/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2014 by Delphix. All rights reserved. */ /* Portions Copyright 2007 Jeremy Teo */ #ifdef _KERNEL #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fs/fs_subr.h" #include #include #include #include #include #include #include #include #include #include #include #endif /* _KERNEL */ #include #include #include #include #include #include #include #include #include #include #include "zfs_prop.h" #include "zfs_comutil.h" /* * Define ZNODE_STATS to turn on statistic gathering. By default, it is only * turned on when DEBUG is also defined. */ #ifdef DEBUG #define ZNODE_STATS #endif /* DEBUG */ #ifdef ZNODE_STATS #define ZNODE_STAT_ADD(stat) ((stat)++) #else #define ZNODE_STAT_ADD(stat) /* nothing */ #endif /* ZNODE_STATS */ /* * Functions needed for userland (ie: libzpool) are not put under * #ifdef_KERNEL; the rest of the functions have dependencies * (such as VFS logic) that will not compile easily in userland. */ #ifdef _KERNEL static kmem_cache_t *znode_cache = NULL; static kmem_cache_t *znode_hold_cache = NULL; unsigned int zfs_object_mutex_size = ZFS_OBJ_MTX_SZ; /*ARGSUSED*/ static int zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) { znode_t *zp = buf; inode_init_once(ZTOI(zp)); list_link_init(&zp->z_link_node); mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); rw_init(&zp->z_name_lock, NULL, RW_NOLOCKDEP, NULL); mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); rw_init(&zp->z_xattr_lock, NULL, RW_DEFAULT, NULL); zfs_rlock_init(&zp->z_range_lock); zp->z_dirlocks = NULL; zp->z_acl_cached = NULL; zp->z_xattr_cached = NULL; zp->z_xattr_parent = 0; zp->z_moved = 0; return (0); } /*ARGSUSED*/ static void zfs_znode_cache_destructor(void *buf, void *arg) { znode_t *zp = buf; ASSERT(!list_link_active(&zp->z_link_node)); mutex_destroy(&zp->z_lock); rw_destroy(&zp->z_parent_lock); rw_destroy(&zp->z_name_lock); mutex_destroy(&zp->z_acl_lock); rw_destroy(&zp->z_xattr_lock); zfs_rlock_destroy(&zp->z_range_lock); ASSERT(zp->z_dirlocks == NULL); ASSERT(zp->z_acl_cached == NULL); ASSERT(zp->z_xattr_cached == NULL); } static int zfs_znode_hold_cache_constructor(void *buf, void *arg, int kmflags) { znode_hold_t *zh = buf; mutex_init(&zh->zh_lock, NULL, MUTEX_DEFAULT, NULL); refcount_create(&zh->zh_refcount); zh->zh_obj = ZFS_NO_OBJECT; return (0); } static void zfs_znode_hold_cache_destructor(void *buf, void *arg) { znode_hold_t *zh = buf; mutex_destroy(&zh->zh_lock); refcount_destroy(&zh->zh_refcount); } void zfs_znode_init(void) { /* * Initialize zcache. The KMC_SLAB hint is used in order that it be * backed by kmalloc() when on the Linux slab in order that any * wait_on_bit() operations on the related inode operate properly. */ ASSERT(znode_cache == NULL); znode_cache = kmem_cache_create("zfs_znode_cache", sizeof (znode_t), 0, zfs_znode_cache_constructor, zfs_znode_cache_destructor, NULL, NULL, NULL, KMC_SLAB); ASSERT(znode_hold_cache == NULL); znode_hold_cache = kmem_cache_create("zfs_znode_hold_cache", sizeof (znode_hold_t), 0, zfs_znode_hold_cache_constructor, zfs_znode_hold_cache_destructor, NULL, NULL, NULL, 0); } void zfs_znode_fini(void) { /* * Cleanup zcache */ if (znode_cache) kmem_cache_destroy(znode_cache); znode_cache = NULL; if (znode_hold_cache) kmem_cache_destroy(znode_hold_cache); znode_hold_cache = NULL; } /* * The zfs_znode_hold_enter() / zfs_znode_hold_exit() functions are used to * serialize access to a znode and its SA buffer while the object is being * created or destroyed. This kind of locking would normally reside in the * znode itself but in this case that's impossible because the znode and SA * buffer may not yet exist. Therefore the locking is handled externally * with an array of mutexs and AVLs trees which contain per-object locks. * * In zfs_znode_hold_enter() a per-object lock is created as needed, inserted * in to the correct AVL tree and finally the per-object lock is held. In * zfs_znode_hold_exit() the process is reversed. The per-object lock is * released, removed from the AVL tree and destroyed if there are no waiters. * * This scheme has two important properties: * * 1) No memory allocations are performed while holding one of the z_hold_locks. * This ensures evict(), which can be called from direct memory reclaim, will * never block waiting on a z_hold_locks which just happens to have hashed * to the same index. * * 2) All locks used to serialize access to an object are per-object and never * shared. This minimizes lock contention without creating a large number * of dedicated locks. * * On the downside it does require znode_lock_t structures to be frequently * allocated and freed. However, because these are backed by a kmem cache * and very short lived this cost is minimal. */ int zfs_znode_hold_compare(const void *a, const void *b) { const znode_hold_t *zh_a = (const znode_hold_t *)a; const znode_hold_t *zh_b = (const znode_hold_t *)b; return (AVL_CMP(zh_a->zh_obj, zh_b->zh_obj)); } boolean_t zfs_znode_held(zfsvfs_t *zfsvfs, uint64_t obj) { znode_hold_t *zh, search; int i = ZFS_OBJ_HASH(zfsvfs, obj); boolean_t held; search.zh_obj = obj; mutex_enter(&zfsvfs->z_hold_locks[i]); zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL); held = (zh && MUTEX_HELD(&zh->zh_lock)) ? B_TRUE : B_FALSE; mutex_exit(&zfsvfs->z_hold_locks[i]); return (held); } static znode_hold_t * zfs_znode_hold_enter(zfsvfs_t *zfsvfs, uint64_t obj) { znode_hold_t *zh, *zh_new, search; int i = ZFS_OBJ_HASH(zfsvfs, obj); boolean_t found = B_FALSE; zh_new = kmem_cache_alloc(znode_hold_cache, KM_SLEEP); zh_new->zh_obj = obj; search.zh_obj = obj; mutex_enter(&zfsvfs->z_hold_locks[i]); zh = avl_find(&zfsvfs->z_hold_trees[i], &search, NULL); if (likely(zh == NULL)) { zh = zh_new; avl_add(&zfsvfs->z_hold_trees[i], zh); } else { ASSERT3U(zh->zh_obj, ==, obj); found = B_TRUE; } refcount_add(&zh->zh_refcount, NULL); mutex_exit(&zfsvfs->z_hold_locks[i]); if (found == B_TRUE) kmem_cache_free(znode_hold_cache, zh_new); ASSERT(MUTEX_NOT_HELD(&zh->zh_lock)); ASSERT3S(refcount_count(&zh->zh_refcount), >, 0); mutex_enter(&zh->zh_lock); return (zh); } static void zfs_znode_hold_exit(zfsvfs_t *zfsvfs, znode_hold_t *zh) { int i = ZFS_OBJ_HASH(zfsvfs, zh->zh_obj); boolean_t remove = B_FALSE; ASSERT(zfs_znode_held(zfsvfs, zh->zh_obj)); ASSERT3S(refcount_count(&zh->zh_refcount), >, 0); mutex_exit(&zh->zh_lock); mutex_enter(&zfsvfs->z_hold_locks[i]); if (refcount_remove(&zh->zh_refcount, NULL) == 0) { avl_remove(&zfsvfs->z_hold_trees[i], zh); remove = B_TRUE; } mutex_exit(&zfsvfs->z_hold_locks[i]); if (remove == B_TRUE) kmem_cache_free(znode_hold_cache, zh); } int zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) { #ifdef HAVE_SMB_SHARE zfs_acl_ids_t acl_ids; vattr_t vattr; znode_t *sharezp; vnode_t *vp; znode_t *zp; int error; vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; vattr.va_mode = S_IFDIR | 0555; vattr.va_uid = crgetuid(kcred); vattr.va_gid = crgetgid(kcred); sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); sharezp->z_moved = 0; sharezp->z_unlinked = 0; sharezp->z_atime_dirty = 0; sharezp->z_zfsvfs = zfsvfs; sharezp->z_is_sa = zfsvfs->z_use_sa; vp = ZTOV(sharezp); vn_reinit(vp); vp->v_type = VDIR; VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, kcred, NULL, &acl_ids)); zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids); ASSERT3P(zp, ==, sharezp); ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ POINTER_INVALIDATE(&sharezp->z_zfsvfs); error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); zfsvfs->z_shares_dir = sharezp->z_id; zfs_acl_ids_free(&acl_ids); // ZTOV(sharezp)->v_count = 0; sa_handle_destroy(sharezp->z_sa_hdl); kmem_cache_free(znode_cache, sharezp); return (error); #else return (0); #endif /* HAVE_SMB_SHARE */ } static void zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl) { ASSERT(zfs_znode_held(zfsvfs, zp->z_id)); mutex_enter(&zp->z_lock); ASSERT(zp->z_sa_hdl == NULL); ASSERT(zp->z_acl_cached == NULL); if (sa_hdl == NULL) { VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp, SA_HDL_SHARED, &zp->z_sa_hdl)); } else { zp->z_sa_hdl = sa_hdl; sa_set_userp(sa_hdl, zp); } zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE; mutex_exit(&zp->z_lock); } void zfs_znode_dmu_fini(znode_t *zp) { ASSERT(zfs_znode_held(ZTOZSB(zp), zp->z_id) || zp->z_unlinked || RW_WRITE_HELD(&ZTOZSB(zp)->z_teardown_inactive_lock)); sa_handle_destroy(zp->z_sa_hdl); zp->z_sa_hdl = NULL; } /* * Called by new_inode() to allocate a new inode. */ int zfs_inode_alloc(struct super_block *sb, struct inode **ip) { znode_t *zp; zp = kmem_cache_alloc(znode_cache, KM_SLEEP); *ip = ZTOI(zp); return (0); } /* * Called in multiple places when an inode should be destroyed. */ void zfs_inode_destroy(struct inode *ip) { znode_t *zp = ITOZ(ip); zfsvfs_t *zfsvfs = ZTOZSB(zp); mutex_enter(&zfsvfs->z_znodes_lock); if (list_link_active(&zp->z_link_node)) { list_remove(&zfsvfs->z_all_znodes, zp); zfsvfs->z_nr_znodes--; } mutex_exit(&zfsvfs->z_znodes_lock); if (zp->z_acl_cached) { zfs_acl_free(zp->z_acl_cached); zp->z_acl_cached = NULL; } if (zp->z_xattr_cached) { nvlist_free(zp->z_xattr_cached); zp->z_xattr_cached = NULL; } kmem_cache_free(znode_cache, zp); } static void zfs_inode_set_ops(zfsvfs_t *zfsvfs, struct inode *ip) { uint64_t rdev = 0; switch (ip->i_mode & S_IFMT) { case S_IFREG: ip->i_op = &zpl_inode_operations; ip->i_fop = &zpl_file_operations; ip->i_mapping->a_ops = &zpl_address_space_operations; break; case S_IFDIR: ip->i_op = &zpl_dir_inode_operations; ip->i_fop = &zpl_dir_file_operations; ITOZ(ip)->z_zn_prefetch = B_TRUE; break; case S_IFLNK: ip->i_op = &zpl_symlink_inode_operations; break; /* * rdev is only stored in a SA only for device files. */ case S_IFCHR: case S_IFBLK: (void) sa_lookup(ITOZ(ip)->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), &rdev, sizeof (rdev)); /*FALLTHROUGH*/ case S_IFIFO: case S_IFSOCK: init_special_inode(ip, ip->i_mode, rdev); ip->i_op = &zpl_special_inode_operations; break; default: zfs_panic_recover("inode %llu has invalid mode: 0x%x\n", (u_longlong_t)ip->i_ino, ip->i_mode); /* Assume the inode is a file and attempt to continue */ ip->i_mode = S_IFREG | 0644; ip->i_op = &zpl_inode_operations; ip->i_fop = &zpl_file_operations; ip->i_mapping->a_ops = &zpl_address_space_operations; break; } } void zfs_set_inode_flags(znode_t *zp, struct inode *ip) { /* * Linux and Solaris have different sets of file attributes, so we * restrict this conversion to the intersection of the two. */ #ifdef HAVE_INODE_SET_FLAGS unsigned int flags = 0; if (zp->z_pflags & ZFS_IMMUTABLE) flags |= S_IMMUTABLE; if (zp->z_pflags & ZFS_APPENDONLY) flags |= S_APPEND; inode_set_flags(ip, flags, S_IMMUTABLE|S_APPEND); #else if (zp->z_pflags & ZFS_IMMUTABLE) ip->i_flags |= S_IMMUTABLE; else ip->i_flags &= ~S_IMMUTABLE; if (zp->z_pflags & ZFS_APPENDONLY) ip->i_flags |= S_APPEND; else ip->i_flags &= ~S_APPEND; #endif } /* * Update the embedded inode given the znode. We should work toward * eliminating this function as soon as possible by removing values * which are duplicated between the znode and inode. If the generic * inode has the correct field it should be used, and the ZFS code * updated to access the inode. This can be done incrementally. */ void zfs_inode_update(znode_t *zp) { zfsvfs_t *zfsvfs; struct inode *ip; uint32_t blksize; u_longlong_t i_blocks; ASSERT(zp != NULL); zfsvfs = ZTOZSB(zp); ip = ZTOI(zp); /* Skip .zfs control nodes which do not exist on disk. */ if (zfsctl_is_node(ip)) return; dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &blksize, &i_blocks); spin_lock(&ip->i_lock); ip->i_blocks = i_blocks; i_size_write(ip, zp->z_size); spin_unlock(&ip->i_lock); } /* * Construct a znode+inode and initialize. * * This does not do a call to dmu_set_user() that is * up to the caller to do, in case you don't want to * return the znode */ static znode_t * zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz, dmu_object_type_t