/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2019 by Delphix. All rights reserved. * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2017, Intel Corporation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * ========================================================================== * I/O type descriptions * ========================================================================== */ const char *zio_type_name[ZIO_TYPES] = { /* * Note: Linux kernel thread name length is limited * so these names will differ from upstream open zfs. */ "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim" }; int zio_dva_throttle_enabled = B_TRUE; int zio_deadman_log_all = B_FALSE; /* * ========================================================================== * I/O kmem caches * ========================================================================== */ kmem_cache_t *zio_cache; kmem_cache_t *zio_link_cache; kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; #if defined(ZFS_DEBUG) && !defined(_KERNEL) uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; #endif /* Mark IOs as "slow" if they take longer than 30 seconds */ int zio_slow_io_ms = (30 * MILLISEC); #define BP_SPANB(indblkshift, level) \ (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) #define COMPARE_META_LEVEL 0x80000000ul /* * The following actions directly effect the spa's sync-to-convergence logic. * The values below define the sync pass when we start performing the action. * Care should be taken when changing these values as they directly impact * spa_sync() performance. Tuning these values may introduce subtle performance * pathologies and should only be done in the context of performance analysis. * These tunables will eventually be removed and replaced with #defines once * enough analysis has been done to determine optimal values. * * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that * regular blocks are not deferred. * * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable * compression (including of metadata). In practice, we don't have this * many sync passes, so this has no effect. * * The original intent was that disabling compression would help the sync * passes to converge. However, in practice disabling compression increases * the average number of sync passes, because when we turn compression off, a * lot of block's size will change and thus we have to re-allocate (not * overwrite) them. It also increases the number of 128KB allocations (e.g. * for indirect blocks and spacemaps) because these will not be compressed. * The 128K allocations are especially detrimental to performance on highly * fragmented systems, which may have very few free segments of this size, * and may need to load new metaslabs to satisfy 128K allocations. */ int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */ int zfs_sync_pass_dont_compress = 8; /* don't compress starting in this pass */ int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */ /* * An allocating zio is one that either currently has the DVA allocate * stage set or will have it later in its lifetime. */ #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) /* * Enable smaller cores by excluding metadata * allocations as well. */ int zio_exclude_metadata = 0; int zio_requeue_io_start_cut_in_line = 1; #ifdef ZFS_DEBUG int zio_buf_debug_limit = 16384; #else int zio_buf_debug_limit = 0; #endif static inline void __zio_execute(zio_t *zio); static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); void zio_init(void) { size_t c; vmem_t *data_alloc_arena = NULL; zio_cache = kmem_cache_create("zio_cache", sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); zio_link_cache = kmem_cache_create("zio_link_cache", sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); /* * For small buffers, we want a cache for each multiple of * SPA_MINBLOCKSIZE. For larger buffers, we want a cache * for each quarter-power of 2. */ for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { size_t size = (c + 1) << SPA_MINBLOCKSHIFT; size_t p2 = size; size_t align = 0; size_t data_cflags, cflags; data_cflags = KMC_NODEBUG; cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ? KMC_NODEBUG : 0; #if defined(_ILP32) && defined(_KERNEL) /* * Cache size limited to 1M on 32-bit platforms until ARC * buffers no longer require virtual address space. */ if (size > zfs_max_recordsize) break; #endif while (!ISP2(p2)) p2 &= p2 - 1; #ifndef _KERNEL /* * If we are using watchpoints, put each buffer on its own page, * to eliminate the performance overhead of trapping to the * kernel when modifying a non-watched buffer that shares the * page with a watched buffer. */ if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) continue; /* * Here's the problem - on 4K native devices in userland on * Linux using O_DIRECT, buffers must be 4K aligned or I/O * will fail with EINVAL, causing zdb (and others) to coredump. * Since userland probably doesn't need optimized buffer caches, * we just force 4K alignment on everything. */ align = 8 * SPA_MINBLOCKSIZE; #else if (size < PAGESIZE) { align = SPA_MINBLOCKSIZE; } else if (IS_P2ALIGNED(size, p2 >> 2)) { align = PAGESIZE; } #endif if (align != 0) { char name[36]; (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); zio_buf_cache[c] = kmem_cache_create(name, size, align, NULL, NULL, NULL, NULL, NULL, cflags); (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); zio_data_buf_cache[c] = kmem_cache_create(name, size, align, NULL, NULL, NULL, NULL, data_alloc_arena, data_cflags); } } while (--c != 0) { ASSERT(zio_buf_cache[c] != NULL); if (zio_buf_cache[c - 1] == NULL) zio_buf_cache[c - 1] = zio_buf_cache[c]; ASSERT(zio_data_buf_cache[c] != NULL); if (zio_data_buf_cache[c - 1] == NULL) zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; } zio_inject_init(); lz4_init(); } void zio_fini(void) { size_t c; kmem_cache_t *last_cache = NULL; kmem_cache_t *last_data_cache = NULL; for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { #ifdef _ILP32 /* * Cache size limited to 1M on 32-bit platforms until ARC * buffers no longer require virtual address space. */ if (((c + 1) << SPA_MINBLOCKSHIFT) > zfs_max_recordsize) break; #endif #if defined(ZFS_DEBUG) && !defined(_KERNEL) if (zio_buf_cache_allocs[c] != zio_buf_cache_frees[c]) (void) printf("zio_fini: [%d] %llu != %llu\n", (int)((c + 1) << SPA_MINBLOCKSHIFT), (long long unsigned)zio_buf_cache_allocs[c], (long long unsigned)zio_buf_cache_frees[c]); #endif if (zio_buf_cache[c] != last_cache) { last_cache = zio_buf_cache[c]; kmem_cache_destroy(zio_buf_cache[c]); } zio_buf_cache[c] = NULL; if (zio_data_buf_cache[c] != last_data_cache) { last_data_cache = zio_data_buf_cache[c]; kmem_cache_destroy(zio_data_buf_cache[c]); } zio_data_buf_cache[c] = NULL; } kmem_cache_destroy(zio_link_cache); kmem_cache_destroy(zio_cache); zio_inject_fini(); lz4_fini(); } /* * ========================================================================== * Allocate and free I/O buffers * ========================================================================== */ /* * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a * crashdump if the kernel panics, so use it judiciously. Obviously, it's * useful to inspect ZFS metadata, but if possible, we should avoid keeping * excess / transient data in-core during a crashdump. */ void * zio_buf_alloc(size_t size) { size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); #if defined(ZFS_DEBUG) && !defined(_KERNEL) atomic_add_64(&zio_buf_cache_allocs[c], 1); #endif return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); } /* * Use zio_data_buf_alloc to allocate data. The data will not appear in a * crashdump if the kernel panics. This exists so that we will limit the amount * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount * of kernel heap dumped to disk when the kernel panics) */ void * zio_data_buf_alloc(size_t size) { size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); } void zio_buf_free(void *buf, size_t size) { size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); #if defined(ZFS_DEBUG) && !defined(_KERNEL) atomic_add_64(&zio_buf_cache_frees[c], 1); #endif kmem_cache_free(zio_buf_cache[c], buf); } void zio_data_buf_free(void *buf, size_t size) { size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); kmem_cache_free(zio_data_buf_cache[c], buf); } static void zio_abd_free(void *abd, size_t size) { abd_free((abd_t *)abd); } /* * ========================================================================== * Push and pop I/O transform buffers * ========================================================================== */ void zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, zio_transform_func_t *transform) { zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); zt->zt_orig_abd = zio->io_abd; zt->zt_orig_size = zio->io_size; zt->zt_bufsize = bufsize; zt->zt_transform = transform; zt->zt_next = zio->io_transform_stack; zio->io_transform_stack = zt; zio->io_abd = data; zio->io_size = size; } void zio_pop_transforms(zio_t *zio) { zio_transform_t *zt; while ((zt = zio->io_transform_stack) != NULL) { if (zt->zt_transform != NULL) zt->zt_transform(zio, zt->zt_orig_abd, zt->zt_orig_size); if (zt->zt_bufsize != 0) abd_free(zio->io_abd); zio->io_abd = zt->zt_orig_abd; zio->io_size = zt->zt_orig_size; zio->io_transform_stack = zt->zt_next; kmem_free(zt, sizeof (zio_transform_t)); } } /* * ========================================================================== * I/O transform callbacks for subblocks, decompression, and decryption * ========================================================================== */ static void zio_subblock(zio_t *zio, abd_t *data, uint64_t size) { ASSERT(zio->io_size > size); if (zio->io_type == ZIO_TYPE_READ) abd_copy(data, zio->io_abd, size); } static void zio_decompress(zio_t *zio, abd_t *data, uint64_t size) { if (zio->io_error == 0) { void *tmp = abd_borrow_buf(data, size); int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), zio->io_abd, tmp, zio->io_size, size); abd_return_buf_copy(data, tmp, size); if (zio_injection_enabled && ret == 0) ret = zio_handle_fault_injection(zio, EINVAL); if (ret != 0) zio->io_error = SET_ERROR(EIO); } } static void zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) { int ret; void *tmp; blkptr_t *bp = zio->io_bp; spa_t *spa = zio->io_spa; uint64_t dsobj = zio->io_bookmark.zb_objset; uint64_t lsize = BP_GET_LSIZE(bp); dmu_object_type_t ot = BP_GET_TYPE(bp); uint8_t salt[ZIO_DATA_SALT_LEN]; uint8_t iv[ZIO_DATA_IV_LEN]; uint8_t mac[ZIO_DATA_MAC_LEN]; boolean_t no_crypt = B_FALSE; ASSERT(BP_USES_CRYPT(bp)); ASSERT3U(size, !=, 0); if (zio->io_error != 0) return; /* * Verify the cksum of MACs stored in an indirect bp. It will always * be possible to verify this since it does not require an encryption * key. */ if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { zio_crypt_decode_mac_bp(bp, mac); if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { /* * We haven't decompressed the data yet, but * zio_crypt_do_indirect_mac_checksum() requires * decompressed data to be able to parse out the MACs * from the indirect block. We decompress it now and * throw away the result after we are finished. */ tmp = zio_buf_alloc(lsize); ret = zio_decompress_data(BP_GET_COMPRESS(bp), zio->io_abd, tmp, zio->io_size, lsize); if (ret != 0) { ret = SET_ERROR(EIO); goto error; } ret = zio_crypt_do_indirect_mac_checksum(B_FALSE, tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac); zio_buf_free(tmp, lsize); } else { ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); } abd_copy(data, zio->io_abd, size); if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { ret = zio_handle_decrypt_injection(spa, &zio->io_bookmark, ot, ECKSUM); } if (ret != 0) goto error; return; } /* * If this is an authenticated block, just check the MAC. It would be * nice to separate this out into its own flag, but for the moment * enum zio_flag is out of bits. */ if (BP_IS_AUTHENTICATED(bp)) { if (ot == DMU_OT_OBJSET) { ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); } else { zio_crypt_decode_mac_bp(bp, mac); ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, zio->io_abd, size, mac); if (zio_injection_enabled && ret == 0) { ret = zio_handle_decrypt_injection(spa, &zio->io_bookmark, ot, ECKSUM); } } abd_copy(data, zio->io_abd, size); if (ret != 0) goto error; return; } zio_crypt_decode_params_bp(bp, salt, iv); if (ot == DMU_OT_INTENT_LOG) { tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); zio_crypt_decode_mac_zil(tmp, mac); abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); } else { zio_crypt_decode_mac_bp(bp, mac); } ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, zio->io_abd, &no_crypt); if (no_crypt) abd_copy(data, zio->io_abd, size); if (ret != 0) goto error; return; error: /* assert that the key was found unless this was speculative */ ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); /* * If there was a decryption / authentication error return EIO as * the io_error. If this was not a speculative zio, create an ereport. */ if (ret == ECKSUM) { zio->io_error = SET_ERROR(EIO); if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { spa_log_error(spa, &zio->io_bookmark); zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, spa, NULL, &zio->io_bookmark, zio, 0, 0); } } else { zio->io_error = ret; } } /* * ========================================================================== * I/O parent/child relationships and pipeline interlocks * ========================================================================== */ zio_t * zio_walk_parents(zio_t *cio, zio_link_t **zl) { list_t *pl = &cio->io_parent_list; *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); if (*zl == NULL) return (NULL); ASSERT((*zl)->zl_child == cio); return ((*zl)->zl_parent); } zio_t * zio_walk_children(zio_t *pio, zio_link_t **zl) { list_t *cl = &pio->io_child_list; ASSERT(MUTEX_HELD(&pio->io_lock)); *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); if (*zl == NULL) return (NULL); ASSERT((*zl)->zl_parent == pio); return ((*zl)->zl_child); } zio_t * zio_unique_parent(zio_t *cio) { zio_link_t *zl = NULL; zio_t *pio = zio_walk_parents(cio, &zl); VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); return (pio); } void zio_add_child(zio_t *pio, zio_t *cio) { zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); /* * Logical I/Os can have logical, gang, or vdev children. * Gang I/Os can have gang or vdev children. * Vdev I/Os can only have vdev children. * The following ASSERT captures all of these constraints. */ ASSERT3S(cio->io_child_type, <=, pio->io_child_type); zl->zl_parent = pio; zl->zl_child = cio; mutex_enter(&pio->io_lock); mutex_enter(&cio->io_lock); ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); for (int w = 0; w < ZIO_WAIT_TYPES; w++) pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; list_insert_head(&pio->io_child_list, zl); list_insert_head(&cio->io_parent_list, zl); pio->io_child_count++; cio->io_parent_count++; mutex_exit(&cio->io_lock); mutex_exit(&pio->io_lock); } static void zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) { ASSERT(zl->zl_parent == pio); ASSERT(zl->zl_child == cio); mutex_enter(&pio->io_lock); mutex_enter(&cio->io_lock); list_remove(&pio->io_child_list, zl); list_remove(&cio->io_parent_list, zl); pio->io_child_count--; cio->io_parent_count--; mutex_exit(&cio->io_lock); mutex_exit(&pio->io_lock); kmem_cache_free(zio_link_cache, zl); } static boolean_t zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) { boolean_t waiting = B_FALSE; mutex_enter(&zio->io_lock); ASSERT(zio->io_stall == NULL); for (int c = 0; c < ZIO_CHILD_TYPES; c++) { if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) continue; uint64_t *countp = &zio->io_children[c][wait]; if (*countp != 0) { zio->io_stage >>= 1; ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); zio->io_stall = countp; waiting = B_TRUE; break; } } mutex_exit(&zio->io_lock); return (waiting); } __attribute__((always_inline)) static inline void zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait, zio_t **next_to_executep) { uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; int *errorp = &pio->io_child_error[zio->io_child_type]; mutex_enter(&pio->io_lock); if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) *errorp = zio_worst_error(*errorp, zio->io_error); pio->io_reexecute |= zio->io_reexecute; ASSERT3U(*countp, >, 0); (*countp)--; if (*countp == 0 && pio->io_stall == countp) { zio_taskq_type_t type = pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : ZIO_TASKQ_INTERRUPT; pio->io_stall = NULL; mutex_exit(&pio->io_lock); /* * If we can tell the caller to execute this parent next, do * so. Otherwise dispatch the parent zio as its own task. * * Having the caller execute the parent when possible reduces * locking on the zio taskq's, reduces context switch * overhead, and has no recursion penalty. Note that one * read from disk typically causes at least 3 zio's: a * zio_null(), the logical zio_read(), and then a physical * zio. When the physical ZIO completes, we are able to call * zio_done() on all 3 of these zio's from one invocation of * zio_execute() by returning the parent back to * zio_execute(). Since the parent isn't executed until this * thread returns back to zio_execute(), the caller should do * so promptly. * * In other cases, dispatching the parent prevents * overflowing the stack when we have deeply nested * parent-child relationships, as we do with the "mega zio" * of writes for spa_sync(), and the chain of ZIL blocks. */ if (next_to_executep != NULL && *next_to_executep == NULL) { *next_to_executep = pio; } else { zio_taskq_dispatch(pio, type, B_FALSE); } } else { mutex_exit(&pio->io_lock); } } static void zio_inherit_child_errors(zio_t *zio, enum zio_child c) { if (zio->io_child_error[c] != 0 && zio->io_error == 0) zio->io_error = zio->io_child_error[c]; } int zio_bookmark_compare(const void *x1, const void *x2) { const zio_t *z1 = x1; const zio_t *z2 = x2; if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) return (-1); if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) return (1); if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) return (-1); if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) return (1); if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) return (-1); if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) return (1); if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) return (-1); if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) return (1); if (z1 < z2) return (-1); if (z1 > z2) return (1); return (0); } /* * ========================================================================== * Create the various types of I/O (read, write, free, etc) * ========================================================================== */ static zio_t * zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, void *private, zio_type_t type, zio_priority_t priority, enum zio_flag flags, vdev_t *vd, uint64_t offset, const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline) { zio_t *zio; IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); ASSERT(vd || stage == ZIO_STAGE_OPEN); IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); zio = kmem_cache_alloc(zio_cache, KM_SLEEP); bzero(zio, sizeof (zio_t)); mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL); cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); list_create(&zio->io_parent_list, sizeof (zio_link_t), offsetof(zio_link_t, zl_parent_node)); list_create(&zio->io_child_list, sizeof (zio_link_t), offsetof(zio_link_t, zl_child_node)); metaslab_trace_init(&zio->io_alloc_list); if (vd != NULL) zio->io_child_type = ZIO_CHILD_VDEV; else if (flags & ZIO_FLAG_GANG_CHILD) zio->io_child_type = ZIO_CHILD_GANG; else if (flags & ZIO_FLAG_DDT_CHILD) zio->io_child_type = ZIO_CHILD_DDT; else zio->io_child_type = ZIO_CHILD_LOGICAL; if (bp != NULL) { zio->io_bp = (blkptr_t *)bp; zio->io_bp_copy = *bp; zio->io_bp_orig = *bp; if (type != ZIO_TYPE_WRITE || zio->io_child_type == ZIO_CHILD_DDT) zio->io_bp = &zio->io_bp_copy; /* so caller can free */ if (zio->io_child_type == ZIO_CHILD_LOGICAL) zio->io_logical = zio; if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) pipeline |= ZIO_GANG_STAGES; } zio->io_spa = spa; zio->io_txg = txg; zio->io_done = done; zio->io_private = private; zio->io_type = type; zio->io_priority = priority; zio->io_vd = vd; zio->io_offset = offset; zio->io_orig_abd = zio->io_abd = data; zio->io_orig_size = zio->io_size = psize; zio->io_lsize = lsize; zio->io_orig_flags = zio->io_flags = flags; zio->io_orig_stage = zio->io_stage = stage; zio->io_orig_pipeline = zio->io_pipeline = pipeline; zio->io_pipeline_trace = ZIO_STAGE_OPEN; zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); if (zb != NULL) zio->io_bookmark = *zb; if (pio != NULL) { if (zio->io_metaslab_class == NULL) zio->io_metaslab_class = pio->io_metaslab_class; if (zio->io_logical == NULL) zio->io_logical = pio->io_logical; if (zio->io_child_type == ZIO_CHILD_GANG) zio->io_gang_leader = pio->io_gang_leader; zio_add_child(pio, zio); } taskq_init_ent(&zio->io_tqent); return (zio); } static void zio_destroy(zio_t *zio) { metaslab_trace_fini(&zio->io_alloc_list); list_destroy(&zio->io_parent_list); list_destroy(&zio->io_child_list); mutex_destroy(&zio->io_lock); cv_destroy(&zio->io_cv); kmem_cache_free(zio_cache, zio); } zio_t * zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, void *private, enum zio_flag flags) { zio_t *zio; zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); return (zio); } zio_t * zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags) { return (zio_null(NULL, spa, NULL, done, private, flags)); } static void zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held) { if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { zfs_panic_recover("blkptr at %p has invalid TYPE %llu", bp, (longlong_t)BP_GET_TYPE(bp)); } if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS || BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) { zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu", bp, (longlong_t)BP_GET_CHECKSUM(bp)); } if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS || BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) { zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu", bp, (longlong_t)BP_GET_COMPRESS(bp)); } if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { zfs_panic_recover("blkptr at %p has invalid LSIZE %llu", bp, (longlong_t)BP_GET_LSIZE(bp)); } if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { zfs_panic_recover("blkptr at %p has invalid PSIZE %llu", bp, (longlong_t)BP_GET_PSIZE(bp)); } if (BP_IS_EMBEDDED(bp)) { if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) { zfs_panic_recover("blkptr at %p has invalid ETYPE %llu", bp, (longlong_t)BPE_GET_ETYPE(bp)); } } /* * Do not verify individual DVAs if the config is not trusted. This * will be done once the zio is executed in vdev_mirror_map_alloc. */ if (!spa->spa_trust_config) return; if (!config_held) spa_config_enter(spa, SCL_VDEV, bp, RW_READER); else ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER)); /* * Pool-specific checks. * * Note: it would be nice to verify that the blk_birth and * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() * allows the birth time of log blocks (and dmu_sync()-ed blocks * that are in the log) to be arbitrarily large. */ for (int i = 0; i < BP_GET_NDVAS(bp); i++) { uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]); if (vdevid >= spa->spa_root_vdev->vdev_children) { zfs_panic_recover("blkptr at %p DVA %u has invalid " "VDEV %llu", bp, i, (longlong_t)vdevid); continue; } vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; if (vd == NULL) { zfs_panic_recover("blkptr at %p DVA %u has invalid " "VDEV %llu", bp, i, (longlong_t)vdevid); continue; } if (vd->vdev_ops == &vdev_hole_ops) { zfs_panic_recover("blkptr at %p DVA %u has hole " "VDEV %llu", bp, i, (longlong_t)vdevid); continue; } if (vd->vdev_ops == &vdev_missing_ops) { /* * "missing" vdevs are valid during import, but we * don't have their detailed info (e.g. asize), so * we can't perform any more checks on them. */ continue; } uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]); if (BP_IS_GANG(bp)) asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); if (offset + asize > vd->vdev_asize) { zfs_panic_recover("blkptr at %p DVA %u has invalid " "OFFSET %llu", bp, i, (longlong_t)offset); } } if (!config_held) spa_config_exit(spa, SCL_VDEV, bp); } boolean_t zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) { uint64_t vdevid = DVA_GET_VDEV(dva); if (vdevid >= spa->spa_root_vdev->vdev_children) return (B_FALSE); vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; if (vd == NULL) return (B_FALSE); if (vd->vdev_ops == &vdev_hole_ops) return (B_FALSE); if (vd->vdev_ops == &vdev_missing_ops) { return (B_FALSE); } uint64_t offset = DVA_GET_OFFSET(dva); uint64_t asize = DVA_GET_ASIZE(dva); if (BP_IS_GANG(bp)) asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); if (offset + asize > vd->vdev_asize) return (B_FALSE); return (B_TRUE); } zio_t * zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, abd_t *data, uint64_t size, zio_done_func_t *done, void *private, zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) { zio_t *zio; zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER); zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, data, size, size, done, private, ZIO_TYPE_READ, priority, flags, NULL, 0, zb, ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); return (zio); } zio_t * zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, zio_done_func_t *ready, zio_done_func_t *children_ready, zio_done_func_t *physdone, zio_done_func_t *done, void *private, zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb) { zio_t *zio; ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && zp->zp_compress >= ZIO_COMPRESS_OFF && zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && DMU_OT_IS_VALID(zp->zp_type) && zp->zp_level < 32 && zp->zp_copies > 0 && zp->zp_copies <= spa_max_replication(spa)); zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); zio->io_ready = ready; zio->io_children_ready = children_ready; zio->io_physdone = physdone; zio->io_prop = *zp; /* * Data can be NULL if we are going to call zio_write_override() to * provide the already-allocated BP. But we may need the data to * verify a dedup hit (if requested). In this case, don't try to * dedup (just take the already-allocated BP verbatim). Encrypted * dedup blocks need data as well so we also disable dedup in this * case. */ if (data == NULL && (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; } return (zio); } zio_t * zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, uint64_t size, zio_done_func_t *done, void *private, zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb) { zio_t *zio; zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); return (zio); } void zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite) { ASSERT(zio->io_type == ZIO_TYPE_WRITE); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(zio->io_stage == ZIO_STAGE_OPEN); ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); /* * We must reset the io_prop to match the values that existed * when the bp was first written by dmu_sync() keeping in mind * that nopwrite and dedup are mutually exclusive. */ zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; zio->io_prop.zp_nopwrite = nopwrite; zio->io_prop.zp_copies = copies; zio->io_bp_override = bp; } void zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) { zfs_blkptr_verify(spa, bp, B_FALSE); /* * The check for EMBEDDED is a performance optimization. We * process the free here (by ignoring it) rather than * putting it on the list and then processing it in zio_free_sync(). */ if (BP_IS_EMBEDDED(bp)) return; metaslab_check_free(spa, bp); /* * Frees that are for the currently-syncing txg, are not going to be * deferred, and which will not need to do a read (i.e. not GANG or * DEDUP), can be processed immediately. Otherwise, put them on the * in-memory list for later processing. * * Note that we only defer frees after zfs_sync_pass_deferred_free * when the log space map feature is disabled. [see relevant comment * in spa_sync_iterate_to_convergence()] */ if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) || txg != spa->spa_syncing_txg || (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) { bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); } else { VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0))); } } zio_t * zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, enum zio_flag flags) { zio_t *zio; enum zio_stage stage = ZIO_FREE_PIPELINE; ASSERT(!BP_IS_HOLE(bp)); ASSERT(spa_syncing_txg(spa) == txg); if (BP_IS_EMBEDDED(bp)) return (zio_null(pio, spa, NULL, NULL, NULL, 0)); metaslab_check_free(spa, bp); arc_freed(spa, bp); dsl_scan_freed(spa, bp); /* * GANG and DEDUP blocks can induce a read (for the gang block header, * or the DDT), so issue them asynchronously so that this thread is * not tied up. */ if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) stage |= ZIO_STAGE_ISSUE_ASYNC; zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage); return (zio); } zio_t * zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, zio_done_func_t *done, void *private, enum zio_flag flags) { zio_t *zio; zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER); if (BP_IS_EMBEDDED(bp)) return (zio_null(pio, spa, NULL, NULL, NULL, 0)); /* * A claim is an allocation of a specific block. Claims are needed * to support immediate writes in the intent log. The issue is that * immediate writes contain committed data, but in a txg that was * *not* committed. Upon opening the pool after an unclean shutdown, * the intent log claims all blocks that contain immediate write data * so that the SPA knows they're in use. * * All claims *must* be resolved in the first txg -- before the SPA * starts allocating blocks -- so that nothing is allocated twice. * If txg == 0 we just verify that the block is claimable. */ ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_min_claim_txg(spa)); ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */ zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); ASSERT0(zio->io_queued_timestamp); return (zio); } zio_t * zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, zio_done_func_t *done, void *private, enum zio_flag flags) { zio_t *zio; int c; if (vd->vdev_children == 0) { zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); zio->io_cmd = cmd; } else { zio = zio_null(pio, spa, NULL, NULL, NULL, flags); for (c = 0; c < vd->vdev_children; c++) zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, done, private, flags)); } return (zio); } zio_t * zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, zio_done_func_t *done, void *private, zio_priority_t priority, enum zio_flag flags, enum trim_flag trim_flags) { zio_t *zio; ASSERT0(vd->vdev_children); ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); ASSERT3U(size, !