/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013 by Delphix. All rights reserved. * Copyright (c) 2015 by Chunwei Chen. All rights reserved. */ /* Portions Copyright 2007 Jeremy Teo */ /* Portions Copyright 2010 Robert Milkowski */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fs/fs_subr.h" #include #include #include #include #include #include #include #include #include #include #include /* * Programming rules. * * Each vnode op performs some logical unit of work. To do this, the ZPL must * properly lock its in-core state, create a DMU transaction, do the work, * record this work in the intent log (ZIL), commit the DMU transaction, * and wait for the intent log to commit if it is a synchronous operation. * Moreover, the vnode ops must work in both normal and log replay context. * The ordering of events is important to avoid deadlocks and references * to freed memory. The example below illustrates the following Big Rules: * * (1) A check must be made in each zfs thread for a mounted file system. * This is done avoiding races using ZFS_ENTER(zsb). * A ZFS_EXIT(zsb) is needed before all returns. Any znodes * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros * can return EIO from the calling function. * * (2) iput() should always be the last thing except for zil_commit() * (if necessary) and ZFS_EXIT(). This is for 3 reasons: * First, if it's the last reference, the vnode/znode * can be freed, so the zp may point to freed memory. Second, the last * reference will call zfs_zinactive(), which may induce a lot of work -- * pushing cached pages (which acquires range locks) and syncing out * cached atime changes. Third, zfs_zinactive() may require a new tx, * which could deadlock the system if you were already holding one. * If you must call iput() within a tx then use zfs_iput_async(). * * (3) All range locks must be grabbed before calling dmu_tx_assign(), * as they can span dmu_tx_assign() calls. * * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to * dmu_tx_assign(). This is critical because we don't want to block * while holding locks. * * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This * reduces lock contention and CPU usage when we must wait (note that if * throughput is constrained by the storage, nearly every transaction * must wait). * * Note, in particular, that if a lock is sometimes acquired before * the tx assigns, and sometimes after (e.g. z_lock), then failing * to use a non-blocking assign can deadlock the system. The scenario: * * Thread A has grabbed a lock before calling dmu_tx_assign(). * Thread B is in an already-assigned tx, and blocks for this lock. * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() * forever, because the previous txg can't quiesce until B's tx commits. * * If dmu_tx_assign() returns ERESTART and zsb->z_assign is TXG_NOWAIT, * then drop all locks, call dmu_tx_wait(), and try again. On subsequent * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT, * to indicate that this operation has already called dmu_tx_wait(). * This will ensure that we don't retry forever, waiting a short bit * each time. * * (5) If the operation succeeded, generate the intent log entry for it * before dropping locks. This ensures that the ordering of events * in the intent log matches the order in which they actually occurred. * During ZIL replay the zfs_log_* functions will update the sequence * number to indicate the zil transaction has replayed. * * (6) At the end of each vnode op, the DMU tx must always commit, * regardless of whether there were any errors. * * (7) After dropping all locks, invoke zil_commit(zilog, foid) * to ensure that synchronous semantics are provided when necessary. * * In general, this is how things should be ordered in each vnode op: * * ZFS_ENTER(zsb); // exit if unmounted * top: * zfs_dirent_lock(&dl, ...) // lock directory entry (may igrab()) * rw_enter(...); // grab any other locks you need * tx = dmu_tx_create(...); // get DMU tx * dmu_tx_hold_*(); // hold each object you might modify * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); * if (error) { * rw_exit(...); // drop locks * zfs_dirent_unlock(dl); // unlock directory entry * iput(...); // release held vnodes * if (error == ERESTART) { * waited = B_TRUE; * dmu_tx_wait(tx); * dmu_tx_abort(tx); * goto top; * } * dmu_tx_abort(tx); // abort DMU tx * ZFS_EXIT(zsb); // finished in zfs * return (error); // really out of space * } * error = do_real_work(); // do whatever this VOP does * if (error == 0) * zfs_log_*(...); // on success, make ZIL entry * dmu_tx_commit(tx); // commit DMU tx -- error or not * rw_exit(...); // drop locks * zfs_dirent_unlock(dl); // unlock directory entry * iput(...); // release held vnodes * zil_commit(zilog, foid); // synchronous when necessary * ZFS_EXIT(zsb); // finished in zfs * return (error); // done, report error */ /* * Virus scanning is unsupported. It would be possible to add a hook * here to performance the required virus scan. This could be done * entirely in the kernel or potentially as an update to invoke a * scanning utility. */ static int zfs_vscan(struct inode *ip, cred_t *cr, int async) { return (0); } /* ARGSUSED */ int zfs_open(struct inode *ip, int mode, int flag, cred_t *cr) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ITOZSB(ip); ZFS_ENTER(zsb); ZFS_VERIFY_ZP(zp); /* Honor ZFS_APPENDONLY file attribute */ if ((mode & FMODE_WRITE) && (zp->z_pflags & ZFS_APPENDONLY) && ((flag & O_APPEND) == 0)) { ZFS_EXIT(zsb); return (SET_ERROR(EPERM)); } /* Virus scan eligible files on open */ if (!zfs_has_ctldir(zp) && zsb->z_vscan && S_ISREG(ip->i_mode) && !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { if (zfs_vscan(ip, cr, 0) != 0) { ZFS_EXIT(zsb); return (SET_ERROR(EACCES)); } } /* Keep a count of the synchronous opens in the znode */ if (flag & O_SYNC) atomic_inc_32(&zp->z_sync_cnt); ZFS_EXIT(zsb); return (0); } EXPORT_SYMBOL(zfs_open); /* ARGSUSED */ int zfs_close(struct inode *ip, int flag, cred_t *cr) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ITOZSB(ip); ZFS_ENTER(zsb); ZFS_VERIFY_ZP(zp); /* Decrement the synchronous opens in the znode */ if (flag & O_SYNC) atomic_dec_32(&zp->z_sync_cnt); if (!zfs_has_ctldir(zp) && zsb->z_vscan && S_ISREG(ip->i_mode) && !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) VERIFY(zfs_vscan(ip, cr, 1) == 0); ZFS_EXIT(zsb); return (0); } EXPORT_SYMBOL(zfs_close); #if defined(SEEK_HOLE) && defined(SEEK_DATA) /* * Lseek support for finding holes (cmd == SEEK_HOLE) and * data (cmd == SEEK_DATA). "off" is an in/out parameter. */ static int zfs_holey_common(struct inode *ip, int cmd, loff_t *off) { znode_t *zp = ITOZ(ip); uint64_t noff = (uint64_t)*off; /* new offset */ uint64_t file_sz; int error; boolean_t hole; file_sz = zp->z_size; if (noff >= file_sz) { return (SET_ERROR(ENXIO)); } if (cmd == SEEK_HOLE) hole = B_TRUE; else hole = B_FALSE; error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff); if (error == ESRCH) return (SET_ERROR(ENXIO)); /* * We could find a hole that begins after the logical end-of-file, * because dmu_offset_next() only works on whole blocks. If the * EOF falls mid-block, then indicate that the "virtual hole" * at the end of the file begins at the logical EOF, rather than * at the end of the last block. */ if (noff > file_sz) { ASSERT(hole); noff = file_sz; } if (noff < *off) return (error); *off = noff; return (error); } int zfs_holey(struct inode *ip, int cmd, loff_t *off) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ITOZSB(ip); int error; ZFS_ENTER(zsb); ZFS_VERIFY_ZP(zp); error = zfs_holey_common(ip, cmd, off); ZFS_EXIT(zsb); return (error); } EXPORT_SYMBOL(zfs_holey); #endif /* SEEK_HOLE && SEEK_DATA */ #if defined(_KERNEL) /* * When a file is memory mapped, we must keep the IO data synchronized * between the DMU cache and the memory mapped pages. What this means: * * On Write: If we find a memory mapped page, we write to *both* * the page and the dmu buffer. */ static void update_pages(struct inode *ip, int64_t start, int len, objset_t *os, uint64_t oid) { struct address_space *mp = ip->i_mapping; struct page *pp; uint64_t nbytes; int64_t off; void *pb; off = start & (PAGE_CACHE_SIZE-1); for (start &= PAGE_CACHE_MASK; len > 0; start += PAGE_CACHE_SIZE) { nbytes = MIN(PAGE_CACHE_SIZE - off, len); pp = find_lock_page(mp, start >> PAGE_CACHE_SHIFT); if (pp) { if (mapping_writably_mapped(mp)) flush_dcache_page(pp); pb = kmap(pp); (void) dmu_read(os, oid, start+off, nbytes, pb+off, DMU_READ_PREFETCH); kunmap(pp); if (mapping_writably_mapped(mp)) flush_dcache_page(pp); mark_page_accessed(pp); SetPageUptodate(pp); ClearPageError(pp); unlock_page(pp); page_cache_release(pp); } len -= nbytes; off = 0; } } /* * When a file is memory mapped, we must keep the IO data synchronized * between the DMU cache and the memory mapped pages. What this means: * * On Read: We "read" preferentially from memory mapped pages, * else we default from the dmu buffer. * * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when * the file is memory mapped. */ static int mappedread(struct inode *ip, int nbytes, uio_t *uio) { struct address_space *mp = ip->i_mapping; struct page *pp; znode_t *zp = ITOZ(ip); int64_t start, off; uint64_t bytes; int len = nbytes; int error = 0; void *pb; start = uio->uio_loffset; off = start & (PAGE_CACHE_SIZE-1); for (start &= PAGE_CACHE_MASK; len > 0; start += PAGE_CACHE_SIZE) { bytes = MIN(PAGE_CACHE_SIZE - off, len); pp = find_lock_page(mp, start >> PAGE_CACHE_SHIFT); if (pp) { ASSERT(PageUptodate(pp)); pb = kmap(pp); error = uiomove(pb + off, bytes, UIO_READ, uio); kunmap(pp); if (mapping_writably_mapped(mp)) flush_dcache_page(pp); mark_page_accessed(pp); unlock_page(pp); page_cache_release(pp); } else { error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), uio, bytes); } len -= bytes; off = 0; if (error) break; } return (error); } #endif /* _KERNEL */ unsigned long zfs_read_chunk_size = 1024 * 1024; /* Tunable */ /* * Read bytes from specified file into supplied buffer. * * IN: ip - inode of file to be read from. * uio - structure supplying read location, range info, * and return buffer. * ioflag - FSYNC flags; used to provide FRSYNC semantics. * O_DIRECT flag; used to bypass page cache. * cr - credentials of caller. * * OUT: uio - updated offset and range, buffer filled. * * RETURN: 0 on success, error code on failure. * * Side Effects: * inode - atime updated if byte count > 0 */ /* ARGSUSED */ int zfs_read(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ITOZSB(ip); ssize_t n, nbytes; int error = 0; rl_t *rl; #ifdef HAVE_UIO_ZEROCOPY xuio_t *xuio = NULL; #endif /* HAVE_UIO_ZEROCOPY */ ZFS_ENTER(zsb); ZFS_VERIFY_ZP(zp); if (zp->z_pflags & ZFS_AV_QUARANTINED) { ZFS_EXIT(zsb); return (SET_ERROR(EACCES)); } /* * Validate file offset */ if (uio->uio_loffset < (offset_t)0) { ZFS_EXIT(zsb); return (SET_ERROR(EINVAL)); } /* * Fasttrack empty reads */ if (uio->uio_resid == 0) { ZFS_EXIT(zsb); return (0); } /* * If we're in FRSYNC mode, sync out this znode before reading it. */ if (ioflag & FRSYNC || zsb->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zsb->z_log, zp->z_id); /* * Lock the range against changes. */ rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); /* * If we are reading past end-of-file we can skip * to the end; but we might still need to set atime. */ if (uio->uio_loffset >= zp->z_size) { error = 0; goto out; } ASSERT(uio->uio_loffset < zp->z_size); n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); #ifdef HAVE_UIO_ZEROCOPY if ((uio->uio_extflg == UIO_XUIO) && (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { int nblk; int blksz = zp->z_blksz; uint64_t offset = uio->uio_loffset; xuio = (xuio_t *)uio; if ((ISP2(blksz))) { nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, blksz)) / blksz; } else { ASSERT(offset + n <= blksz); nblk = 1; } (void) dmu_xuio_init(xuio, nblk); if (vn_has_cached_data(ip)) { /* * For simplicity, we always allocate a full buffer * even if we only expect to read a portion of a block. */ while (--nblk >= 0) { (void) dmu_xuio_add(xuio, dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), blksz), 0, blksz); } } } #endif /* HAVE_UIO_ZEROCOPY */ while (n > 0) { nbytes = MIN(n, zfs_read_chunk_size - P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); if (zp->z_is_mapped && !