obj_type, uint64_t obj, sa_handle_t *hdl) { znode_t *zp; struct inode *ip; uint64_t mode; uint64_t parent; uint64_t tmp_gen; uint64_t links; uint64_t z_uid, z_gid; uint64_t atime[2], mtime[2], ctime[2]; sa_bulk_attr_t bulk[11]; int count = 0; ASSERT(zfsvfs != NULL); ip = new_inode(zfsvfs->z_sb); if (ip == NULL) return (NULL); zp = ITOZ(ip); ASSERT(zp->z_dirlocks == NULL); ASSERT3P(zp->z_acl_cached, ==, NULL); ASSERT3P(zp->z_xattr_cached, ==, NULL); zp->z_moved = 0; zp->z_sa_hdl = NULL; zp->z_unlinked = 0; zp->z_atime_dirty = 0; zp->z_mapcnt = 0; zp->z_id = db->db_object; zp->z_blksz = blksz; zp->z_seq = 0x7A4653; zp->z_sync_cnt = 0; zp->z_is_mapped = B_FALSE; zp->z_is_ctldir = B_FALSE; zp->z_is_stale = B_FALSE; zp->z_range_lock.zr_size = &zp->z_size; zp->z_range_lock.zr_blksz = &zp->z_blksz; zp->z_range_lock.zr_max_blksz = &ZTOZSB(zp)->z_max_blksz; zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &tmp_gen, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, &zp->z_size, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &z_uid, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &z_gid, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || tmp_gen == 0) { if (hdl == NULL) sa_handle_destroy(zp->z_sa_hdl); zp->z_sa_hdl = NULL; goto error; } zp->z_mode = ip->i_mode = mode; ip->i_generation = (uint32_t)tmp_gen; ip->i_blkbits = SPA_MINBLOCKSHIFT; set_nlink(ip, (uint32_t)links); zfs_uid_write(ip, z_uid); zfs_gid_write(ip, z_gid); zfs_set_inode_flags(zp, ip); /* Cache the xattr parent id */ if (zp->z_pflags & ZFS_XATTR) zp->z_xattr_parent = parent; ZFS_TIME_DECODE(&ip->i_atime, atime); ZFS_TIME_DECODE(&ip->i_mtime, mtime); ZFS_TIME_DECODE(&ip->i_ctime, ctime); ip->i_ino = obj; zfs_inode_update(zp); zfs_inode_set_ops(zfsvfs, ip); /* * The only way insert_inode_locked() can fail is if the ip->i_ino * number is already hashed for this super block. This can never * happen because the inode numbers map 1:1 with the object numbers. * * The one exception is rolling back a mounted file system, but in * this case all the active inode are unhashed during the rollback. */ VERIFY3S(insert_inode_locked(ip), ==, 0); mutex_enter(&zfsvfs->z_znodes_lock); list_insert_tail(&zfsvfs->z_all_znodes, zp); zfsvfs->z_nr_znodes++; membar_producer(); mutex_exit(&zfsvfs->z_znodes_lock); unlock_new_inode(ip); return (zp); error: iput(ip); return (NULL); } /* * Safely mark an inode dirty. Inodes which are part of a read-only * file system or snapshot may not be dirtied. */ void zfs_mark_inode_dirty(struct inode *ip) { zfsvfs_t *zfsvfs = ITOZSB(ip); if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os)) return; mark_inode_dirty(ip); } static uint64_t empty_xattr; static uint64_t pad[4]; static zfs_acl_phys_t acl_phys; /* * Create a new DMU object to hold a zfs znode. * * IN: dzp - parent directory for new znode * vap - file attributes for new znode * tx - dmu transaction id for zap operations * cr - credentials of caller * flag - flags: * IS_ROOT_NODE - new object will be root * IS_XATTR - new object is an attribute * bonuslen - length of bonus buffer * setaclp - File/Dir initial ACL * fuidp - Tracks fuid allocation. * * OUT: zpp - allocated znode * */ void zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids) { uint64_t crtime[2], atime[2], mtime[2], ctime[2]; uint64_t mode, size, links, parent, pflags; uint64_t dzp_pflags = 0; uint64_t rdev = 0; zfsvfs_t *zfsvfs = ZTOZSB(dzp); dmu_buf_t *db; inode_timespec_t now; uint64_t gen, obj; int bonuslen; int dnodesize; sa_handle_t *sa_hdl; dmu_object_type_t obj_type; sa_bulk_attr_t *sa_attrs; int cnt = 0; zfs_acl_locator_cb_t locate = { 0 }; znode_hold_t *zh; if (zfsvfs->z_replay) { obj = vap->va_nodeid; now = vap->va_ctime; /* see zfs_replay_create() */ gen = vap->va_nblocks; /* ditto */ dnodesize = vap->va_fsid; /* ditto */ } else { obj = 0; gethrestime(&now); gen = dmu_tx_get_txg(tx); dnodesize = dmu_objset_dnodesize(zfsvfs->z_os); } if (dnodesize == 0) dnodesize = DNODE_MIN_SIZE; obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE; bonuslen = (obj_type == DMU_OT_SA) ? DN_BONUS_SIZE(dnodesize) : ZFS_OLD_ZNODE_PHYS_SIZE; /* * Create a new DMU object. */ /* * There's currently no mechanism for pre-reading the blocks that will * be needed to allocate a new object, so we accept the small chance * that there will be an i/o error and we will fail one of the * assertions below. */ if (S_ISDIR(vap->va_mode)) { if (zfsvfs->z_replay) { VERIFY0(zap_create_claim_norm_dnsize(zfsvfs->z_os, obj, zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, obj_type, bonuslen, dnodesize, tx)); } else { obj = zap_create_norm_dnsize(zfsvfs->z_os, zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, obj_type, bonuslen, dnodesize, tx); } } else { if (zfsvfs->z_replay) { VERIFY0(dmu_object_claim_dnsize(zfsvfs->z_os, obj, DMU_OT_PLAIN_FILE_CONTENTS, 0, obj_type, bonuslen, dnodesize, tx)); } else { obj = dmu_object_alloc_dnsize(zfsvfs->z_os, DMU_OT_PLAIN_FILE_CONTENTS, 0, obj_type, bonuslen, dnodesize, tx); } } zh = zfs_znode_hold_enter(zfsvfs, obj); VERIFY0(sa_buf_hold(zfsvfs->z_os, obj, NULL, &db)); /* * If this is the root, fix up the half-initialized parent pointer * to reference the just-allocated physical data area. */ if (flag & IS_ROOT_NODE) { dzp->z_id = obj; } else { dzp_pflags = dzp->z_pflags; } /* * If parent is an xattr, so am I. */ if (dzp_pflags & ZFS_XATTR) { flag |= IS_XATTR; } if (zfsvfs->z_use_fuids) pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; else pflags = 0; if (S_ISDIR(vap->va_mode)) { size = 2; /* contents ("." and "..") */ links = 2; } else { size = 0; links = (flag & IS_TMPFILE) ? 