=, 0); zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); zio->io_trim_flags = trim_flags; return (zio); } zio_t * zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, abd_t *data, int checksum, zio_done_func_t *done, void *private, zio_priority_t priority, enum zio_flag flags, boolean_t labels) { zio_t *zio; ASSERT(vd->vdev_children == 0); ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); ASSERT3U(offset + size, <=, vd->vdev_psize); zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); zio->io_prop.zp_checksum = checksum; return (zio); } zio_t * zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, abd_t *data, int checksum, zio_done_func_t *done, void *private, zio_priority_t priority, enum zio_flag flags, boolean_t labels) { zio_t *zio; ASSERT(vd->vdev_children == 0); ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); ASSERT3U(offset + size, <=, vd->vdev_psize); zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); zio->io_prop.zp_checksum = checksum; if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { /* * zec checksums are necessarily destructive -- they modify * the end of the write buffer to hold the verifier/checksum. * Therefore, we must make a local copy in case the data is * being written to multiple places in parallel. */ abd_t *wbuf = abd_alloc_sametype(data, size); abd_copy(wbuf, data, size); zio_push_transform(zio, wbuf, size, size, NULL); } return (zio); } /* * Create a child I/O to do some work for us. */ zio_t * zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, int type, zio_priority_t priority, enum zio_flag flags, zio_done_func_t *done, void *private) { enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; zio_t *zio; /* * vdev child I/Os do not propagate their error to the parent. * Therefore, for correct operation the caller *must* check for * and handle the error in the child i/o's done callback. * The only exceptions are i/os that we don't care about * (OPTIONAL or REPAIR). */ ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || done != NULL); if (type == ZIO_TYPE_READ && bp != NULL) { /* * If we have the bp, then the child should perform the * checksum and the parent need not. This pushes error * detection as close to the leaves as possible and * eliminates redundant checksums in the interior nodes. */ pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; } if (vd->vdev_ops->vdev_op_leaf) { ASSERT0(vd->vdev_children); offset += VDEV_LABEL_START_SIZE; } flags |= ZIO_VDEV_CHILD_FLAGS(pio); /* * If we've decided to do a repair, the write is not speculative -- * even if the original read was. */ if (flags & ZIO_FLAG_IO_REPAIR) flags &= ~ZIO_FLAG_SPECULATIVE; /* * If we're creating a child I/O that is not associated with a * top-level vdev, then the child zio is not an allocating I/O. * If this is a retried I/O then we ignore it since we will * have already processed the original allocating I/O. */ if (flags & ZIO_FLAG_IO_ALLOCATING && (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { ASSERT(pio->io_metaslab_class != NULL); ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); ASSERT(type == ZIO_TYPE_WRITE); ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || pio->io_child_type == ZIO_CHILD_GANG); flags &= ~ZIO_FLAG_IO_ALLOCATING; } zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, done, private, type, priority, flags, vd, offset, &pio->io_bookmark, ZIO_STAGE_VDEV_IO_START >> 1, pipeline); ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); zio->io_physdone = pio->io_physdone; if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) zio->io_logical->io_phys_children++; return (zio); } zio_t * zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, zio_type_t type, zio_priority_t priority, enum zio_flag flags, zio_done_func_t *done, void *private) { zio_t *zio; ASSERT(vd->vdev_ops->vdev_op_leaf); zio = zio_create(NULL, vd->vdev_spa, 0, NULL, data, size, size, done, private, type, priority, flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, vd, offset, NULL, ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); return (zio); } void zio_flush(zio_t *zio, vdev_t *vd) { zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); } void zio_shrink(zio_t *zio, uint64_t size) { ASSERT3P(zio->io_executor, ==, NULL); ASSERT3U(zio->io_orig_size, ==, zio->io_size); ASSERT3U(size, <=, zio->io_size); /* * We don't shrink for raidz because of problems with the * reconstruction when reading back less than the block size. * Note, BP_IS_RAIDZ() assumes no compression. */ ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); if (!BP_IS_RAIDZ(zio->io_bp)) { /* we are not doing a raw write */ ASSERT3U(zio->io_size, ==, zio->io_lsize); zio->io_orig_size = zio->io_size = zio->io_lsize = size; } } /* * ========================================================================== * Prepare to read and write logical blocks * ========================================================================== */ static zio_t * zio_read_bp_init(zio_t *zio) { blkptr_t *bp = zio->io_bp; uint64_t psize = BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && zio->io_child_type == ZIO_CHILD_LOGICAL && !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), psize, psize, zio_decompress); } if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || BP_HAS_INDIRECT_MAC_CKSUM(bp)) && zio->io_child_type == ZIO_CHILD_LOGICAL) { zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), psize, psize, zio_decrypt); } if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { int psize = BPE_GET_PSIZE(bp); void *data = abd_borrow_buf(zio->io_abd, psize); zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; decode_embedded_bp_compressed(bp, data); abd_return_buf_copy(zio->io_abd, data, psize); } else { ASSERT(!BP_IS_EMBEDDED(bp)); ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); } if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) zio->io_flags |= ZIO_FLAG_DONT_CACHE; if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) zio->io_flags |= ZIO_FLAG_DONT_CACHE; if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) zio->io_pipeline = ZIO_DDT_READ_PIPELINE; return (zio); } static zio_t * zio_write_bp_init(zio_t *zio) { if (!IO_IS_ALLOCATING(zio)) return (zio); ASSERT(zio->io_child_type != ZIO_CHILD_DDT); if (zio->io_bp_override) { blkptr_t *bp = zio->io_bp; zio_prop_t *zp = &zio->io_prop; ASSERT(bp->blk_birth != zio->io_txg); ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0); *bp = *zio->io_bp_override; zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; if (BP_IS_EMBEDDED(bp)) return (zio); /* * If we've been overridden and nopwrite is set then * set the flag accordingly to indicate that a nopwrite * has already occurred. */ if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { ASSERT(!zp->zp_dedup); ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); zio->io_flags |= ZIO_FLAG_NOPWRITE; return (zio); } ASSERT(!zp->zp_nopwrite); if (BP_IS_HOLE(bp) || !zp->zp_dedup) return (zio); ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && !zp->zp_encrypt) { BP_SET_DEDUP(bp, 1); zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; return (zio); } /* * We were unable to handle this as an override bp, treat * it as a regular write I/O. */ zio->io_bp_override = NULL; *bp = zio->io_bp_orig; zio->io_pipeline = zio->io_orig_pipeline; } return (zio); } static zio_t * zio_write_compress(zio_t *zio) { spa_t *spa = zio->io_spa; zio_prop_t *zp = &zio->io_prop; enum zio_compress compress = zp->zp_compress; blkptr_t *bp = zio->io_bp; uint64_t lsize = zio->io_lsize; uint64_t psize = zio->io_size; int pass = 1; /* * If our children haven't all reached the ready stage, * wait for them and then repeat this pipeline stage. */ if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { return (NULL); } if (!IO_IS_ALLOCATING(zio)) return (zio); if (zio->io_children_ready != NULL) { /* * Now that all our children are ready, run the callback * associated with this zio in case it wants to modify the * data to be written. */ ASSERT3U(zp->zp_level, >, 0); zio->io_children_ready(zio); } ASSERT(zio->io_child_type != ZIO_CHILD_DDT); ASSERT(zio->io_bp_override == NULL); if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { /* * We're rewriting an existing block, which means we're * working on behalf of spa_sync(). For spa_sync() to * converge, it must eventually be the case that we don't * have to allocate new blocks. But compression changes * the blocksize, which forces a reallocate, and makes * convergence take longer. Therefore, after the first * few passes, stop compressing to ensure convergence. */ pass = spa_sync_pass(spa); ASSERT(zio->io_txg == spa_syncing_txg(spa)); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(!BP_GET_DEDUP(bp)); if (pass >= zfs_sync_pass_dont_compress) compress = ZIO_COMPRESS_OFF; /* Make sure someone doesn't change their mind on overwrites */ ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), spa_max_replication(spa)) == BP_GET_NDVAS(bp)); } /* If it's a compressed write that is not raw, compress the buffer. */ if (compress != ZIO_COMPRESS_OFF && !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { void *cbuf = zio_buf_alloc(lsize); psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize); if (psize == 0 || psize == lsize) { compress = ZIO_COMPRESS_OFF; zio_buf_free(cbuf, lsize); } else if (!zp->zp_dedup && !zp->zp_encrypt && psize <= BPE_PAYLOAD_SIZE && zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { encode_embedded_bp_compressed(bp, cbuf, compress, lsize, psize); BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); BP_SET_TYPE(bp, zio->io_prop.zp_type); BP_SET_LEVEL(bp, zio->io_prop.zp_level); zio_buf_free(cbuf, lsize); bp->blk_birth = zio->io_txg; zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; ASSERT(spa_feature_is_active(spa, SPA_FEATURE_EMBEDDED_DATA)); return (zio); } else { /* * Round up compressed size up to the ashift * of the smallest-ashift device, and zero the tail. * This ensures that the compressed size of the BP * (and thus compressratio property) are correct, * in that we charge for the padding used to fill out * the last sector. */ ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); size_t rounded = (size_t)P2ROUNDUP(psize, 1ULL << spa->spa_min_ashift); if (rounded >= lsize) { compress = ZIO_COMPRESS_OFF; zio_buf_free(cbuf, lsize); psize = lsize; } else { abd_t *cdata = abd_get_from_buf(cbuf, lsize); abd_take_ownership_of_buf(cdata, B_TRUE); abd_zero_off(cdata, psize, rounded - psize); psize = rounded; zio_push_transform(zio, cdata, psize, lsize, NULL); } } /* * We were unable to handle this as an override bp, treat * it as a regular write I/O. */ zio->io_bp_override = NULL; *bp = zio->io_bp_orig; zio->io_pipeline = zio->io_orig_pipeline; } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && zp->zp_type == DMU_OT_DNODE) { /* * The DMU actually relies on the zio layer's compression * to free metadnode blocks that have had all contained * dnodes freed. As a result, even when doing a raw * receive, we must check whether the block can be compressed * to a hole. */ psize = zio_compress_data(ZIO_COMPRESS_EMPTY, zio->io_abd, NULL, lsize); if (psize == 0) compress = ZIO_COMPRESS_OFF; } else { ASSERT3U(psize, !=, 0); } /* * The final pass of spa_sync() must be all rewrites, but the first * few passes offer a trade-off: allocating blocks defers convergence, * but newly allocated blocks are sequential, so they can be written * to disk faster. Therefore, we allow the first few passes of * spa_sync() to allocate new blocks, but force rewrites after that. * There should only be a handful of blocks after pass 1 in any case. */ if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize && pass >= zfs_sync_pass_rewrite) { VERIFY3U(psize, !=, 0); enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; zio->io_flags |= ZIO_FLAG_IO_REWRITE; } else { BP_ZERO(bp); zio->io_pipeline = ZIO_WRITE_PIPELINE; } if (psize == 0) { if (zio->io_bp_orig.blk_birth != 0 && spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { BP_SET_LSIZE(bp, lsize); BP_SET_TYPE(bp, zp->zp_type); BP_SET_LEVEL(bp, zp->zp_level); BP_SET_BIRTH(bp, zio->io_txg, 0); } zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; } else { ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); BP_SET_LSIZE(bp, lsize); BP_SET_TYPE(bp, zp->zp_type); BP_SET_LEVEL(bp, zp->zp_level); BP_SET_PSIZE(bp, psize); BP_SET_COMPRESS(bp, compress); BP_SET_CHECKSUM(bp, zp->zp_checksum); BP_SET_DEDUP(bp, zp->zp_dedup); BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); if (zp->zp_dedup) { ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); ASSERT(!zp->zp_encrypt || DMU_OT_IS_ENCRYPTED(zp->zp_type)); zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; } if (zp->zp_nopwrite) { ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; } } return (zio); } static zio_t * zio_free_bp_init(zio_t *zio) { blkptr_t *bp = zio->io_bp; if (zio->io_child_type == ZIO_CHILD_LOGICAL) { if (BP_GET_DEDUP(bp)) zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; } ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); return (zio); } /* * ========================================================================== * Execute the I/O pipeline * ========================================================================== */ static void zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) { spa_t *spa = zio->io_spa; zio_type_t t = zio->io_type; int flags = (cutinline ? TQ_FRONT : 0); /* * If we're a config writer or a probe, the normal issue and * interrupt threads may all be blocked waiting for the config lock. * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. */ if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) t = ZIO_TYPE_NULL; /* * A similar issue exists for the L2ARC write thread until L2ARC 2.0. */ if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) t = ZIO_TYPE_NULL; /* * If this is a high priority I/O, then use the high priority taskq if * available. */ if ((zio->io_priority == ZIO_PRIORITY_NOW || zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) && spa->spa_zio_taskq[t][q + 1].stqs_count != 0) q++; ASSERT3U(q, <, ZIO_TASKQ_TYPES); /* * NB: We are assuming that the zio can only be dispatched * to a single taskq at a time. It would be a grievous error * to dispatch the zio to another taskq at the same time. */ ASSERT(taskq_empty_ent(&zio->io_tqent)); spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio, flags, &zio->io_tqent); } static boolean_t zio_taskq_member(zio_t *zio, zio_taskq_type_t q) { kthread_t *executor = zio->io_executor; spa_t *spa = zio->io_spa; for (zio_type_t t = 0; t < ZIO_TYPES; t++) { spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; uint_t i; for (i = 0; i < tqs->stqs_count; i++) { if (taskq_member(tqs->stqs_taskq[i], executor)) return (B_TRUE); } } return (B_FALSE); } static zio_t * zio_issue_async(zio_t *zio) { zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); return (NULL); } void zio_interrupt(zio_t *zio) { zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); } void zio_delay_interrupt(zio_t *zio) { /* * The timeout_generic() function isn't defined in userspace, so * rather than trying to implement the function, the zio delay * functionality has been disabled for userspace builds. */ #ifdef _KERNEL /* * If io_target_timestamp is zero, then no delay has been registered * for this IO, thus jump to the end of this function and "skip" the * delay; issuing it directly to the zio layer. */ if (zio->io_target_timestamp != 0) { hrtime_t now = gethrtime(); if (now >= zio->io_target_timestamp) { /* * This IO has already taken longer than the target * delay to complete, so we don't want to delay it * any longer; we "miss" the delay and issue it * directly to the zio layer. This is likely due to * the target latency being set to a value less than * the underlying hardware can satisfy (e.g. delay * set to 1ms, but the disks take 10ms to complete an * IO request). */ DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, hrtime_t, now); zio_interrupt(zio); } else { taskqid_t tid; hrtime_t