(ioflag & O_DIRECT)) { error = mappedread(ip, nbytes, uio); } else { error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), uio, nbytes); } if (error) { /* convert checksum errors into IO errors */ if (error == ECKSUM) error = SET_ERROR(EIO); break; } n -= nbytes; } out: zfs_range_unlock(rl); ZFS_ACCESSTIME_STAMP(zsb, zp); ZFS_EXIT(zsb); return (error); } EXPORT_SYMBOL(zfs_read); /* * Write the bytes to a file. * * IN: ip - inode of file to be written to. * uio - structure supplying write location, range info, * and data buffer. * ioflag - FAPPEND flag set if in append mode. * O_DIRECT flag; used to bypass page cache. * cr - credentials of caller. * * OUT: uio - updated offset and range. * * RETURN: 0 if success * error code if failure * * Timestamps: * ip - ctime|mtime updated if byte count > 0 */ /* ARGSUSED */ int zfs_write(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr) { znode_t *zp = ITOZ(ip); rlim64_t limit = uio->uio_limit; ssize_t start_resid = uio->uio_resid; ssize_t tx_bytes; uint64_t end_size; dmu_tx_t *tx; zfs_sb_t *zsb = ZTOZSB(zp); zilog_t *zilog; offset_t woff; ssize_t n, nbytes; rl_t *rl; int max_blksz = zsb->z_max_blksz; int error = 0; arc_buf_t *abuf; const iovec_t *aiov = NULL; xuio_t *xuio = NULL; int i_iov = 0; const iovec_t *iovp = uio->uio_iov; int write_eof; int count = 0; sa_bulk_attr_t bulk[4]; uint64_t mtime[2], ctime[2]; ASSERTV(int iovcnt = uio->uio_iovcnt); /* * Fasttrack empty write */ n = start_resid; if (n == 0) return (0); if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) limit = MAXOFFSET_T; ZFS_ENTER(zsb); ZFS_VERIFY_ZP(zp); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL, &mtime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL, &ctime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zsb), NULL, &zp->z_size, 8); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb), NULL, &zp->z_pflags, 8); /* * If immutable or not appending then return EPERM */ if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && (uio->uio_loffset < zp->z_size))) { ZFS_EXIT(zsb); return (SET_ERROR(EPERM)); } zilog = zsb->z_log; /* * Validate file offset */ woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; if (woff < 0) { ZFS_EXIT(zsb); return (SET_ERROR(EINVAL)); } /* * Pre-fault the pages to ensure slow (eg NFS) pages * don't hold up txg. * Skip this if uio contains loaned arc_buf. */ #ifdef HAVE_UIO_ZEROCOPY if ((uio->uio_extflg == UIO_XUIO) && (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) xuio = (xuio_t *)uio; else #endif uio_prefaultpages(MIN(n, max_blksz), uio); /* * If in append mode, set the io offset pointer to eof. */ if (ioflag & FAPPEND) { /* * Obtain an appending range lock to guarantee file append * semantics. We reset the write offset once we have the lock. */ rl = zfs_range_lock(zp, 0, n, RL_APPEND); woff = rl->r_off; if (rl->r_len == UINT64_MAX) { /* * We overlocked the file because this write will cause * the file block size to increase. * Note that zp_size cannot change with this lock held. */ woff = zp->z_size; } uio->uio_loffset = woff; } else { /* * Note that if the file block size will change as a result of * this write, then this range lock will lock the entire file * so that we can re-write the block safely. */ rl = zfs_range_lock(zp, woff, n, RL_WRITER); } if (woff >= limit) { zfs_range_unlock(rl); ZFS_EXIT(zsb); return (SET_ERROR(EFBIG)); } if ((woff + n) > limit || woff > (limit - n)) n = limit - woff; /* Will this write extend the file length? */ write_eof = (woff + n > zp->z_size); end_size = MAX(zp->z_size, woff + n); /* * Write the file in reasonable size chunks. Each chunk is written * in a separate transaction; this keeps the intent log records small * and allows us to do more fine-grained space accounting. */ while (n > 0) { abuf = NULL; woff = uio->uio_loffset; if (zfs_owner_overquota(zsb, zp, B_FALSE) || zfs_owner_overquota(zsb, zp, B_TRUE)) { if (abuf != NULL) dmu_return_arcbuf(abuf); error = SET_ERROR(EDQUOT); break; } if (xuio && abuf == NULL) { ASSERT(i_iov < iovcnt); ASSERT3U(uio->uio_segflg, !=, UIO_BVEC); aiov = &iovp[i_iov]; abuf = dmu_xuio_arcbuf(xuio, i_iov); dmu_xuio_clear(xuio, i_iov); ASSERT((aiov->iov_base == abuf->b_data) || ((char *)aiov->iov_base - (char *)abuf->b_data + aiov->iov_len == arc_buf_size(abuf))); i_iov++; } else if (abuf == NULL && n >= max_blksz && woff >= zp->z_size && P2PHASE(woff, max_blksz) == 0 && zp->z_blksz == max_blksz) { /* * This write covers a full block. "Borrow" a buffer * from the dmu so that we can fill it before we enter * a transaction. This avoids the possibility of * holding up the transaction if the data copy hangs * up on a pagefault (e.g., from an NFS server mapping). */ size_t