0 : 1; } if (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode)) rdev = vap->va_rdev; parent = dzp->z_id; mode = acl_ids->z_mode; if (flag & IS_XATTR) pflags |= ZFS_XATTR; /* * No execs denied will be deterimed when zfs_mode_compute() is called. */ pflags |= acl_ids->z_aclp->z_hints & (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT| ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED); ZFS_TIME_ENCODE(&now, crtime); ZFS_TIME_ENCODE(&now, ctime); if (vap->va_mask & ATTR_ATIME) { ZFS_TIME_ENCODE(&vap->va_atime, atime); } else { ZFS_TIME_ENCODE(&now, atime); } if (vap->va_mask & ATTR_MTIME) { ZFS_TIME_ENCODE(&vap->va_mtime, mtime); } else { ZFS_TIME_ENCODE(&now, mtime); } /* Now add in all of the "SA" attributes */ VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED, &sa_hdl)); /* * Setup the array of attributes to be replaced/set on the new file * * order for DMU_OT_ZNODE is critical since it needs to be constructed * in the old znode_phys_t format. Don't change this ordering */ sa_attrs = kmem_alloc(sizeof (sa_bulk_attr_t) * ZPL_END, KM_SLEEP); if (obj_type == DMU_OT_ZNODE) { SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), NULL, &crtime, 16); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), NULL, &gen, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), NULL, &size, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); } else { SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), NULL, &size, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), NULL, &gen, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, &acl_ids->z_fuid, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, &acl_ids->z_fgid, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), NULL, &pflags, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), NULL, &crtime, 16); } SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8); if (obj_type == DMU_OT_ZNODE) { SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL, &empty_xattr, 8); } if (obj_type == DMU_OT_ZNODE || (S_ISBLK(vap->va_mode) || S_ISCHR(vap->va_mode))) { SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs), NULL, &rdev, 8); } if (obj_type == DMU_OT_ZNODE) { SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), NULL, &pflags, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, &acl_ids->z_fuid, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, &acl_ids->z_fgid, 8); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad, sizeof (uint64_t) * 4); SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL, &acl_phys, sizeof (zfs_acl_phys_t)); } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) { SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL, &acl_ids->z_aclp->z_acl_count, 8); locate.cb_aclp = acl_ids->z_aclp; SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs), zfs_acl_data_locator, &locate, acl_ids->z_aclp->z_acl_bytes); mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags, acl_ids->z_fuid, acl_ids->z_fgid); } VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0); if (!(flag & IS_ROOT_NODE)) { /* * The call to zfs_znode_alloc() may fail if memory is low * via the call path: alloc_inode() -> inode_init_always() -> * security_inode_alloc() -> inode_alloc_security(). Since * the existing code is written such that zfs_mknode() can * not fail retry until sufficient memory has been reclaimed. */ do { *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, obj, sa_hdl); } while (*zpp == NULL); VERIFY(*zpp != NULL); VERIFY(dzp != NULL); } else { /* * If we are creating the root node, the "parent" we * passed in is the znode for the root. */ *zpp = dzp; (*zpp)->z_sa_hdl = sa_hdl; } (*zpp)->z_pflags = pflags; (*zpp)->z_mode = ZTOI(*zpp)->i_mode = mode; (*zpp)->z_dnodesize = dnodesize; if (obj_type == DMU_OT_ZNODE || acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) { VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx)); } kmem_free(sa_attrs, sizeof (sa_bulk_attr_t) * ZPL_END); zfs_znode_hold_exit(zfsvfs, zh); } /* * Update in-core attributes. It is assumed the caller will be doing an * sa_bulk_update to push the changes out. */ void zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx) { xoptattr_t *xoap; boolean_t update_inode = B_FALSE; xoap = xva_getxoptattr(xvap); ASSERT(xoap); if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { uint64_t times[2]; ZFS_TIME_ENCODE(&xoap->xoa_createtime, times); (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(ZTOZSB(zp)), ×, sizeof (times), tx); XVA_SET_RTN(xvap, XAT_CREATETIME); } if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_READONLY); } if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_HIDDEN); } if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_SYSTEM); } if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_ARCHIVE); } if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_IMMUTABLE); update_inode = B_TRUE; } if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_NOUNLINK); } if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_APPENDONLY); update_inode = B_TRUE; } if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_NODUMP); } if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_OPAQUE); } if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, xoap->xoa_av_quarantined, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); } if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_AV_MODIFIED); } if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { zfs_sa_set_scanstamp(zp, xvap, tx); XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); } if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_REPARSE); } if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_OFFLINE); } if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse, zp->z_pflags, tx); XVA_SET_RTN(xvap, XAT_SPARSE); } if (update_inode) zfs_set_inode_flags(zp, ZTOI(zp)); } int zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) { dmu_object_info_t doi; dmu_buf_t *db; znode_t *zp; znode_hold_t *zh; int err; sa_handle_t *hdl; *zpp = NULL; again: zh = zfs_znode_hold_enter(zfsvfs, obj_num); err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); if (err) { zfs_znode_hold_exit(zfsvfs, zh); return (err); } dmu_object_info_from_db(db, &doi); if (doi.doi_bonus_type != DMU_OT_SA && (doi.doi_bonus_type != DMU_OT_ZNODE || (doi.doi_bonus_type == DMU_OT_ZNODE && doi.doi_bonus_size < sizeof (znode_phys_t)))) { sa_buf_rele(db, NULL); zfs_znode_hold_exit(zfsvfs, zh); return (SET_ERROR(EINVAL)); } hdl = dmu_buf_get_user(db); if (hdl != NULL) { zp = sa_get_userdata(hdl); /* * Since "SA" does immediate eviction we * should never find a sa handle that doesn't * know about the znode. */ ASSERT3P(zp, !