diff = zio->io_target_timestamp - now; clock_t expire_at_tick = ddi_get_lbolt() + NSEC_TO_TICK(diff); DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, hrtime_t, now, hrtime_t, diff); if (NSEC_TO_TICK(diff) == 0) { /* Our delay is less than a jiffy - just spin */ zfs_sleep_until(zio->io_target_timestamp); zio_interrupt(zio); } else { /* * Use taskq_dispatch_delay() in the place of * OpenZFS's timeout_generic(). */ tid = taskq_dispatch_delay(system_taskq, (task_func_t *)zio_interrupt, zio, TQ_NOSLEEP, expire_at_tick); if (tid == TASKQID_INVALID) { /* * Couldn't allocate a task. Just * finish the zio without a delay. */ zio_interrupt(zio); } } } return; } #endif DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); zio_interrupt(zio); } static void zio_deadman_impl(zio_t *pio, int ziodepth) { zio_t *cio, *cio_next; zio_link_t *zl = NULL; vdev_t *vd = pio->io_vd; if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) { vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL; zbookmark_phys_t *zb = &pio->io_bookmark; uint64_t delta = gethrtime() - pio->io_timestamp; uint64_t failmode = spa_get_deadman_failmode(pio->io_spa); zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu " "delta=%llu queued=%llu io=%llu " "path=%s last=%llu " "type=%d priority=%d flags=0x%x " "stage=0x%x pipeline=0x%x pipeline-trace=0x%x " "objset=%llu object=%llu level=%llu blkid=%llu " "offset=%llu size=%llu error=%d", ziodepth, pio, pio->io_timestamp, delta, pio->io_delta, pio->io_delay, vd ? vd->vdev_path : "NULL", vq ? vq->vq_io_complete_ts : 0, pio->io_type, pio->io_priority, pio->io_flags, pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace, zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid, pio->io_offset, pio->io_size, pio->io_error); zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN, pio->io_spa, vd, zb, pio, 0, 0); if (failmode == ZIO_FAILURE_MODE_CONTINUE && taskq_empty_ent(&pio->io_tqent)) { zio_interrupt(pio); } } mutex_enter(&pio->io_lock); for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { cio_next = zio_walk_children(pio, &zl); zio_deadman_impl(cio, ziodepth + 1); } mutex_exit(&pio->io_lock); } /* * Log the critical information describing this zio and all of its children * using the zfs_dbgmsg() interface then post deadman event for the ZED. */ void zio_deadman(zio_t *pio, char *tag) { spa_t *spa = pio->io_spa; char *name = spa_name(spa); if (!zfs_deadman_enabled || spa_suspended(spa)) return; zio_deadman_impl(pio, 0); switch (spa_get_deadman_failmode(spa)) { case ZIO_FAILURE_MODE_WAIT: zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name); break; case ZIO_FAILURE_MODE_CONTINUE: zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name); break; case ZIO_FAILURE_MODE_PANIC: fm_panic("%s determined I/O to pool '%s' is hung.", tag, name); break; } } /* * Execute the I/O pipeline until one of the following occurs: * (1) the I/O completes; (2) the pipeline stalls waiting for * dependent child I/Os; (3) the I/O issues, so we're waiting * for an I/O completion interrupt; (4) the I/O is delegated by * vdev-level caching or aggregation; (5) the I/O is deferred * due to vdev-level queueing; (6) the I/O is handed off to * another thread. In all cases, the pipeline stops whenever * there's no CPU work; it never burns a thread in cv_wait_io(). * * There's no locking on io_stage because there's no legitimate way * for multiple threads to be attempting to process the same I/O. */ static zio_pipe_stage_t *zio_pipeline[]; /* * zio_execute() is a wrapper around the static function * __zio_execute() so that we can force __zio_execute() to be * inlined. This reduces stack overhead which is important * because __zio_execute() is called recursively in several zio * code paths. zio_execute() itself cannot be inlined because * it is externally visible. */ void zio_execute(zio_t *zio) { fstrans_cookie_t cookie; cookie = spl_fstrans_mark(); __zio_execute(zio); spl_fstrans_unmark(cookie); } /* * Used to determine if in the current context the stack is sized large * enough to allow zio_execute() to be called recursively. A minimum * stack size of 16K is required to avoid needing to re-dispatch the zio. */ boolean_t zio_execute_stack_check(zio_t *zio) { #if !defined(HAVE_LARGE_STACKS) dsl_pool_t *dp = spa_get_dsl(zio->io_spa); /* Executing in txg_sync_thread() context. */ if (dp && curthread == dp->dp_tx.tx_sync_thread) return (B_TRUE); /* Pool initialization outside of zio_taskq context. */ if (dp && spa_is_initializing(dp->dp_spa) && !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) && !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH)) return (B_TRUE); #endif /* HAVE_LARGE_STACKS */ return (B_FALSE); } __attribute__((always_inline)) static inline void __zio_execute(zio_t *zio) { ASSERT3U(zio->io_queued_timestamp, >, 0); while (zio->io_stage < ZIO_STAGE_DONE) { enum zio_stage pipeline = zio->io_pipeline; enum zio_stage stage = zio->io_stage; zio->io_executor = curthread; ASSERT(!MUTEX_HELD(&zio->io_lock)); ASSERT(ISP2(stage)); ASSERT(zio->io_stall == NULL); do { stage <<= 1; } while ((stage & pipeline) == 0); ASSERT(stage <= ZIO_STAGE_DONE); /* * If we are in interrupt context and this pipeline stage * will grab a config lock that is held across I/O, * or may wait for an I/O that needs an interrupt thread * to complete, issue async to avoid deadlock. * * For VDEV_IO_START, we cut in line so that the io will * be sent to disk promptly. */ if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? zio_requeue_io_start_cut_in_line : B_FALSE; zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); return; } /* * If the current context doesn't have large enough stacks * the zio must be issued asynchronously to prevent overflow. */ if (zio_execute_stack_check(zio)) { boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? zio_requeue_io_start_cut_in_line : B_FALSE; zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); return; } zio->io_stage = stage; zio->io_pipeline_trace |= zio->io_stage; /* * The zio pipeline stage returns the next zio to execute * (typically the same as this one), or NULL if we should * stop. */ zio = zio_pipeline[highbit64(stage) - 1](zio); if (zio == NULL) return; } } /* * ========================================================================== * Initiate I/O, either sync or async * ========================================================================== */ int zio_wait(zio_t *zio) { long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms); int error; ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN); ASSERT3P(zio->io_executor, ==, NULL); zio->io_waiter = curthread; ASSERT0(zio->io_queued_timestamp); zio->io_queued_timestamp = gethrtime(); __zio_execute(zio); mutex_enter(&zio->io_lock); while (zio->io_executor != NULL) { error = cv_timedwait_io(&zio->io_cv, &zio->io_lock, ddi_get_lbolt() + timeout); if (zfs_deadman_enabled && error == -1 && gethrtime() - zio->io_queued_timestamp > spa_deadman_ziotime(zio->io_spa)) { mutex_exit(&zio->io_lock); timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms); zio_deadman(zio, FTAG); mutex_enter(&zio->io_lock); } } mutex_exit(&zio->io_lock); error = zio->io_error; zio_destroy(zio); return (error); } void zio_nowait(zio_t *zio) { ASSERT3P(zio->io_executor, ==, NULL); if (zio->io_child_type == ZIO_CHILD_LOGICAL && zio_unique_parent(zio) == NULL) { zio_t *pio; /* * This is a logical async I/O with no parent to wait for it. * We add it to the spa_async_root_zio "Godfather" I/O which * will ensure they complete prior to unloading the pool. */ spa_t *spa = zio->io_spa; kpreempt_disable(); pio = spa->spa_async_zio_root[CPU_SEQID]; kpreempt_enable(); zio_add_child(pio, zio); } ASSERT0(zio->io_queued_timestamp); zio->io_queued_timestamp = gethrtime(); __zio_execute(zio); } /* * ========================================================================== * Reexecute, cancel, or suspend/resume failed I/O * ========================================================================== */ static void zio_reexecute(zio_t *pio) { zio_t *cio, *cio_next; ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); ASSERT(pio->io_gang_leader == NULL); ASSERT(pio->io_gang_tree == NULL); pio->io_flags = pio->io_orig_flags; pio->io_stage = pio->io_orig_stage; pio->io_pipeline = pio->io_orig_pipeline; pio->io_reexecute = 0; pio->io_flags |= ZIO_FLAG_REEXECUTED; pio->io_pipeline_trace = 0; pio->io_error = 0; for (int w = 0; w < ZIO_WAIT_TYPES; w++) pio->io_state[w] = 0; for (int c = 0; c < ZIO_CHILD_TYPES; c++) pio->io_child_error[c] = 0; if (IO_IS_ALLOCATING(pio)) BP_ZERO(pio->io_bp); /* * As we reexecute pio's children, new children could be created. * New children go to the head of pio's io_child_list, however, * so we will (correctly) not reexecute them. The key is that * the remainder of pio's io_child_list, from 'cio_next' onward, * cannot be affected by any side effects of reexecuting 'cio'. */ zio_link_t *zl = NULL; mutex_enter(&pio->io_lock); for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { cio_next = zio_walk_children(pio, &zl); for (int w = 0; w < ZIO_WAIT_TYPES; w++) pio->io_children[cio->io_child_type][w]++; mutex_exit(&pio->io_lock); zio_reexecute(cio); mutex_enter(&pio->io_lock); } mutex_exit(&pio->io_lock); /* * Now that all children have been reexecuted, execute the parent. * We don't reexecute "The Godfather" I/O here as it's the * responsibility of the caller to wait on it. */ if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { pio->io_queued_timestamp = gethrtime(); __zio_execute(pio); } } void zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) { if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) fm_panic("Pool '%s' has encountered an uncorrectable I/O " "failure and the failure mode property for this pool " "is set to panic.", spa_name(spa)); cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O " "failure and has been suspended.\n", spa_name(spa)); zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, NULL, 0, 0); mutex_enter(&spa->spa_suspend_lock); if (spa->spa_suspend_zio_root == NULL) spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); spa->spa_suspended = reason; if (zio != NULL) { ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); ASSERT(zio != spa->spa_suspend_zio_root); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ASSERT(zio_unique_parent(zio) == NULL); ASSERT(zio->io_stage == ZIO_STAGE_DONE); zio_add_child(spa->spa_suspend_zio_root, zio); } mutex_exit(&spa->spa_suspend_lock); } int zio_resume(spa_t *spa) { zio_t *pio; /* * Reexecute all previously suspended i/o. */ mutex_enter(&spa->spa_suspend_lock); spa->spa_suspended = ZIO_SUSPEND_NONE; cv_broadcast(&spa->spa_suspend_cv); pio = spa->spa_suspend_zio_root; spa->spa_suspend_zio_root = NULL; mutex_exit(&spa->spa_suspend_lock); if (pio == NULL) return (0); zio_reexecute(pio); return (zio_wait(pio)); } void zio_resume_wait(spa_t *spa) { mutex_enter(&spa->spa_suspend_lock); while (spa_suspended(spa)) cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); mutex_exit(&spa->spa_suspend_lock); } /* * ========================================================================== * Gang blocks. * * A gang block is a collection of small blocks that looks to the DMU * like one large block. When zio_dva_allocate() cannot find a block * of the requested size, due to either severe fragmentation or the pool * being nearly full, it calls zio_write_gang_block() to construct the * block from smaller fragments. * * A gang block consists of a gang header (zio_gbh_phys_t) and up to * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like * an indirect block: it's an array of block pointers. It consumes * only one sector and hence is allocatable regardless of fragmentation. * The gang header's bps point to its gang members, which hold the data. * * Gang blocks are self-checksumming, using the bp's * as the verifier to ensure uniqueness of the SHA256 checksum. * Critically, the gang block bp's blk_cksum is the checksum of the data, * not the gang header. This ensures that data block signatures (needed for * deduplication) are independent of how the block is physically stored. * * Gang blocks can be nested: a gang member may itself be a gang block. * Thus every gang block is a tree in which root and all interior nodes are * gang headers, and the leaves are normal blocks that contain user data. * The root of the gang tree is called the gang leader. * * To perform any operation (read, rewrite, free, claim) on a gang block, * zio_gang_assemble() first assembles the gang tree (minus data leaves) * in the io_gang_tree field of the original logical i/o by recursively * reading the gang leader and all gang headers below it. This yields * an in-core tree containing the contents of every gang header and the * bps for every constituent of the gang block. * * With the gang tree now assembled, zio_gang_issue() just walks the gang tree * and invokes a callback on each bp. To free a gang block, zio_gang_issue() * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). * zio_read_gang() is a wrapper around zio_read() that omits reading gang * headers, since we already have those in io_gang_tree. zio_rewrite_gang() * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() * of the gang header plus zio_checksum_compute() of the data to update the * gang header's blk_cksum as described above. * * The two-phase assemble/issue model solves the problem of partial failure -- * what if you'd freed part of a gang block but then couldn't read the * gang header for another part? Assembling the entire gang tree first * ensures that all the necessary gang header I/O has succeeded before * starting the actual work of free, claim, or write. Once the gang tree * is assembled, free and claim are in-memory operations that cannot fail. * * In the event that a gang write fails, zio_dva_unallocate() walks the * gang tree to immediately free (i.e. insert back into the space map) * everything we've allocated. This ensures that we don't get ENOSPC * errors during repeated suspend/resume cycles due to a flaky device. * * Gang rewrites only happen during sync-to-convergence. If we can't assemble * the gang tree, we won't modify the block, so we can safely defer the free * (knowing that the block is still intact). If we *can* assemble the gang * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free * each constituent bp and we can allocate a new block on the next sync pass. * * In all cases, the gang tree allows complete recovery from partial failure. * ========================================================================== */ static void zio_gang_issue_func_done(zio_t *zio) { abd_put(zio->io_abd); } static zio_t * zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, uint64_t offset) { if (gn != NULL) return (pio); return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), BP_GET_PSIZE(bp), zio_gang_issue_func_done, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark)); } static zio_t * zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, uint64_t offset) { zio_t *zio; if (gn != NULL) { abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); /* * As we rewrite each gang header, the pipeline will compute * a new gang block header checksum for it; but no one will * compute a new data checksum, so we do that here. The one * exception is the gang leader: the pipeline already computed * its data checksum because that stage precedes gang assembly. * (Presently, nothing actually uses interior data checksums; * this is just good hygiene.) */ if (gn != pio->io_gang_leader->io_gang_tree) { abd_t *buf = abd_get_offset(data, offset); zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), buf, BP_GET_PSIZE(bp)); abd_put(buf); } /* * If