_unmark(cookie); } kmem_free(parent, MAXPATHLEN); return (SET_ERROR(error)); } /* * Remove minors for specified dataset including children and snapshots. */ static void zvol_remove_minors_impl(const char *name) { zvol_state_t *zv, *zv_next; int namelen = ((name) ? strlen(name) : 0); if (zvol_inhibit_dev) return; mutex_enter(&zvol_state_lock); for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { zv_next = list_next(&zvol_state_list, zv); if (name == NULL || strcmp(zv->zv_name, name) == 0 || (strncmp(zv->zv_name, name, namelen) == 0 && (zv->zv_name[namelen] == '/' || zv->zv_name[namelen] == '@'))) { /* If in use, leave alone */ if (zv->zv_open_count > 0) continue; zvol_remove(zv); zvol_free(zv); } } mutex_exit(&zvol_state_lock); } /* Remove minor for this specific snapshot only */ static void zvol_remove_minor_impl(const char *name) { zvol_state_t *zv, *zv_next; if (zvol_inhibit_dev) return; if (strchr(name, '@') == NULL) return; mutex_enter(&zvol_state_lock); for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { zv_next = list_next(&zvol_state_list, zv); if (strcmp(zv->zv_name, name) == 0) { /* If in use, leave alone */ if (zv->zv_open_count > 0) continue; zvol_remove(zv); zvol_free(zv); break; } } mutex_exit(&zvol_state_lock); } /* * Rename minors for specified dataset including children and snapshots. */ static void zvol_rename_minors_impl(const char *oldname, const char *newname) { zvol_state_t *zv, *zv_next; int oldnamelen, newnamelen; char *name; if (zvol_inhibit_dev) return; oldnamelen = strlen(oldname); newnamelen = strlen(newname); name = kmem_alloc(MAXNAMELEN, KM_SLEEP); mutex_enter(&zvol_state_lock); for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { zv_next = list_next(&zvol_state_list, zv); /* If in use, leave alone */ if (zv->zv_open_count > 0) continue; if (strcmp(zv->zv_name, oldname) == 0) { zvol_rename_minor(zv, newname); } else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 && (zv->zv_name[oldnamelen] == '/' || zv->zv_name[oldnamelen] == '@')) { snprintf(name, MAXNAMELEN, "%s%c%s", newname, zv->zv_name[oldnamelen], zv->zv_name + oldnamelen + 1); zvol_rename_minor(zv, name); } } mutex_exit(&zvol_state_lock); kmem_free(name, MAXNAMELEN); } typedef struct zvol_snapdev_cb_arg { uint64_t snapdev; } zvol_snapdev_cb_arg_t; static int zvol_set_snapdev_cb(const char *dsname, void *param) { zvol_snapdev_cb_arg_t *arg = param; if (strchr(dsname, '@') == NULL) return (0); switch (arg->snapdev) { case ZFS_SNAPDEV_VISIBLE: (void) zvol_create_minor_impl(dsname); break; case ZFS_SNAPDEV_HIDDEN: (void) zvol_remove_minor_impl(dsname); break; } return (0); } static void zvol_set_snapdev_impl(char *name, uint64_t snapdev) { zvol_snapdev_cb_arg_t arg = {snapdev}; fstrans_cookie_t cookie = spl_fstrans_mark(); /* * The zvol_set_snapdev_sync() sets snapdev appropriately * in the dataset hierarchy. Here, we only scan snapshots. */ dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS); spl_fstrans_unmark(cookie); } static zvol_task_t * zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2, uint64_t snapdev) { zvol_task_t *task; char *delim; /* Never allow tasks on hidden names. */ if (name1[0] == '$') return (NULL); task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP); task->op = op; task->snapdev = snapdev; delim = strchr(name1, '/'); strlcpy(task->pool, name1, delim ? (delim - name1 + 1) : MAXNAMELEN); strlcpy(task->name1, name1, MAXNAMELEN); if (name2 != NULL) strlcpy(task->name2, name2, MAXNAMELEN); return (task); } static void zvol_task_free(zvol_task_t *task) { kmem_free(task, sizeof (zvol_task_t)); } /* * The worker thread function performed asynchronously. */ static void zvol_task_cb(void *param) { zvol_task_t *task = (zvol_task_t *)param; switch (task->op) { case ZVOL_ASYNC_CREATE_MINORS: (void) zvol_create_minors_impl(task->name1); break; case ZVOL_ASYNC_REMOVE_MINORS: zvol_remove_minors_impl(task->name1); break; case ZVOL_ASYNC_RENAME_MINORS: zvol_rename_minors_impl(task->name1, task->name2); break; case ZVOL_ASYNC_SET_SNAPDEV: zvol_set_snapdev_impl(task->name1, task->snapdev); break; default: VERIFY(0); break; } zvol_task_free(task); } typedef struct zvol_set_snapdev_arg { const char *zsda_name; uint64_t zsda_value; zprop_source_t zsda_source; dmu_tx_t *zsda_tx; } zvol_set_snapdev_arg_t; /* * Sanity check the dataset for safe use by the sync task. No additional * conditions are imposed. */ static int zvol_set_snapdev_check(void *arg, dmu_tx_t *tx) { zvol_set_snapdev_arg_t *zsda = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dir_t *dd; int error; error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL); if (error != 0) return (error); dsl_dir_rele(dd, FTAG); return (error); } static int zvol_set_snapdev_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) { zvol_set_snapdev_arg_t *zsda = arg; char dsname[MAXNAMELEN]; zvol_task_t *task; dsl_dataset_name(ds, dsname); dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_SNAPDEV), zsda->zsda_source, sizeof (zsda->zsda_value), 1, &zsda->zsda_value, zsda->zsda_tx); task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, NULL, zsda->zsda_value); if (task == NULL) return (0); (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); return (0); } /* * Traverse all child snapshot datasets and apply snapdev appropriately. */ static void zvol_set_snapdev_sync(void *arg, dmu_tx_t *tx) { zvol_set_snapdev_arg_t *zsda = arg; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dir_t *dd; VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL)); zsda->zsda_tx = tx; dmu_objset_find_dp(dp, dd->dd_object, zvol_set_snapdev_sync_cb, zsda, DS_FIND_CHILDREN); dsl_dir_rele(dd, FTAG); } int zvol_set_snapdev(const char *ddname, zprop_source_t source, uint64_t snapdev) { zvol_set_snapdev_arg_t zsda; zsda.zsda_name = ddname; zsda.zsda_source = source; zsda.zsda_value = snapdev; return (dsl_sync_task(ddname, zvol_set_snapdev_check, zvol_set_snapdev_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE)); } void zvol_create_minors(spa_t *spa, const char *name, boolean_t async) { zvol_task_t *task; taskqid_t id; task = zvol_task_alloc(ZVOL_ASYNC_CREATE_MINORS, name, NULL, ~0ULL); if (task == NULL) return; id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); if ((async == B_FALSE) && (id != 0)) taskq_wait_id(spa->spa_zvol_taskq, id); } void zvol_remove_minors(spa_t *spa, const char *name, boolean_t async) { zvol_task_t *task; taskqid_t id; task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL); if (task == NULL) return; id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); if ((async == B_FALSE) && (id != 0)) taskq_wait_id(spa->spa_zvol_taskq, id); } void zvol_rename_minors(spa_t *spa, const char *name1, const char *name2, boolean_t async) { zvol_task_t *task; taskqid_t id; task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL); if (task == NULL) return; id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); if ((async == B_FALSE) && (id != 0)) taskq_wait_id(spa->spa_zvol_taskq, id); } int zvol_init(void) { int error; list_create(&zvol_state_list, sizeof (zvol_state_t), offsetof(zvol_state_t, zv_next)); mutex_init(&zvol_state_lock, NULL, MUTEX_DEFAULT, NULL); error = register_blkdev(zvol_major, ZVOL_DRIVER); if (error) { printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error); goto out; } blk_register_region(MKDEV(zvol_major, 0), 1UL << MINORBITS, THIS_MODULE, zvol_probe, NULL, NULL); return (0); out: mutex_destroy(&zvol_state_lock); list_destroy(&zvol_state_list); return (SET_ERROR(error)); } void zvol_fini(void) { zvol_remove_minors_impl(NULL); blk_unregister_region(MKDEV(zvol_major, 0), 1UL << MINORBITS); unregister_blkdev(zvol_major, ZVOL_DRIVER); list_destroy(&zvol_state_list); mutex_destroy(&zvol_state_lock); } module_param(zvol_inhibit_dev, uint, 0644); MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes"); module_param(zvol_major, uint, 0444); MODULE_PARM_DESC(zvol_major, "Major number for zvol device"); module_param(zvol_max_discard_blocks, ulong, 0444); MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard"); module_param(zvol_prefetch_bytes, uint, 0644); MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");