=, NULL); mutex_enter(&zp->z_lock); ASSERT3U(zp->z_id, ==, obj_num); /* * If igrab() returns NULL the VFS has independently * determined the inode should be evicted and has * called iput_final() to start the eviction process. * The SA handle is still valid but because the VFS * requires that the eviction succeed we must drop * our locks and references to allow the eviction to * complete. The zfs_zget() may then be retried. * * This unlikely case could be optimized by registering * a sops->drop_inode() callback. The callback would * need to detect the active SA hold thereby informing * the VFS that this inode should not be evicted. */ if (igrab(ZTOI(zp)) == NULL) { mutex_exit(&zp->z_lock); sa_buf_rele(db, NULL); zfs_znode_hold_exit(zfsvfs, zh); /* inode might need this to finish evict */ cond_resched(); goto again; } *zpp = zp; err = 0; mutex_exit(&zp->z_lock); sa_buf_rele(db, NULL); zfs_znode_hold_exit(zfsvfs, zh); return (err); } /* * Not found create new znode/vnode but only if file exists. * * There is a small window where zfs_vget() could * find this object while a file create is still in * progress. This is checked for in zfs_znode_alloc() * * if zfs_znode_alloc() fails it will drop the hold on the * bonus buffer. */ zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size, doi.doi_bonus_type, obj_num, NULL); if (zp == NULL) { err = SET_ERROR(ENOENT); } else { *zpp = zp; } zfs_znode_hold_exit(zfsvfs, zh); return (err); } int zfs_rezget(znode_t *zp) { zfsvfs_t *zfsvfs = ZTOZSB(zp); dmu_object_info_t doi; dmu_buf_t *db; uint64_t obj_num = zp->z_id; uint64_t mode; uint64_t links; sa_bulk_attr_t bulk[10]; int err; int count = 0; uint64_t gen; uint64_t z_uid, z_gid; uint64_t atime[2], mtime[2], ctime[2]; znode_hold_t *zh; /* * skip ctldir, otherwise they will always get invalidated. This will * cause funny behaviour for the mounted snapdirs. Especially for * Linux >= 3.18, d_invalidate will detach the mountpoint and prevent * anyone automount it again as long as someone is still using the * detached mount. */ if (zp->z_is_ctldir) return (0); zh = zfs_znode_hold_enter(zfsvfs, obj_num); mutex_enter(&zp->z_acl_lock); if (zp->z_acl_cached) { zfs_acl_free(zp->z_acl_cached); zp->z_acl_cached = NULL; } mutex_exit(&zp->z_acl_lock); rw_enter(&zp->z_xattr_lock, RW_WRITER); if (zp->z_xattr_cached) { nvlist_free(zp->z_xattr_cached); zp->z_xattr_cached = NULL; } rw_exit(&zp->z_xattr_lock); ASSERT(zp->z_sa_hdl == NULL); err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); if (err) { zfs_znode_hold_exit(zfsvfs, zh); return (err); } dmu_object_info_from_db(db, &doi); if (doi.doi_bonus_type != DMU_OT_SA && (doi.doi_bonus_type != DMU_OT_ZNODE || (doi.doi_bonus_type == DMU_OT_ZNODE && doi.doi_bonus_size < sizeof (znode_phys_t)))) { sa_buf_rele(db, NULL); zfs_znode_hold_exit(zfsvfs, zh); return (SET_ERROR(EINVAL)); } zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL); /* reload cached values */ SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &gen, sizeof (gen)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, &zp->z_size, sizeof (zp->z_size)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, &links, sizeof (links)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, sizeof (zp->z_pflags)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &z_uid, sizeof (z_uid)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &z_gid, sizeof (z_gid)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, sizeof (mode)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) { zfs_znode_dmu_fini(zp); zfs_znode_hold_exit(zfsvfs, zh); return (SET_ERROR(EIO)); } zp->z_mode = ZTOI(zp)->i_mode = mode; zfs_uid_write(ZTOI(zp), z_uid); zfs_gid_write(ZTOI(zp), z_gid); ZFS_TIME_DECODE(&ZTOI(zp)->i_atime, atime); ZFS_TIME_DECODE(&ZTOI(zp)->i_mtime, mtime); ZFS_TIME_DECODE(&ZTOI(zp)->i_ctime, ctime); if (gen != ZTOI(zp)->i_generation) { zfs_znode_dmu_fini(zp); zfs_znode_hold_exit(zfsvfs, zh); return (SET_ERROR(EIO)); } zp->z_unlinked = (ZTOI(zp)->i_nlink == 0); set_nlink(ZTOI(zp), (uint32_t)links); zfs_set_inode_flags(zp, ZTOI(zp)); zp->z_blksz = doi.doi_data_block_size; zp->z_atime_dirty = 0; zfs_inode_update(zp); zfs_znode_hold_exit(zfsvfs, zh); return (0); } void zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) { zfsvfs_t *zfsvfs = ZTOZSB(zp); objset_t *os = zfsvfs->z_os; uint64_t obj = zp->z_id; uint64_t acl_obj = zfs_external_acl(zp); znode_hold_t *zh; zh = zfs_znode_hold_enter(zfsvfs, obj); if (acl_obj) { VERIFY(!zp->z_is_sa); VERIFY(0 == dmu_object_free(os, acl_obj, tx)); } VERIFY(0 == dmu_object_free(os, obj, tx)); zfs_znode_dmu_fini(zp); zfs_znode_hold_exit(zfsvfs, zh); } void zfs_zinactive(znode_t *zp) { zfsvfs_t *zfsvfs = ZTOZSB(zp); uint64_t z_id = zp->z_id; znode_hold_t *zh; ASSERT(zp->z_sa_hdl); /* * Don't allow a zfs_zget() while were trying to release this znode. */ zh = zfs_znode_hold_enter(zfsvfs, z_id); mutex_enter(&zp->z_lock); /* * If this was the last reference to a file with no links, * remove the file from the file system. */ if (zp->z_unlinked) { mutex_exit(&zp->z_lock); zfs_znode_hold_exit(zfsvfs, zh); zfs_rmnode(zp); return; } mutex_exit(&zp->z_lock); zfs_znode_dmu_fini(zp); zfs_znode_hold_exit(zfsvfs, zh); } static inline int zfs_compare_timespec(struct timespec *t1, struct timespec *t2) { if (t1->tv_sec < t2->tv_sec) return (-1); if (t1->tv_sec > t2->tv_sec) return (1); return (t1->tv_nsec - t2->tv_nsec); } /* * Prepare to update znode time stamps. * * IN: zp - znode requiring timestamp update * flag - ATTR_MTIME, ATTR_CTIME flags * * OUT: zp - z_seq * mtime - new mtime * ctime - new ctime * * Note: We don't