we are here to damage data for testing purposes, * leave the GBH alone so that we can detect the damage. */ if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; } else { zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, abd_get_offset(data, offset), BP_GET_PSIZE(bp), zio_gang_issue_func_done, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); } return (zio); } /* ARGSUSED */ static zio_t * zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, uint64_t offset) { return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, ZIO_GANG_CHILD_FLAGS(pio))); } /* ARGSUSED */ static zio_t * zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, uint64_t offset) { return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); } static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { NULL, zio_read_gang, zio_rewrite_gang, zio_free_gang, zio_claim_gang, NULL }; static void zio_gang_tree_assemble_done(zio_t *zio); static zio_gang_node_t * zio_gang_node_alloc(zio_gang_node_t **gnpp) { zio_gang_node_t *gn; ASSERT(*gnpp == NULL); gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); *gnpp = gn; return (gn); } static void zio_gang_node_free(zio_gang_node_t **gnpp) { zio_gang_node_t *gn = *gnpp; for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) ASSERT(gn->gn_child[g] == NULL); zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); kmem_free(gn, sizeof (*gn)); *gnpp = NULL; } static void zio_gang_tree_free(zio_gang_node_t **gnpp) { zio_gang_node_t *gn = *gnpp; if (gn == NULL) return; for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) zio_gang_tree_free(&gn->gn_child[g]); zio_gang_node_free(gnpp); } static void zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) { zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); ASSERT(gio->io_gang_leader == gio); ASSERT(BP_IS_GANG(bp)); zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn, gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); } static void zio_gang_tree_assemble_done(zio_t *zio) { zio_t *gio = zio->io_gang_leader; zio_gang_node_t *gn = zio->io_private; blkptr_t *bp = zio->io_bp; ASSERT(gio == zio_unique_parent(zio)); ASSERT(zio->io_child_count == 0); if (zio->io_error) return; /* this ABD was created from a linear buf in zio_gang_tree_assemble */ if (BP_SHOULD_BYTESWAP(bp)) byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); abd_put(zio->io_abd); for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; if (!BP_IS_GANG(gbp)) continue; zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); } } static void zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, uint64_t offset) { zio_t *gio = pio->io_gang_leader; zio_t *zio; ASSERT(BP_IS_GANG(bp) == !!gn); ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); /* * If you're a gang header, your data is in gn->gn_gbh. * If you're a gang member, your data is in 'data' and gn == NULL. */ zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); if (gn != NULL) { ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; if (BP_IS_HOLE(gbp)) continue; zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, offset); offset += BP_GET_PSIZE(gbp); } } if (gn == gio->io_gang_tree) ASSERT3U(gio->io_size, ==, offset); if (zio != pio) zio_nowait(zio); } static zio_t * zio_gang_assemble(zio_t *zio) { blkptr_t *bp = zio->io_bp; ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); ASSERT(zio->io_child_type > ZIO_CHILD_GANG); zio->io_gang_leader = zio; zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); return (zio); } static zio_t * zio_gang_issue(zio_t *zio) { blkptr_t *bp = zio->io_bp; if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { return (NULL); } ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); ASSERT(zio->io_child_type > ZIO_CHILD_GANG); if (zio->io_child_error[ZIO_CHILD_GANG] == 0) zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 0); else zio_gang_tree_free(&zio->io_gang_tree); zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; return (zio); } static void zio_write_gang_member_ready(zio_t *zio) { zio_t *pio = zio_unique_parent(zio); dva_t *cdva = zio->io_bp->blk_dva; dva_t *pdva = pio->io_bp->blk_dva; uint64_t asize; zio_t *gio __maybe_unused = zio->io_gang_leader; if (BP_IS_HOLE(zio->io_bp)) return; ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); ASSERT(zio->io_child_type == ZIO_CHILD_GANG); ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); mutex_enter(&pio->io_lock); for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { ASSERT(DVA_GET_GANG(&pdva[d])); asize = DVA_GET_ASIZE(&pdva[d]); asize += DVA_GET_ASIZE(&cdva[d]); DVA_SET_ASIZE(&pdva[d], asize); } mutex_exit(&pio->io_lock); } static void zio_write_gang_done(zio_t *zio) { /* * The io_abd field will be NULL for a zio with no data. The io_flags * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't * check for it here as it is cleared in zio_ready. */ if (zio->io_abd != NULL) abd_put(zio->io_abd); } static zio_t * zio_write_gang_block(zio_t *pio) { spa_t *spa = pio->io_spa; metaslab_class_t *mc = spa_normal_class(spa); blkptr_t *bp = pio->io_bp; zio_t *gio = pio->io_gang_leader; zio_t *zio; zio_gang_node_t *gn, **gnpp; zio_gbh_phys_t *gbh; abd_t *gbh_abd; uint64_t txg = pio->io_txg; uint64_t resid = pio->io_size; uint64_t lsize; int copies = gio->io_prop.zp_copies; int gbh_copies; zio_prop_t zp; int error; boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); /* * encrypted blocks need DVA[2] free so encrypted gang headers can't * have a third copy. */ gbh_copies = MIN(copies + 1, spa_max_replication(spa)); if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP) gbh_copies = SPA_DVAS_PER_BP - 1; int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); ASSERT(has_data); flags |= METASLAB_ASYNC_ALLOC; VERIFY(zfs_refcount_held(&mc->mc_alloc_slots[pio->io_allocator], pio)); /* * The logical zio has already placed a reservation for * 'copies' allocation slots but gang blocks may require * additional copies. These additional copies * (i.e. gbh_copies - copies) are guaranteed to succeed * since metaslab_class_throttle_reserve() always allows * additional reservations for gang blocks. */ VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, pio->io_allocator, pio, flags)); } error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, &pio->io_alloc_list, pio, pio->io_allocator); if (error) { if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); ASSERT(has_data); /* * If we failed to allocate the gang block header then * we remove any additional allocation reservations that * we placed here. The original reservation will * be removed when the logical I/O goes to the ready * stage. */ metaslab_class_throttle_unreserve(mc, gbh_copies - copies, pio->io_allocator, pio); } pio->io_error = error; return (pio); } if (pio == gio) { gnpp = &gio->io_gang_tree; } else { gnpp = pio->io_private; ASSERT(pio->io_ready == zio_write_gang_member_ready); } gn = zio_gang_node_alloc(gnpp); gbh = gn->gn_gbh; bzero(gbh, SPA_GANGBLOCKSIZE); gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); /* * Create the gang header. */ zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, zio_write_gang_done, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); /* * Create and nowait the gang children. */ for (int g = 0; resid != 0; resid -= lsize, g++) { lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), SPA_MINBLOCKSIZE); ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); zp.zp_checksum = gio->io_prop.zp_checksum; zp.zp_compress = ZIO_COMPRESS_OFF; zp.zp_type = DMU_OT_NONE; zp.zp_level = 0; zp.zp_copies = gio->io_prop.zp_copies; zp.zp_dedup = B_FALSE; zp.zp_dedup_verify = B_FALSE; zp.zp_nopwrite = B_FALSE; zp.zp_encrypt = gio->io_prop.zp_encrypt; zp.zp_byteorder = gio->io_prop.zp_byteorder; bzero(zp.zp_salt, ZIO_DATA_SALT_LEN); bzero(zp.zp_iv, ZIO_DATA_IV_LEN); bzero(zp.zp_mac, ZIO_DATA_MAC_LEN); zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], has_data ? abd_get_offset(pio->io_abd, pio->io_size - resid) : NULL, lsize, lsize, &zp, zio_write_gang_member_ready, NULL, NULL, zio_write_gang_done, &gn->gn_child[g], pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); ASSERT(has_data); /* * Gang children won't throttle but we should * account for their work, so reserve an allocation * slot for them here. */ VERIFY(metaslab_class_throttle_reserve(mc, zp.zp_copies, cio->io_allocator, cio, flags)); } zio_nowait(cio); } /* * Set pio's pipeline to just wait for zio to finish. */ pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; /* * We didn't allocate this bp, so make sure it doesn't get unmarked. */ pio->io_flags &= ~ZIO_FLAG_FASTWRITE; zio_nowait(zio); return (pio); } /* * The zio_nop_write stage in the pipeline determines if allocating a * new bp is necessary. The nopwrite feature can handle writes in * either syncing or open context (i.e. zil writes) and as a result is * mutually exclusive with dedup. * * By leveraging a cryptographically secure checksum, such as SHA256, we * can compare the checksums of the new data and the old to determine if * allocating a new block is required. Note that our requirements for * cryptographic strength are fairly weak: there can't be any accidental * hash collisions, but we don't need to be secure against intentional * (malicious) collisions. To trigger a nopwrite, you have to be able * to write the file to begin with, and triggering an incorrect (hash * collision) nopwrite is no worse than simply writing to the file. * That said, there are no known attacks against the checksum algorithms * used for nopwrite, assuming that the salt and the checksums * themselves remain secret. */ static zio_t * zio_nop_write(zio_t *zio) { blkptr_t *bp = zio->io_bp; blkptr_t *bp_orig = &zio->io_bp_orig; zio_prop_t *zp = &zio->io_prop; ASSERT(BP_GET_LEVEL(bp) == 0); ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); ASSERT(zp->zp_nopwrite); ASSERT(!zp->zp_dedup); ASSERT(zio->io_bp_override == NULL); ASSERT(IO_IS_ALLOCATING(zio)); /* * Check to see if the original bp and the new bp have matching * characteristics (i.e. same checksum, compression algorithms, etc). * If they don't then just continue with the pipeline which will * allocate a new bp. */ if (BP_IS_HOLE(bp_orig) || !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & ZCHECKSUM_FLAG_NOPWRITE) || BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || zp->zp_copies != BP_GET_NDVAS(bp_orig)) return (zio); /* * If the checksums match then reset the pipeline so that we * avoid allocating a new bp and issuing any I/O. */ if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & ZCHECKSUM_FLAG_NOPWRITE); ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop, sizeof (uint64_t)) == 0); /* * If we're overwriting a block that is currently on an * indirect vdev, then ignore the nopwrite request and * allow a new block to be allocated on a concrete vdev. */ spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER); vdev_t *tvd = vdev_lookup_top(zio->io_spa, DVA_GET_VDEV(&bp->blk_dva[0])); if (tvd->vdev_ops == &vdev_indirect_ops) { spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); return (zio); } spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); *bp = *bp_orig; zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; zio->io_flags |= ZIO_FLAG_NOPWRITE; } return (zio); } /* * ========================================================================== * Dedup * ========================================================================== */ static void zio_ddt_child_read_done(zio_t *zio) { blkptr_t *bp = zio->io_bp; ddt_entry_t *dde = zio->io_private; ddt_phys_t *ddp; zio_t *pio = zio_unique_parent(zio); mutex_enter(&pio->io_lock); ddp = ddt_phys_select(dde, bp); if (zio->io_error == 0) ddt_phys_clear(ddp); /* this ddp doesn't need repair */ if (zio->io_error == 0 && dde->dde_repair_abd == NULL) dde->dde_repair_abd = zio->io_abd; else abd_free(zio->io_abd); mutex_exit(&pio->io_lock); } static zio_t * zio_ddt_read_start(zio_t *zio) { blkptr_t *bp = zio->io_bp; ASSERT(BP_GET_DEDUP(bp)); ASSERT(BP_GET_PSIZE(bp) == zio->io_size); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); if (zio->io_child_error[ZIO_CHILD_DDT]) { ddt_t *ddt = ddt_select(zio->io_spa, bp); ddt_entry_t *dde = ddt_repair_start(ddt, bp); ddt_phys_t *ddp = dde->dde_phys; ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); blkptr_t blk; ASSERT(zio->io_vsd == NULL); zio->io_vsd = dde; if (ddp_self == NULL) return (zio); for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) continue; ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, &blk); zio_nowait(zio_read(zio, zio->io_spa, &blk, abd_alloc_for_io(zio->io_size, B_TRUE), zio->io_size, zio_ddt_child_read_done, dde, zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); } return (zio); } zio_nowait(zio_read(zio, zio->io_spa, bp, zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); return (zio); } static zio_t * zio_ddt_read_done(zio_t *zio) { blkptr_t *bp = zio->io_bp; if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { return (NULL); } ASSERT(BP_GET_DEDUP(bp)); ASSERT(BP_GET_PSIZE(bp) == zio->io_size); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); if (zio->io_child_error[ZIO_CHILD_DDT]) { ddt_t *ddt = ddt_select(zio->io_spa, bp); ddt_entry_t *dde = zio->io_vsd; if (ddt == NULL) { ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); return (zio); } if (dde == NULL) { zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); return (NULL); } if (dde->dde_repair_abd != NULL) { abd_copy(zio->io_abd, dde->dde_repair_abd, zio->io_size); zio->io_child_error[ZIO_CHILD_DDT] = 0; } ddt_repair_done(ddt, dde); zio->io_vsd = NULL; } ASSERT(zio->io_vsd == NULL); return (zio); } static boolean_t zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) { spa_t *spa = zio->io_spa; boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); ASSERT(!(zio->io_bp_override && do_raw)); /* * Note: we compare the original data, not the transformed data, * because when zio->io_bp is an override bp, we will not have * pushed the I/O transforms. That's an important optimization * because otherwise we'd compress/encrypt all dmu_sync() data twice. * However, we should never get a raw, override zio so in these * cases we can compare the io_abd directly. This is useful because * it allows us to do dedup verification even if we don't have access * to the original data (for instance, if the encryption keys aren't * loaded). */ for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { zio_t *lio = dde->dde_lead_zio[p]; if (lio != NULL && do_raw) { return (lio->io_size != zio->io_size || abd_cmp(zio->io_abd, lio->io_abd) != 0); } else if (lio != NULL) { return (lio->io_orig_size != zio->io_orig_size || abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0); } } for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { ddt_phys_t *ddp = &dde->dde_phys[p]; if (ddp->ddp_phys_birth != 0 && do_raw) { blkptr_t blk = *zio->io_bp; uint64_t psize; abd_t *tmpabd; int error; ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); psize = BP_GET_PSIZE(&blk); if (psize != zio->io_size) return (B_TRUE); ddt_exit(ddt); tmpabd = abd_alloc_for_io(psize, B_TRUE); error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_RAW, &zio->io_bookmark)); if (error == 0) { if (abd_cmp(tmpabd, zio->io_abd) != 0) error = SET_ERROR(ENOENT); } abd_free(tmpabd); ddt_enter(ddt); return (error != 0); } else if (ddp->ddp_phys_birth != 0) { arc_buf_t *abuf = NULL; arc_flags_t aflags = ARC_FLAG_WAIT; blkptr_t blk = *zio->io_bp; int error; ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); if (BP_GET_LSIZE(&blk) != zio->io_orig_size) return (B_TRUE); ddt_exit(ddt); error = arc_read(NULL, spa, &blk, arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &aflags, &zio->io_bookmark); if (error == 0) { if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, zio->io_orig_size) != 0) error = SET_ERROR(ENOENT); arc_buf_destroy(abuf, &abuf); } ddt_enter(ddt); return (error != 0); } } return (B_FALSE); } static void zio_ddt_child_write_ready(zio_t *zio) { int p = zio->io_prop.zp_copies; ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); ddt_entry_t *dde = zio->io_private; ddt_phys_t *ddp = &dde->dde_phys[p]; zio_t *pio; if (zio->io_error) return; ddt_enter(ddt); ASSERT(dde->dde_lead_zio[p] == zio); ddt_phys_fill(ddp, zio->io_bp); zio_link_t *zl = NULL; while ((pio = zio_walk_parents(zio, &zl)) != NULL) ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); ddt_exit(ddt); } static void zio_ddt_child_write_done(zio_t *zio) { int p = zio->io_prop.zp_copies; ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); ddt_entry_t *dde = zio->io_private; ddt_phys_t *ddp = &dde->dde_phys[p]; ddt_enter(ddt); ASSERT(ddp->ddp_refcnt == 0); ASSERT(dde->dde_lead_zio[p] == zio); dde->dde_lead_zio[p] = NULL; if (zio->io_error == 0) { zio_link_t *zl = NULL; while (zio_walk_parents(zio, &zl) != NULL) ddt_phys_addref(ddp); } else { ddt_phys_clear(ddp); } ddt_exit(ddt); } static zio_t * zio_ddt_write(zio_t *zio) { spa_t *spa = zio->io_spa; blkptr_t *bp = zio->io_bp; uint64_t txg = zio->io_txg; zio_prop_t *zp = &zio->io_prop; int p = zp->zp_copies; zio_t *cio = NULL; ddt_t *ddt = ddt_select(spa, bp); ddt_entry_t *dde; ddt_phys_t *ddp; ASSERT(BP_GET_DEDUP(bp)); ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); ddt_enter(ddt); dde = ddt_lookup(ddt, bp, B_TRUE); ddp = &dde->dde_phys[p]; if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { /* * If we're using a weak checksum, upgrade to a strong checksum * and try again. If we're already using a strong checksum, * we can't resolve it, so just convert to an ordinary write. * (And automatically e-mail a paper to Nature?) */ if (!(zio_checksum_table[zp->zp_checksum].ci_flags & ZCHECKSUM_FLAG_DEDUP)) { zp->zp_checksum = spa_dedup_checksum(spa); zio_pop_transforms(zio); zio->io_stage = ZIO_STAGE_OPEN; BP_ZERO(bp); } else { zp->zp_dedup = B_FALSE; BP_SET_DEDUP(bp, B_FALSE); } ASSERT(!BP_GET_DEDUP(bp)); zio->io_pipeline = ZIO_WRITE_PIPELINE; ddt_exit(ddt); return (zio); } if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { if (ddp->ddp_phys_birth != 0) ddt_bp_fill(ddp, bp, txg); if (dde->dde_lead_zio[p] != NULL) zio_add_child(zio, dde->dde_lead_zio[p]); else ddt_phys_addref(ddp); } else if (zio->io_bp_override) { ASSERT(bp->blk_birth == txg); ASSERT(BP_EQUAL(bp, zio->io_bp_override)); ddt_phys_fill(ddp, bp); ddt_phys_addref(ddp); } else { cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, zio->io_orig_size, zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL, NULL, zio_ddt_child_write_done, dde, zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); dde->dde_lead_zio[p] = cio; } ddt_exit(ddt); if (cio) zio_nowait(cio); return (zio); } ddt_entry_t *freedde; /* for debugging */ static zio_t * zio_ddt_free(zio_t *zio) { spa_t *spa = zio->io_spa; blkptr_t *bp = zio->io_bp; ddt_t *ddt = ddt_select(spa, bp); ddt_entry_t *dde; ddt_phys_t *ddp; ASSERT(BP_GET_DEDUP(bp)); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); ddt_enter(ddt); freedde = dde = ddt_lookup(ddt, bp, B_TRUE); if (dde) { ddp = ddt_phys_select(dde, bp); if (ddp) ddt_phys_decref(ddp); } ddt_exit(ddt); return (zio); } /* * ========================================================================== * Allocate and free blocks * ========================================================================== */ static zio_t * zio_io_to_allocate(spa_t *spa, int allocator) { zio_t *zio; ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator])); zio = avl_first(&spa->spa_alloc_trees[allocator]); if (zio == NULL) return (NULL); ASSERT(IO_IS_ALLOCATING(zio)); /* * Try to place a reservation for this zio. If we're unable to * reserve then we throttle. */ ASSERT3U(zio->io_allocator, ==, allocator); if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) { return (NULL); } avl_remove(&spa->spa_alloc_trees[allocator], zio); ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); return (zio); } static zio_t * zio_dva_throttle(zio_t *zio) { spa_t *spa = zio->io_spa; zio_t *nio; metaslab_class_t *mc; /* locate an appropriate allocation class */ mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || !mc->mc_alloc_throttle_enabled || zio->io_child_type == ZIO_CHILD_GANG || zio->io_flags & ZIO_FLAG_NODATA) { return (zio); } ASSERT(zio->io_child_type > ZIO_CHILD_GANG); ASSERT3U(zio->io_queued_timestamp, >, 0); ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); zbookmark_phys_t *bm = &zio->io_bookmark; /* * We want to try to use as many allocators as possible to help improve * performance, but we also want logically adjacent IOs to be physically * adjacent to improve sequential read performance. We chunk each object * into 2^20 block regions, and then hash based on the objset, object, * level, and region to accomplish both of these goals. */ zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count; mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]); ASSERT(zio->io_type == ZIO_TYPE_WRITE); zio->io_metaslab_class = mc; avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio); nio = zio_io_to_allocate(spa, zio->io_allocator); mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]); return (nio); } static void zio_allocate_dispatch(spa_t *spa, int allocator) { zio_t *zio; mutex_enter(&spa->spa_alloc_locks[allocator]); zio = zio_io_to_allocate(spa, allocator); mutex_exit(&spa->spa_alloc_locks[allocator]); if (zio == NULL) return; ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); ASSERT0(zio->io_error); zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); } static zio_t * zio_dva_allocate(zio_t *zio) { spa_t *spa = zio->io_spa; metaslab_class_t *mc; blkptr_t *bp = zio->io_bp; int error; int flags = 0; if (zio->io_gang_leader == NULL) { ASSERT(zio->io_child_type > ZIO_CHILD_GANG); zio->io_gang_leader = zio; } ASSERT(BP_IS_HOLE(bp)); ASSERT0(BP_GET_NDVAS(bp)); ASSERT3U(zio->io_prop.zp_copies, >, 0); ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0; if (zio->io_flags & ZIO_FLAG_NODATA) flags |= METASLAB_DONT_THROTTLE; if (zio->io_flags & ZIO_FLAG_GANG_CHILD) flags |= METASLAB_GANG_CHILD; if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) flags |= METASLAB_ASYNC_ALLOC; /* * if not already chosen, locate an appropriate allocation class */ mc = zio->io_metaslab_class; if (mc == NULL) { mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); zio->io_metaslab_class = mc; } error = metaslab_alloc(spa, mc, zio->io_size, bp, zio->io_prop.zp_copies, zio->io_txg, NULL, flags, &zio->io_alloc_list, zio, zio->io_allocator); /* * Fallback to normal class when an alloc class is full */ if (error == ENOSPC && mc != spa_normal_class(spa)) { /* * If throttling, transfer reservation over to normal class. * The io_allocator slot can remain the same even though we * are switching classes. */ if (mc->mc_alloc_throttle_enabled && (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) { metaslab_class_throttle_unreserve(mc, zio->io_prop.zp_copies, zio->io_allocator, zio); zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING; mc = spa_normal_class(spa); VERIFY(metaslab_class_throttle_reserve(mc, zio->io_prop.zp_copies, zio->io_allocator, zio, flags | METASLAB_MUST_RESERVE)); } else { mc = spa_normal_class(spa); } zio->io_metaslab_class = mc; error = metaslab_alloc(spa, mc, zio->io_size, bp, zio->io_prop.zp_copies, zio->io_txg, NULL, flags, &zio->io_alloc_list, zio, zio->io_allocator); } if (error != 0) { zfs_dbgmsg("%s: metaslab allocation failure: zio %px, " "size %llu, error %d", spa_name(spa), zio, zio->io_size, error); if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) return (zio_write_gang_block(zio)); zio->io_error = error; } return (zio); } static zio_t * zio_dva_free(zio_t *zio) { metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); return (zio); } static zio_t * zio_dva_claim(zio_t *zio) { int error; error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); if (error) zio->io_error = error; return (zio); } /* * Undo an allocation. This is used by zio_done() when an I/O fails * and we want to give back the block we just allocated. * This handles both normal blocks and gang blocks. */ static void zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) { ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); ASSERT(zio->io_bp_override == NULL); if (!BP_IS_HOLE(bp)) metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); if (gn != NULL) { for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { zio_dva_unallocate(zio, gn->gn_child[g], &gn->gn_gbh->zg_blkptr[g]); } } } /* * Try to allocate an intent log block. Return 0 on success, errno on failure. */ int zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, uint64_t size, boolean_t *slog) { int error = 1; zio_alloc_list_t io_alloc_list; ASSERT(txg > spa_syncing_txg(spa)); metaslab_trace_init(&io_alloc_list); /* * Block pointer fields are useful to metaslabs for stats and debugging. * Fill in the obvious ones before calling into metaslab_alloc(). */ BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); BP_SET_PSIZE(new_bp, size); BP_SET_LEVEL(new_bp, 0); /* * When allocating a zil block, we don't have information about * the final destination of the block except the objset it's part * of, so we just hash the objset ID to pick the allocator to get * some parallelism. */ error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, txg, NULL, METASLAB_FASTWRITE, &io_alloc_list, NULL, cityhash4(0, 0, 0, os->os_dsl_dataset->ds_object) % spa->spa_alloc_count); if (error == 0) { *slog = TRUE; } else { error = metaslab_alloc(spa, spa_normal_class(spa), size, new_bp, 1, txg, NULL, METASLAB_FASTWRITE, &io_alloc_list, NULL, cityhash4(0, 0, 0, os->os_dsl_dataset->ds_object) % spa->spa_alloc_count); if (error == 0) *slog = FALSE; } metaslab_trace_fini(&io_alloc_list); if (error == 0) { BP_SET_LSIZE(new_bp, size); BP_SET_PSIZE(new_bp, size); BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); BP_SET_CHECKSUM(new_bp, spa_version(spa) >= SPA_VERSION_SLIM_ZIL ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); BP_SET_LEVEL(new_bp, 0); BP_SET_DEDUP(new_bp, 0); BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); /* * encrypted blocks will require an IV and salt. We generate * these now since we will not be rewriting the bp at * rewrite time. */ if (os->os_encrypted) { uint8_t iv[ZIO_DATA_IV_LEN]; uint8_t salt[ZIO_DATA_SALT_LEN]; BP_SET_CRYPT(new_bp, B_TRUE); VERIFY0(spa_crypt_get_salt(spa, dmu_objset_id(os), salt)); VERIFY0(zio_crypt_generate_iv(iv)); zio_crypt_encode_params_bp(new_bp, salt, iv); } } else { zfs_dbgmsg("%s: zil block allocation failure: " "size %llu, error %d", spa_name(spa), size, error); } return (error); } /* * ========================================================================== * Read and write to physical devices * ========================================================================== */ /* * Issue an I/O to the underlying vdev. Typically the issue pipeline * stops after this stage and will resume upon I/O completion. * However, there are instances where the vdev layer may need to * continue the pipeline when an I/O was not issued. Since the I/O * that was sent to the vdev layer might be different than the one * currently active in the pipeline (see vdev_queue_io()), we explicitly * force the underlying vdev layers to call either zio_execute() or * zio_interrupt() to ensure that the pipeline continues with the correct I/O. */ static zio_t * zio_vdev_io_start(zio_t *zio) { vdev_t *vd = zio->io_vd; uint64_t align; spa_t *spa = zio->io_spa; zio->io_delay = 0; ASSERT(zio->io_error == 0); ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); if (vd == NULL) { if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) spa_config_enter(spa, SCL_ZIO, zio, RW_READER); /* * The mirror_ops handle multiple DVAs in a single BP. */ vdev_mirror_ops.vdev_op_io_start(zio); return (NULL); } ASSERT3P(zio->io_logical, !=, zio); if (zio->io_type == ZIO_TYPE_WRITE) { ASSERT(spa->spa_trust_config); /* * Note: the code can handle other kinds of writes, * but we don't expect them. */ if (zio->io_vd->vdev_removing) { ASSERT(zio->io_flags & (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); } } align = 1ULL << vd->vdev_top->vdev_ashift; if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && P2PHASE(zio->io_size, align) != 0) { /* Transform logical writes to be a full physical block size. */ uint64_t asize = P2ROUNDUP(zio->io_size, align); abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); ASSERT(vd == vd->vdev_top); if (zio->io_type == ZIO_TYPE_WRITE) { abd_copy(abuf, zio->io_abd, zio->io_size); abd_zero_off(abuf, zio->io_size, asize - zio->io_size); } zio_push_transform(zio, abuf, asize, asize, zio_subblock); } /* * If this is not a physical io, make sure that it is properly aligned * before proceeding. */ if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { ASSERT0(P2PHASE(zio->io_offset, align)); ASSERT0(P2PHASE(zio->io_size, align)); } else { /* * For physical writes, we allow 512b aligned writes and assume * the device will perform a read-modify-write as necessary. */ ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); } VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); /* * If this is a repair I/O, and there's no self-healing involved -- * that is, we're just resilvering what we expect to resilver -- * then don't do the I/O unless zio's txg is actually in vd's DTL. * This prevents spurious resilvering. * * There are a few ways that we can end up creating these spurious * resilver i/os: * * 1. A resilver i/o will be issued if any DVA in the BP has a * dirty DTL. The mirror code will issue resilver writes to * each DVA, including the one(s) that are not on vdevs with dirty * DTLs. * * 2. With nested replication, which happens when we have a * "replacing" or "spare" vdev that's a child of a mirror or raidz. * For example, given mirror(replacing(A+B), C), it's likely that * only A is out of date (it's the new device). In this case, we'll * read from C, then use the data to resilver A+B -- but we don't * actually want to resilver B, just A. The top-level mirror has no * way to know this, so instead we just discard unnecessary repairs * as we work our way down the vdev tree. * * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. * The same logic applies to any form of nested replication: ditto * + mirror, RAID-Z + replacing, etc. * * However, indirect vdevs point off to other vdevs which may have * DTL's, so we never bypass them. The child i/os on concrete vdevs * will be properly bypassed instead. */ if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && zio->io_txg != 0 && /* not a delegated i/o */ vd->vdev_ops != &vdev_indirect_ops && !