update atime here, because we rely on Linux VFS to do * atime updating. */ void zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2], uint64_t ctime[2]) { inode_timespec_t now; gethrestime(&now); zp->z_seq++; if (flag & ATTR_MTIME) { ZFS_TIME_ENCODE(&now, mtime); ZFS_TIME_DECODE(&(ZTOI(zp)->i_mtime), mtime); if (ZTOZSB(zp)->z_use_fuids) { zp->z_pflags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED); } } if (flag & ATTR_CTIME) { ZFS_TIME_ENCODE(&now, ctime); ZFS_TIME_DECODE(&(ZTOI(zp)->i_ctime), ctime); if (ZTOZSB(zp)->z_use_fuids) zp->z_pflags |= ZFS_ARCHIVE; } } /* * Grow the block size for a file. * * IN: zp - znode of file to free data in. * size - requested block size * tx - open transaction. * * NOTE: this function assumes that the znode is write locked. */ void zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) { int error; u_longlong_t dummy; if (size <= zp->z_blksz) return; /* * If the file size is already greater than the current blocksize, * we will not grow. If there is more than one block in a file, * the blocksize cannot change. */ if (zp->z_blksz && zp->z_size > zp->z_blksz) return; error = dmu_object_set_blocksize(ZTOZSB(zp)->z_os, zp->z_id, size, 0, tx); if (error == ENOTSUP) return; ASSERT0(error); /* What blocksize did we actually get? */ dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy); } /* * Increase the file length * * IN: zp - znode of file to free data in. * end - new end-of-file * * RETURN: 0 on success, error code on failure */ static int zfs_extend(znode_t *zp, uint64_t end) { zfsvfs_t *zfsvfs = ZTOZSB(zp); dmu_tx_t *tx; rl_t *rl; uint64_t newblksz; int error; /* * We will change zp_size, lock the whole file. */ rl = zfs_range_lock(&zp->z_range_lock, 0, UINT64_MAX, RL_WRITER); /* * Nothing to do if file already at desired length. */ if (end <= zp->z_size) { zfs_range_unlock(rl); return (0); } tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); if (end > zp->z_blksz && (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { /* * We are growing the file past the current block size. */ if (zp->z_blksz > ZTOZSB(zp)->z_max_blksz) { /* * File's blocksize is already larger than the * "recordsize" property. Only let it grow to * the next power of 2. */ ASSERT(!ISP2(zp->z_blksz)); newblksz = MIN(end, 1 << highbit64(zp->z_blksz)); } else { newblksz = MIN(end, ZTOZSB(zp)->z_max_blksz); } dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); } else { newblksz = 0; } error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); zfs_range_unlock(rl); return (error); } if (newblksz) zfs_grow_blocksize(zp, newblksz, tx); zp->z_size = end; VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(ZTOZSB(zp)), &zp->z_size, sizeof (zp->z_size), tx)); zfs_range_unlock(rl); dmu_tx_commit(tx); return (0); } /* * zfs_zero_partial_page - Modeled after update_pages() but * with different arguments and semantics for use by zfs_freesp(). * * Zeroes a piece of a single page cache entry for zp at offset * start and length len. * * Caller must acquire a range lock on the file for the region * being zeroed in order that the ARC and page cache stay in sync. */ static void zfs_zero_partial_page(znode_t *zp, uint64_t start, uint64_t len) { struct address_space *mp = ZTOI(zp)->i_mapping; struct page *pp; int64_t off; void *pb; ASSERT((start & PAGE_MASK) == ((start + len - 1) & PAGE_MASK)); off = start & (PAGE_SIZE - 1); start &= PAGE_MASK; pp = find_lock_page(mp, start >> PAGE_SHIFT); if (pp) { if (mapping_writably_mapped(mp)) flush_dcache_page(pp); pb = kmap(pp); bzero(pb + off, len); kunmap(pp); if (mapping_writably_mapped(mp)) flush_dcache_page(pp); mark_page_accessed(pp); SetPageUptodate(pp); ClearPageError(pp); unlock_page(pp); put_page(pp); } } /* * Free space in a file. * * IN: zp - znode of file to free data in. * off - start of section to free. * len - length of section to free. * * RETURN: 0 on success, error code on failure */ static int zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) { zfsvfs_t *zfsvfs = ZTOZSB(zp); rl_t *rl; int error; /* * Lock the range being freed. */ rl = zfs_range_lock(&zp->z_range_lock, off, len, RL_WRITER); /* * Nothing to do if file already at desired length. */ if (off >= zp->z_size) { zfs_range_unlock(rl); return (0); } if (off + len > zp->z_size) len = zp->z_size - off; error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); /* * Zero partial page cache entries. This must be done under a * range lock in order to keep the ARC and page cache in sync. */ if (zp->z_is_mapped) { loff_t first_page, last_page, page_len; loff_t first_page_offset, last_page_offset; /* first possible full page in hole */ first_page = (off + PAGE_SIZE - 1) >> PAGE_SHIFT; /* last page of hole */ last_page = (off + len) >> PAGE_SHIFT; /* offset of first_page */ first_page_offset = first_page << PAGE_SHIFT; /* offset of last_page */ last_page_offset = last_page << PAGE_SHIFT; /* truncate whole pages */ if (last_page_offset > first_page_offset) { truncate_inode_pages_range(ZTOI(zp)->i_mapping, first_page_offset, last_page_offset - 1); } /* truncate sub-page ranges */ if (first_page > last_page) { /* entire punched area within a single page */ zfs_zero_partial_page(zp, off, len); } else { /* beginning of punched area at the end of a page */ page_len = first_page_offset - off; if (page_len > 0) zfs_zero_partial_page(zp, off, page_len); /* end of punched area at the beginning of a page */ page_len = off + len - last_page_offset; if (page_len > 0) zfs_zero_partial_page(zp, last_page_offset, page_len); } } zfs_range_unlock(rl); return (error); } /* * Truncate a file * * IN: zp - znode of file to free data in. * end - new end-of-file. * * RETURN: 0 on success, error code on failure */ static int zfs_trunc(znode_t *zp, uint64_t end) { zfsvfs_t *zfsvfs = ZTOZSB(zp); dmu_tx_t *tx; rl_t *rl; int error; sa_bulk_attr_t bulk[2]; int count = 0; /* * We will change zp_size, lock the whole file. */ rl = zfs_range_lock(&zp->z_range_lock, 