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { ASSERT(zio->io_type == ZIO_TYPE_WRITE); zio_vdev_io_bypass(zio); return (zio); } if (vd->vdev_ops->vdev_op_leaf && (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM)) { if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) return (zio); if ((zio = vdev_queue_io(zio)) == NULL) return (NULL); if (!vdev_accessible(vd, zio)) { zio->io_error = SET_ERROR(ENXIO); zio_interrupt(zio); return (NULL); } zio->io_delay = gethrtime(); } vd->vdev_ops->vdev_op_io_start(zio); return (NULL); } static zio_t * zio_vdev_io_done(zio_t *zio) { vdev_t *vd = zio->io_vd; vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; boolean_t unexpected_error = B_FALSE; if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { return (NULL); } ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM); if (zio->io_delay) zio->io_delay = gethrtime() - zio->io_delay; if (vd != NULL && vd->vdev_ops->vdev_op_leaf) { vdev_queue_io_done(zio); if (zio->io_type == ZIO_TYPE_WRITE) vdev_cache_write(zio); if (zio_injection_enabled && zio->io_error == 0) zio->io_error = zio_handle_device_injections(vd, zio, EIO, EILSEQ); if (zio_injection_enabled && zio->io_error == 0) zio->io_error = zio_handle_label_injection(zio, EIO); if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) { if (!vdev_accessible(vd, zio)) { zio->io_error = SET_ERROR(ENXIO); } else { unexpected_error = B_TRUE; } } } ops->vdev_op_io_done(zio); if (unexpected_error) VERIFY(vdev_probe(vd, zio) == NULL); return (zio); } /* * This function is used to change the priority of an existing zio that is * currently in-flight. This is used by the arc to upgrade priority in the * event that a demand read is made for a block that is currently queued * as a scrub or async read IO. Otherwise, the high priority read request * would end up having to wait for the lower priority IO. */ void zio_change_priority(zio_t *pio, zio_priority_t priority) { zio_t *cio, *cio_next; zio_link_t *zl = NULL; ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { vdev_queue_change_io_priority(pio, priority); } else { pio->io_priority = priority; } mutex_enter(&pio->io_lock); for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { cio_next = zio_walk_children(pio, &zl); zio_change_priority(cio, priority); } mutex_exit(&pio->io_lock); } /* * For non-raidz ZIOs, we can just copy aside the bad data read from the * disk, and use that to finish the checksum ereport later. */ static void zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, const abd_t *good_buf) { /* no processing needed */ zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); } /*ARGSUSED*/ void zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored) { void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); abd_copy(abd, zio->io_abd, zio->io_size); zcr->zcr_cbinfo = zio->io_size; zcr->zcr_cbdata = abd; zcr->zcr_finish = zio_vsd_default_cksum_finish; zcr->zcr_free = zio_abd_free; } static zio_t * zio_vdev_io_assess(zio_t *zio) { vdev_t *vd = zio->io_vd; if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { return (NULL); } if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) spa_config_exit(zio->io_spa, SCL_ZIO, zio); if (zio->io_vsd != NULL) { zio->io_vsd_ops->vsd_free(zio); zio->io_vsd = NULL; } if (zio_injection_enabled && zio->io_error == 0) zio->io_error = zio_handle_fault_injection(zio, EIO); /* * If the I/O failed, determine whether we should attempt to retry it. * * On retry, we cut in line in the issue queue, since we don't want * compression/checksumming/etc. work to prevent our (cheap) IO reissue. */ if (zio->io_error && vd == NULL && !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ zio->io_error = 0; zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, zio_requeue_io_start_cut_in_line); return (NULL); } /* * If we got an error on a leaf device, convert it to ENXIO * if the device is not accessible at all. */ if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && !vdev_accessible(vd, zio)) zio->io_error = SET_ERROR(ENXIO); /* * If we can't write to an interior vdev (mirror or RAID-Z), * set vdev_cant_write so that we stop trying to allocate from it. */ if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && vd != NULL && !vd->vdev_ops->vdev_op_leaf) { vd->vdev_cant_write = B_TRUE; } /* * If a cache flush returns ENOTSUP or ENOTTY, we know that no future * attempts will ever succeed. In this case we set a persistent * boolean flag so that we don't bother with it in the future. */ if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && zio->io_type == ZIO_TYPE_IOCTL && zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) vd->vdev_nowritecache = B_TRUE; if (zio->io_error) zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; if (vd != NULL && vd->vdev_ops->vdev_op_leaf && zio->io_physdone != NULL) { ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); zio->io_physdone(zio->io_logical); } return (zio); } void zio_vdev_io_reissue(zio_t *zio) { ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); ASSERT(zio->io_error == 0); zio->io_stage >>= 1; } void zio_vdev_io_redone(zio_t *zio) { ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); zio->io_stage >>= 1; } void zio_vdev_io_bypass(zio_t *zio) { ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); ASSERT(zio->io_error == 0); zio->io_flags |= ZIO_FLAG_IO_BYPASS; zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; } /* * ========================================================================== * Encrypt and store encryption parameters * ========================================================================== */ /* * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for * managing the storage of encryption parameters and passing them to the * lower-level encryption functions. */ static zio_t * zio_encrypt(zio_t *zio) { zio_prop_t *zp = &zio->io_prop; spa_t *spa = zio->io_spa; blkptr_t *bp = zio->io_bp; uint64_t psize = BP_GET_PSIZE(bp); uint64_t dsobj = zio->io_bookmark.zb_objset; dmu_object_type_t ot = BP_GET_TYPE(bp); void *enc_buf = NULL; abd_t *eabd = NULL; uint8_t salt[ZIO_DATA_SALT_LEN]; uint8_t iv[ZIO_DATA_IV_LEN]; uint8_t mac[ZIO_DATA_MAC_LEN]; boolean_t no_crypt = B_FALSE; /* the root zio already encrypted the data */ if (zio->io_child_type == ZIO_CHILD_GANG) return (zio); /* only ZIL blocks are re-encrypted on rewrite */ if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) return (zio); if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { BP_SET_CRYPT(bp, B_FALSE); return (zio); } /* if we are doing raw encryption set the provided encryption params */ if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { ASSERT0(BP_GET_LEVEL(bp)); BP_SET_CRYPT(bp, B_TRUE); BP_SET_BYTEORDER(bp, zp->zp_byteorder); if (ot != DMU_OT_OBJSET) zio_crypt_encode_mac_bp(bp, zp->zp_mac); /* dnode blocks must be written out in the provided byteorder */ if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && ot == DMU_OT_DNODE) { void *bswap_buf = zio_buf_alloc(psize); abd_t *babd = abd_get_from_buf(bswap_buf, psize); ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); abd_copy_to_buf(bswap_buf, zio->io_abd, psize); dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, psize); abd_take_ownership_of_buf(babd, B_TRUE); zio_push_transform(zio, babd, psize, psize, NULL); } if (DMU_OT_IS_ENCRYPTED(ot)) zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); return (zio); } /* indirect blocks only maintain a cksum of the lower level MACs */ if (BP_GET_LEVEL(bp) > 0) { BP_SET_CRYPT(bp, B_TRUE); VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), mac)); zio_crypt_encode_mac_bp(bp, mac); return (zio); } /* * Objset blocks are a special case since they have 2 256-bit MACs * embedded within them. */ if (ot == DMU_OT_OBJSET) { ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); BP_SET_CRYPT(bp, B_TRUE); VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); return (zio); } /* unencrypted object types are only authenticated with a MAC */ if (!DMU_OT_IS_ENCRYPTED(ot)) { BP_SET_CRYPT(bp, B_TRUE); VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, zio->io_abd, psize, mac)); zio_crypt_encode_mac_bp(bp, mac); return (zio); } /* * Later passes of sync-to-convergence may decide to rewrite data * in place to avoid more disk reallocations. This presents a problem * for encryption because this constitutes rewriting the new data with * the same encryption key and IV. However, this only applies to blocks * in the MOS (particularly the spacemaps) and we do not encrypt the * MOS. We assert that the zio is allocating or an intent log write * to enforce this. */ ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); ASSERT3U(psize, !=, 0); enc_buf = zio_buf_alloc(psize); eabd = abd_get_from_buf(enc_buf, psize); abd_take_ownership_of_buf(eabd, B_TRUE); /* * For an explanation of what encryption parameters are stored * where, see the block comment in zio_crypt.c. */ if (ot == DMU_OT_INTENT_LOG) { zio_crypt_decode_params_bp(bp, salt, iv); } else { BP_SET_CRYPT(bp, B_TRUE); } /* Perform the encryption. This should not fail */ VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); /* encode encryption metadata into the bp */ if (ot == DMU_OT_INTENT_LOG) { /* * ZIL blocks store the MAC in the embedded checksum, so the * transform must always be applied. */ zio_crypt_encode_mac_zil(enc_buf, mac); zio_push_transform(zio, eabd, psize, psize, NULL); } else { BP_SET_CRYPT(bp, B_TRUE); zio_crypt_encode_params_bp(bp, salt, iv); zio_crypt_encode_mac_bp(bp, mac); if (no_crypt) { ASSERT3U(ot, ==, DMU_OT_DNODE); abd_free(eabd); } else { zio_push_transform(zio, eabd, psize, psize, NULL); } } return (zio); } /* * ========================================================================== * Generate and verify checksums * ========================================================================== */ static zio_t * zio_checksum_generate(zio_t *zio) { blkptr_t *bp = zio->io_bp; enum zio_checksum checksum; if (bp == NULL) { /* * This is zio_write_phys(). * We're either generating a label checksum, or none at all. */ checksum = zio->io_prop.zp_checksum; if (checksum == ZIO_CHECKSUM_OFF) return (zio); ASSERT(checksum == ZIO_CHECKSUM_LABEL); } else { if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { ASSERT(!IO_IS_ALLOCATING(zio)); checksum = ZIO_CHECKSUM_GANG_HEADER; } else { checksum = BP_GET_CHECKSUM(bp); } } zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); return (zio); } static zio_t * zio_checksum_verify(zio_t *zio) { zio_bad_cksum_t info; blkptr_t *bp = zio->io_bp; int error; ASSERT(zio->io_vd != NULL); if (bp == NULL) { /* * This is zio_read_phys(). * We're either verifying a label checksum, or nothing at all. */ if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) return (zio); ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL); } if ((error = zio_checksum_error(zio, &info)) != 0) { zio->io_error = error; if (error == ECKSUM && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { mutex_enter(&zio->io_vd->vdev_stat_lock); zio->io_vd->vdev_stat.vs_checksum_errors++; mutex_exit(&zio->io_vd->vdev_stat_lock); zfs_ereport_start_checksum(zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, zio->io_offset, zio->io_size, NULL, &info); } } return (zio); } /* * Called by RAID-Z to ensure we don't compute the checksum twice. */ void zio_checksum_verified(zio_t *zio) { zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; } /* * ========================================================================== * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. * An error of 0 indicates success. ENXIO indicates whole-device failure, * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO * indicate errors that are specific to one I/O, and most likely permanent. * Any other error is presumed to be worse because we weren't expecting it. * ========================================================================== */ int zio_worst_error(int e1, int e2) { static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; int r1, r2; for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) if (e1 == zio_error_rank[r1]) break; for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) if (e2 == zio_error_rank[r2]) break; return (r1 > r2 ? e1 : e2); } /* * ========================================================================== * I/O completion * ========================================================================== */ static zio_t * zio_ready(zio_t *zio) { blkptr_t *bp = zio->io_bp; zio_t *pio, *pio_next; zio_link_t *zl = NULL; if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, ZIO_WAIT_READY)) { return (NULL); } if (zio->io_ready) { ASSERT(IO_IS_ALLOCATING(zio)); ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || (zio->io_flags & ZIO_FLAG_NOPWRITE)); ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); zio->io_ready(zio); } if (bp != NULL && bp != &zio->io_bp_copy) zio->io_bp_copy = *bp; if (zio->io_error != 0) { zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { ASSERT(IO_IS_ALLOCATING(zio)); ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); ASSERT(zio->io_metaslab_class != NULL); /* * We were unable to allocate anything, unreserve and * issue the next I/O to allocate. */ metaslab_class_throttle_unreserve( zio->io_metaslab_class, zio->io_prop.zp_copies, zio->io_allocator, zio); zio_allocate_dispatch(zio->io_spa, zio->io_allocator); } } mutex_enter(&zio->io_lock); zio->io_state[ZIO_WAIT_READY] = 1; pio = zio_walk_parents(zio, &zl); mutex_exit(&zio->io_lock); /* * As we notify zio's parents, new parents could be added. * New parents go to the head of zio's io_parent_list, however, * so we will (correctly) not notify them. The remainder of zio's * io_parent_list, from 'pio_next' onward, cannot change because * all parents must wait for us to be done before they can be done. */ for (; pio != NULL; pio = pio_next) { pio_next = zio_walk_parents(zio, &zl); zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL); } if (zio->io_flags & ZIO_FLAG_NODATA) { if (BP_IS_GANG(bp)) { zio->io_flags &= ~ZIO_FLAG_NODATA; } else { ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; } } if (zio_injection_enabled && zio->io_spa->spa_syncing_txg == zio->io_txg) zio_handle_ignored_writes(zio); return (zio); } /* * Update the allocation throttle accounting. */ static void zio_dva_throttle_done(zio_t *zio) { zio_t *lio __maybe_unused = zio->io_logical; zio_t *pio = zio_unique_parent(zio); vdev_t *vd = zio->io_vd; int flags = METASLAB_ASYNC_ALLOC; ASSERT3P(zio->io_bp, !=, NULL); ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); ASSERT(vd != NULL); ASSERT3P(vd, ==, vd->vdev_top); ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY)); ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); /* * Parents of gang children can have two flavors -- ones that * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) * and ones that allocated the constituent blocks. The allocation * throttle needs to know the allocating parent zio so we must find * it here. */ if (pio->io_child_type == ZIO_CHILD_GANG) { /* * If our parent is a rewrite gang child then our grandparent * would have been the one that performed the allocation. */ if (pio->io_flags & ZIO_FLAG_IO_REWRITE) pio = zio_unique_parent(pio); flags |= METASLAB_GANG_CHILD; } ASSERT(IO_IS_ALLOCATING(pio)); ASSERT3P(zio, !