0, UINT64_MAX, RL_WRITER); /* * Nothing to do if file already at desired length. */ if (end >= zp->z_size) { zfs_range_unlock(rl); return (0); } error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); if (error) { zfs_range_unlock(rl); return (error); } tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); dmu_tx_mark_netfree(tx); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); zfs_range_unlock(rl); return (error); } zp->z_size = end; SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, &zp->z_size, sizeof (zp->z_size)); if (end == 0) { zp->z_pflags &= ~ZFS_SPARSE; SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 8); } VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0); dmu_tx_commit(tx); zfs_range_unlock(rl); return (0); } /* * Free space in a file * * IN: zp - znode of file to free data in. * off - start of range * len - end of range (0 => EOF) * flag - current file open mode flags. * log - TRUE if this action should be logged * * RETURN: 0 on success, error code on failure */ int zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) { dmu_tx_t *tx; zfsvfs_t *zfsvfs = ZTOZSB(zp); zilog_t *zilog = zfsvfs->z_log; uint64_t mode; uint64_t mtime[2], ctime[2]; sa_bulk_attr_t bulk[3]; int count = 0; int error; if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode, sizeof (mode))) != 0) return (error); if (off > zp->z_size) { error = zfs_extend(zp, off+len); if (error == 0 && log) goto log; goto out; } if (len == 0) { error = zfs_trunc(zp, off); } else { if ((error = zfs_free_range(zp, off, len)) == 0 && off + len > zp->z_size) error = zfs_extend(zp, off+len); } if (error || !log) goto out; log: tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); goto out; } SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 8); zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime); error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); ASSERT(error == 0); zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); dmu_tx_commit(tx); zfs_inode_update(zp); error = 0; out: /* * Truncate the page cache - for file truncate operations, use * the purpose-built API for truncations. For punching operations, * the truncation is handled under a range lock in zfs_free_range. */ if (len == 0) truncate_setsize(ZTOI(zp), off); return (error); } void zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) { struct super_block *sb; zfsvfs_t *zfsvfs; uint64_t moid, obj, sa_obj, version; uint64_t sense = ZFS_CASE_SENSITIVE; uint64_t norm = 0; nvpair_t *elem; int size; int error; int i; znode_t *rootzp = NULL; vattr_t vattr; znode_t *zp; zfs_acl_ids_t acl_ids; /* * First attempt to create master node. */ /* * In an empty objset, there are no blocks to read and thus * there can be no i/o errors (which we assert below). */ moid = MASTER_NODE_OBJ; error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, DMU_OT_NONE, 0, tx); ASSERT(error == 0); /* * Set starting attributes. */ version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os))); elem = NULL; while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { /* For the moment we expect all zpl props to be uint64_ts */ uint64_t val; char *name; ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); VERIFY(nvpair_value_uint64(elem, &val) == 0); name = nvpair_name(elem); if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { if (val < version) version = val; } else { error = zap_update(os, moid, name, 8, 1, &val, tx); } ASSERT(error == 0); if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) norm = val; else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) sense = val; } ASSERT(version != 0); error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); /* * Create zap object used for SA attribute registration */ if (version >= ZPL_VERSION_SA) { sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, DMU_OT_NONE, 0, tx); error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); ASSERT(error == 0); } else { sa_obj = 0; } /* * Create a delete queue. */ obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); ASSERT(error == 0); /* * Create root znode. Create minimal znode/inode/zfsvfs/sb * to allow zfs_mknode to work. */ vattr.va_mask = ATTR_MODE|ATTR_UID|ATTR_GID; vattr.va_mode = S_IFDIR|0755; vattr.va_uid = crgetuid(cr); vattr.va_gid = crgetgid(cr); rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); rootzp->z_moved = 0; rootzp->z_unlinked = 0; rootzp->z_atime_dirty = 0; rootzp->z_is_sa = USE_SA(version, os); zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); zfsvfs->z_os = os; zfsvfs->z_parent = zfsvfs; zfsvfs->z_version = version; zfsvfs->z_use_fuids = USE_FUIDS(version, os); zfsvfs->z_use_sa = USE_SA(version, os); zfsvfs->z_norm = norm; sb = kmem_zalloc(sizeof (struct super_block), KM_SLEEP); sb->s_fs_info = zfsvfs; ZTOI(rootzp)->i_sb = sb; error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table); ASSERT(error == 0); /* * Fold case on file systems that are always or sometimes case * insensitive. */ if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), offsetof(znode_t, z_link_node)); size = MIN(1 << (highbit64(zfs_object_mutex_size)-1), ZFS_OBJ_MTX_MAX); zfsvfs->z_hold_size = size; zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size, KM_SLEEP); zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP); for (i = 0; i != size; i++) { avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare, sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node)); mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL); } VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, cr, NULL, &acl_ids)); zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids); ASSERT3P(zp, ==, rootzp); error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); ASSERT(error == 0); zfs_acl_ids_free(&acl_ids); atomic_set(&ZTOI(rootzp)->i_count, 0); sa_handle_destroy(rootzp->z_sa_hdl); kmem_cache_free(znode_cache, rootzp); /* * Create shares directory */ error = zfs_create_share_dir(zfsvfs, tx); ASSERT(error == 0); for (i = 0; i != size; i++) { avl_destroy(&zfsvfs->z_hold_trees[i]); mutex_destroy(&zfsvfs->z_hold_locks[i]); } mutex_destroy(&zfsvfs->z_znodes_lock); vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size); vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size); kmem_free(sb, sizeof (struct super_block)); kmem_free(zfsvfs, sizeof (zfsvfs_t)); } #endif /* _KERNEL */ static int zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table) { uint64_t sa_obj = 0; int error; error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); if (error != 0 && error != ENOENT) return (error); error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table); return (error); } static int zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp, dmu_buf_t **db, void *tag) { dmu_object_info_t doi; int error; if ((error = sa_buf_hold(osp, obj, tag, db)) != 0) return (error); dmu_object_info_from_db(*db, &doi); if ((doi.doi_bonus_type != DMU_OT_SA && doi.doi_bonus_type != DMU_OT_ZNODE) || (doi.doi_bonus_type == DMU_OT_ZNODE && doi.doi_bonus_size < sizeof (znode_phys_t))) { sa_buf_rele(*db, tag); return (SET_ERROR(ENOTSUP)); } error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp); if (error != 0) { sa_buf_rele(*db, tag); return (error); } return (0); } void zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag) { sa_handle_destroy(hdl); sa_buf_rele(db, tag); } /* * Given an object number, return its parent object number and whether * or not the object is an extended attribute directory. */ static int zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table, uint64_t *pobjp, int *is_xattrdir) { uint64_t parent; uint64_t pflags; uint64_t mode; uint64_t parent_mode; sa_bulk_attr_t bulk[3]; sa_handle_t *sa_hdl; dmu_buf_t *sa_db; int count = 0; int error; SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL, &parent, sizeof (parent)); SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL, &pflags, sizeof (pflags)); SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, &mode, sizeof (mode)); if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0) return (error); /* * When a link is removed its parent pointer is not changed and will * be invalid. There are two cases where a link is removed but the * file stays around, when it goes to the delete queue and when there * are additional links. */ error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG); if (error != 0) return (error); error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode)); zfs_release_sa_handle(sa_hdl, sa_db, FTAG); if (error != 0) return (error); *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode); /* * Extended attributes can be applied to files, directories, etc. * Otherwise the parent must be a directory. */ if (!*is_xattrdir && !S_ISDIR(parent_mode)) return (EINVAL); *pobjp = parent; return (0); } /* * Given an object number, return some zpl level statistics */ static int zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table, zfs_stat_t *sb) { sa_bulk_attr_t bulk[4]; int count = 0; SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, &sb->zs_mode, sizeof (sb->zs_mode)); SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL, &sb->zs_gen, sizeof (sb->zs_gen)); SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL, &sb->zs_links, sizeof (sb->zs_links)); SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL, &sb->zs_ctime, sizeof (sb->zs_ctime)); return (sa_bulk_lookup(hdl, bulk, count)); } static int zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl, sa_attr_type_t *sa_table, char *buf, int len) { sa_handle_t *sa_hdl; sa_handle_t *prevhdl = NULL; dmu_buf_t *prevdb = NULL; dmu_buf_t *sa_db = NULL; char *path = buf + len - 1; int error; *path = '\0'; sa_hdl = hdl; for (;;) { uint64_t pobj = 0; char component[MAXNAMELEN + 2]; size_t complen; int is_xattrdir = 0; if (prevdb) zfs_release_sa_handle(prevhdl, prevdb, FTAG); if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj, &is_xattrdir)) != 0) break; if (pobj == obj) { if (path[0] != '/') *--path = '/'; break; } component[0] = '/'; if (is_xattrdir) { (void) sprintf(component + 1, ""); } else { error = zap_value_search(osp, pobj, obj, ZFS_DIRENT_OBJ(-1ULL), component + 1); if (error != 0) break; } complen = strlen(component); path -= complen; ASSERT(path >= buf); bcopy(component, path, complen); obj = pobj; if (sa_hdl != hdl) { prevhdl = sa_hdl; prevdb = sa_db; } error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG); if (error != 0) { sa_hdl = prevhdl; sa_db = prevdb; break; } } if (sa_hdl != NULL && sa_hdl != hdl) { ASSERT(sa_db != NULL); zfs_release_sa_handle(sa_hdl, sa_db, FTAG); } if (error == 0) (void) memmove(buf, path, buf + len - path); return (error); } int zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) { sa_attr_type_t *sa_table; sa_handle_t *hdl; dmu_buf_t *db; int error; error = zfs_sa_setup(osp, &sa_table); if (error != 0) return (error); error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); if (error != 0) return (error); error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); zfs_release_sa_handle(hdl, db, FTAG); return (error); } int zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb, char *buf, int len) { char *path = buf + len - 1; sa_attr_type_t *sa_table; sa_handle_t *hdl; dmu_buf_t *db; int error; *path = '\0'; error = zfs_sa_setup(osp, &sa_table); if (error != 0) return (error); error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); if (error != 0) return (error); error = zfs_obj_to_stats_impl(hdl, sa_table, sb); if (error != 0) { zfs_release_sa_handle(hdl, db, FTAG); return (error); } error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); zfs_release_sa_handle(hdl, db, FTAG); return (error); } #if defined(_KERNEL) && defined(HAVE_SPL) EXPORT_SYMBOL(zfs_create_fs); EXPORT_SYMBOL(zfs_obj_to_path); /* CSTYLED */ module_param(zfs_object_mutex_size, uint, 0644); MODULE_PARM_DESC(zfs_object_mutex_size, "Size of znode hold array"); #endif