=, zio->io_logical); ASSERT(zio->io_logical != NULL); ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); ASSERT(zio->io_metaslab_class != NULL); mutex_enter(&pio->io_lock); metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags, pio->io_allocator, B_TRUE); mutex_exit(&pio->io_lock); metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, pio->io_allocator, pio); /* * Call into the pipeline to see if there is more work that * needs to be done. If there is work to be done it will be * dispatched to another taskq thread. */ zio_allocate_dispatch(zio->io_spa, pio->io_allocator); } static zio_t * zio_done(zio_t *zio) { /* * Always attempt to keep stack usage minimal here since * we can be called recursively up to 19 levels deep. */ const uint64_t psize = zio->io_size; zio_t *pio, *pio_next; zio_link_t *zl = NULL; /* * If our children haven't all completed, * wait for them and then repeat this pipeline stage. */ if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { return (NULL); } /* * If the allocation throttle is enabled, then update the accounting. * We only track child I/Os that are part of an allocating async * write. We must do this since the allocation is performed * by the logical I/O but the actual write is done by child I/Os. */ if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && zio->io_child_type == ZIO_CHILD_VDEV) { ASSERT(zio->io_metaslab_class != NULL); ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); zio_dva_throttle_done(zio); } /* * If the allocation throttle is enabled, verify that * we have decremented the refcounts for every I/O that was throttled. */ if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { ASSERT(zio->io_type == ZIO_TYPE_WRITE); ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); ASSERT(zio->io_bp != NULL); metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio, zio->io_allocator); VERIFY(zfs_refcount_not_held( &zio->io_metaslab_class->mc_alloc_slots[zio->io_allocator], zio)); } for (int c = 0; c < ZIO_CHILD_TYPES; c++) for (int w = 0; w < ZIO_WAIT_TYPES; w++) ASSERT(zio->io_children[c][w] == 0); if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) { ASSERT(zio->io_bp->blk_pad[0] == 0); ASSERT(zio->io_bp->blk_pad[1] == 0); ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 || (zio->io_bp == zio_unique_parent(zio)->io_bp)); if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) && zio->io_bp_override == NULL && !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 || (BP_COUNT_GANG(zio->io_bp) == BP_GET_NDVAS(zio->io_bp))); } if (zio->io_flags & ZIO_FLAG_NOPWRITE) VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); } /* * If there were child vdev/gang/ddt errors, they apply to us now. */ zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); zio_inherit_child_errors(zio, ZIO_CHILD_GANG); zio_inherit_child_errors(zio, ZIO_CHILD_DDT); /* * If the I/O on the transformed data was successful, generate any * checksum reports now while we still have the transformed data. */ if (zio->io_error == 0) { while (zio->io_cksum_report != NULL) { zio_cksum_report_t *zcr = zio->io_cksum_report; uint64_t align = zcr->zcr_align; uint64_t asize = P2ROUNDUP(psize, align); abd_t *adata = zio->io_abd; if (asize != psize) { adata = abd_alloc(asize, B_TRUE); abd_copy(adata, zio->io_abd, psize); abd_zero_off(adata, psize, asize - psize); } zio->io_cksum_report = zcr->zcr_next; zcr->zcr_next = NULL; zcr->zcr_finish(zcr, adata); zfs_ereport_free_checksum(zcr); if (asize != psize) abd_free(adata); } } zio_pop_transforms(zio); /* note: may set zio->io_error */ vdev_stat_update(zio, psize); /* * If this I/O is attached to a particular vdev is slow, exceeding * 30 seconds to complete, post an error described the I/O delay. * We ignore these errors if the device is currently unavailable. */ if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { /* * We want to only increment our slow IO counters if * the IO is valid (i.e. not if the drive is removed). * * zfs_ereport_post() will also do these checks, but * it can also ratelimit and have other failures, so we * need to increment the slow_io counters independent * of it. */ if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, zio->io_spa, zio->io_vd, zio)) { mutex_enter(&zio->io_vd->vdev_stat_lock); zio->io_vd->vdev_stat.vs_slow_ios++; mutex_exit(&zio->io_vd->vdev_stat_lock); zfs_ereport_post(FM_EREPORT_ZFS_DELAY, zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0, 0); } } } if (zio->io_error) { /* * If this I/O is attached to a particular vdev, * generate an error message describing the I/O failure * at the block level. We ignore these errors if the * device is currently unavailable. */ if (zio->io_error != ECKSUM && zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { mutex_enter(&zio->io_vd->vdev_stat_lock); if (zio->io_type == ZIO_TYPE_READ) { zio->io_vd->vdev_stat.vs_read_errors++; } else if (zio->io_type == ZIO_TYPE_WRITE) { zio->io_vd->vdev_stat.vs_write_errors++; } mutex_exit(&zio->io_vd->vdev_stat_lock); zfs_ereport_post(FM_EREPORT_ZFS_IO, zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0, 0); } if ((zio->io_error == EIO || !(zio->io_flags & (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && zio == zio->io_logical) { /* * For logical I/O requests, tell the SPA to log the * error and generate a logical data ereport. */ spa_log_error(zio->io_spa, &zio->io_bookmark); zfs_ereport_post(FM_EREPORT_ZFS_DATA, zio->io_spa, NULL, &zio->io_bookmark, zio, 0, 0); } } if (zio->io_error && zio == zio->io_logical) { /* * Determine whether zio should be reexecuted. This will * propagate all the way to the root via zio_notify_parent(). */ ASSERT(zio->io_vd == NULL && zio->io_bp != NULL); ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); if (IO_IS_ALLOCATING(zio) && !(zio->io_flags & ZIO_FLAG_CANFAIL)) { if (zio->io_error != ENOSPC) zio->io_reexecute |= ZIO_REEXECUTE_NOW; else zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; } if ((zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_FREE) && !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_error == ENXIO && spa_load_state(zio->io_spa) == SPA_LOAD_NONE && spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE) zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; /* * Here is a possibly good place to attempt to do * either combinatorial reconstruction or error correction * based on checksums. It also might be a good place * to send out preliminary ereports before we suspend * processing. */ } /* * If there were logical child errors, they apply to us now. * We defer this until now to avoid conflating logical child * errors with errors that happened to the zio itself when * updating vdev stats and reporting FMA events above. */ zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); if ((zio->io_error || zio->io_reexecute) && IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp); zio_gang_tree_free(&zio->io_gang_tree); /* * Godfather I/Os should never suspend. */ if ((zio->io_flags & ZIO_FLAG_GODFATHER) && (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND; if (zio->io_reexecute) { /* * This is a logical I/O that wants to reexecute. * * Reexecute is top-down. When an i/o fails, if it's not * the root, it simply notifies its parent and sticks around. * The parent, seeing that it still has children in zio_done(), * does the same. This percolates all the way up to the root. * The root i/o will reexecute or suspend the entire tree. * * This approach ensures that zio_reexecute() honors * all the original i/o dependency relationships, e.g. * parents not executing until children are ready. */ ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); zio->io_gang_leader = NULL; mutex_enter(&zio->io_lock); zio->io_state[ZIO_WAIT_DONE] = 1; mutex_exit(&zio->io_lock); /* * "The Godfather" I/O monitors its children but is * not a true parent to them. It will track them through * the pipeline but severs its ties whenever they get into * trouble (e.g. suspended). This allows "The Godfather" * I/O to return status without blocking. */ zl = NULL; for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { zio_link_t *remove_zl = zl; pio_next = zio_walk_parents(zio, &zl); if ((pio->io_flags & ZIO_FLAG_GODFATHER) && (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { zio_remove_child(pio, zio, remove_zl); /* * This is a rare code path, so we don't * bother with "next_to_execute". */ zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); } } if ((pio = zio_unique_parent(zio)) != NULL) { /* * We're not a root i/o, so there's nothing to do * but notify our parent. Don't propagate errors * upward since we haven't permanently failed yet. */ ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; /* * This is a rare code path, so we don't bother with * "next_to_execute". */ zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { /* * We'd fail again if we reexecuted now, so suspend * until conditions improve (e.g. device comes online). */ zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); } else { /* * Reexecution is potentially a huge amount of work. * Hand it off to the otherwise-unused claim taskq. */ ASSERT(taskq_empty_ent(&zio->io_tqent)); spa_taskq_dispatch_ent(zio->io_spa, ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio, 0, &zio->io_tqent); } return (NULL); } ASSERT(zio->io_child_count == 0); ASSERT(zio->io_reexecute == 0); ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); /* * Report any checksum errors, since the I/O is complete. */ while (zio->io_cksum_report != NULL) { zio_cksum_report_t *zcr = zio->io_cksum_report; zio->io_cksum_report = zcr->zcr_next; zcr->zcr_next = NULL; zcr->zcr_finish(zcr, NULL); zfs_ereport_free_checksum(zcr); } if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp && !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) && !(zio->io_flags & ZIO_FLAG_NOPWRITE)) { metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp); } /* * It is the responsibility of the done callback to ensure that this * particular zio is no longer discoverable for adoption, and as * such, cannot acquire any new parents. */ if (zio->io_done) zio->io_done(zio); mutex_enter(&zio->io_lock); zio->io_state[ZIO_WAIT_DONE] = 1; mutex_exit(&zio->io_lock); /* * We are done executing this zio. We may want to execute a parent * next. See the comment in zio_notify_parent(). */ zio_t *next_to_execute = NULL; zl = NULL; for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { zio_link_t *remove_zl = zl; pio_next = zio_walk_parents(zio, &zl); zio_remove_child(pio, zio, remove_zl); zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute); } if (zio->io_waiter != NULL) { mutex_enter(&zio->io_lock); zio->io_executor = NULL; cv_broadcast(&zio->io_cv); mutex_exit(&zio->io_lock); } else { zio_destroy(zio); } return (next_to_execute); } /* * ========================================================================== * I/O pipeline definition * ========================================================================== */ static zio_pipe_stage_t *zio_pipeline[] = { NULL, zio_read_bp_init, zio_write_bp_init, zio_free_bp_init, zio_issue_async, zio_write_compress, zio_encrypt, zio_checksum_generate, zio_nop_write, zio_ddt_read_start, zio_ddt_read_done, zio_ddt_write, zio_ddt_free, zio_gang_assemble, zio_gang_issue, zio_dva_throttle, zio_dva_allocate, zio_dva_free, zio_dva_claim, zio_ready, zio_vdev_io_start, zio_vdev_io_done, zio_vdev_io_assess, zio_checksum_verify, zio_done }; /* * Compare two zbookmark_phys_t's to see which we would reach first in a * pre-order traversal of the object tree. * * This is simple in every case aside from the meta-dnode object. For all other * objects, we traverse them in order (object 1 before object 2, and so on). * However, all of these objects are traversed while traversing object 0, since * the data it points to is the list of objects. Thus, we need to convert to a * canonical representation so we can compare meta-dnode bookmarks to * non-meta-dnode bookmarks. * * We do this by calculating "equivalents" for each field of the zbookmark. * zbookmarks outside of the meta-dnode use their own object and level, and * calculate the level 0 equivalent (the first L0 blkid that is contained in the * blocks this bookmark refers to) by multiplying their blkid by their span * (the number of L0 blocks contained within one block at their level). * zbookmarks inside the meta-dnode calculate their object equivalent * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use * level + 1<<31 (any value larger than a level could ever be) for their level. * This causes them to always compare before a bookmark in their object * equivalent, compare appropriately to bookmarks in other objects, and to * compare appropriately to other bookmarks in the meta-dnode. */ int zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) { /* * These variables represent the "equivalent" values for the zbookmark, * after converting zbookmarks inside the meta dnode to their * normal-object equivalents. */ uint64_t zb1obj, zb2obj; uint64_t zb1L0, zb2L0; uint64_t zb1level, zb2level; if (zb1->zb_object == zb2->zb_object && zb1->zb_level == zb2->zb_level && zb1->zb_blkid == zb2->zb_blkid) return (0); IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT); IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT); /* * BP_SPANB calculates the span in blocks. */ zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); if (zb1->zb_object == DMU_META_DNODE_OBJECT) { zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); zb1L0 = 0; zb1level = zb1->zb_level + COMPARE_META_LEVEL; } else { zb1obj = zb1->zb_object; zb1level = zb1->zb_level; } if (zb2->zb_object == DMU_META_DNODE_OBJECT) { zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); zb2L0 = 0; zb2level = zb2->zb_level + COMPARE_META_LEVEL; } else { zb2obj = zb2->zb_object; zb2level = zb2->zb_level; } /* Now that we have a canonical representation, do the comparison. */ if (zb1obj != zb2obj) return (zb1obj < zb2obj ? -1 : 1); else if (zb1L0 != zb2L0) return (zb1L0 < zb2L0 ? -1 : 1); else if (zb1level != zb2level) return (zb1level > zb2level ? -1 : 1); /* * This can (theoretically) happen if the bookmarks have the same object * and level, but different blkids, if the block sizes are not the same. * There is presently no way to change the indirect block sizes */ return (0); } /* * This function checks the following: given that last_block is the place that * our traversal stopped last time, does that guarantee that we've visited * every node under subtree_root? Therefore, we can't just use the raw output * of zbookmark_compare. We have to pass in a modified version of * subtree_root; by incrementing the block id, and then checking whether * last_block is before or equal to that, we can tell whether or not having * visited last_block implies that all of subtree_root's children have been * visited. */ boolean_t zbookmark_subtree_completed(const dnode_phys_t *dnp, const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) { zbookmark_phys_t mod_zb = *subtree_root; mod_zb.zb_blkid++; ASSERT(last_block->zb_level == 0); /* The objset_phys_t isn't before anything. */ if (dnp == NULL) return (B_FALSE); /* * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the * data block size in sectors, because that variable is only used if * the bookmark refers to a block in the meta-dnode. Since we don't * know without examining it what object it refers to, and there's no * harm in passing in this value in other cases, we always pass it in. * * We pass in 0 for the indirect block size shift because zb2 must be * level 0. The indirect block size is only used to calculate the span * of the bookmark, but since the bookmark must be level 0, the span is * always 1, so the math works out. * * If you make changes to how the zbookmark_compare code works, be sure * to make sure that this code still works afterwards. */ return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, last_block) <= 0); } EXPORT_SYMBOL(zio_type_name); EXPORT_SYMBOL(zio_buf_alloc); EXPORT_SYMBOL(zio_data_buf_alloc); EXPORT_SYMBOL(zio_buf_free); EXPORT_SYMBOL(zio_data_buf_free); /* BEGIN CSTYLED */ ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW, "Max I/O completion time (milliseconds) before marking it as slow"); ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW, "Prioritize requeued I/O"); ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, INT, ZMOD_RW, "Defer frees starting in this pass"); ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, INT, ZMOD_RW, "Don't compress starting in this pass"); ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, INT, ZMOD_RW, "Rewrite new bps starting in this pass"); ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW, "Throttle block allocations in the ZIO pipeline"); ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW, "Log all slow ZIOs, not just those with vdevs"); /* END CSTYLED */