cbytes; abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), max_blksz); ASSERT(abuf != NULL); ASSERT(arc_buf_size(abuf) == max_blksz); if ((error = uiocopy(abuf->b_data, max_blksz, UIO_WRITE, uio, &cbytes))) { dmu_return_arcbuf(abuf); break; } ASSERT(cbytes == max_blksz); } /* * Start a transaction. */ tx = dmu_tx_create(zsb->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); zfs_sa_upgrade_txholds(tx, zp); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); if (abuf != NULL) dmu_return_arcbuf(abuf); break; } /* * If zfs_range_lock() over-locked we grow the blocksize * and then reduce the lock range. This will only happen * on the first iteration since zfs_range_reduce() will * shrink down r_len to the appropriate size. */ if (rl->r_len == UINT64_MAX) { uint64_t new_blksz; if (zp->z_blksz > max_blksz) { /* * File's blocksize is already larger than the * "recordsize" property. Only let it grow to * the next power of 2. */ ASSERT(!ISP2(zp->z_blksz)); new_blksz = MIN(end_size, 1 << highbit64(zp->z_blksz)); } else { new_blksz = MIN(end_size, max_blksz); } zfs_grow_blocksize(zp, new_blksz, tx); zfs_range_reduce(rl, woff, n); } /* * XXX - should we really limit each write to z_max_blksz? * Perhaps we should use SPA_MAXBLOCKSIZE chunks? */ nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); if (abuf == NULL) { tx_bytes = uio->uio_resid; error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), uio, nbytes, tx); tx_bytes -= uio->uio_resid; } else { tx_bytes = nbytes; ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); /* * If this is not a full block write, but we are * extending the file past EOF and this data starts * block-aligned, use assign_arcbuf(). Otherwise, * write via dmu_write(). */ if (tx_bytes < max_blksz && (!write_eof || aiov->iov_base != abuf->b_data)) { ASSERT(xuio); dmu_write(zsb->z_os, zp->z_id, woff, aiov->iov_len, aiov->iov_base, tx); dmu_return_arcbuf(abuf); xuio_stat_wbuf_copied(); } else { ASSERT(xuio || tx_bytes == max_blksz); dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), woff, abuf, tx); } ASSERT(tx_bytes <= uio->uio_resid); uioskip(uio, tx_bytes); } if (tx_bytes && zp->z_is_mapped && !(ioflag & O_DIRECT)) update_pages(ip, woff, tx_bytes, zsb->z_os, zp->z_id); /* * If we made no progress, we're done. If we made even * partial progress, update the znode and ZIL accordingly. */ if (tx_bytes == 0) { (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zsb), (void *)&zp->z_size, sizeof (uint64_t), tx); dmu_tx_commit(tx); ASSERT(error != 0); break; } /* * Clear Set-UID/Set-GID bits on successful write if not * privileged and at least one of the excute bits is set. * * It would be nice to to this after all writes have * been done, but that would still expose the ISUID/ISGID * to another app after the partial write is committed. * * Note: we don't call zfs_fuid_map_id() here because * user 0 is not an ephemeral uid. */ mutex_enter(&zp->z_acl_lock); if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 && (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && secpolicy_vnode_setid_retain(cr, (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { uint64_t newmode; zp->z_mode &= ~(S_ISUID | S_ISGID); newmode = zp->z_mode; (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zsb), (void *)&newmode, sizeof (uint64_t), tx); } mutex_exit(&zp->z_acl_lock); zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); /* * Update the file size (zp_size) if it has changed; * account for possible concurrent updates. */ while ((end_size = zp->z_size) < uio->uio_loffset) { (void) atomic_cas_64(&zp->z_size, end_size, uio->uio_loffset); ASSERT(error == 0); } /* * If we are replaying and eof is non zero then force * the file size to the specified eof. Note, there's no * concurrency during replay. */ if (zsb->z_replay && zsb->z_replay_eof != 0) zp->z_size = zsb->z_replay_eof; error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag, NULL, NULL); dmu_tx_commit(tx); if (error != 0) break; ASSERT(tx_bytes == nbytes); n -= nbytes; if (!xuio && n > 0) uio_prefaultpages(MIN(n, max_blksz), uio); } zfs_inode_update(zp); zfs_range_unlock(rl); /* * If we're in replay mode, or we made no progress, return error. * Otherwise, it's at least a partial write, so it's successful. */ if (zsb->z_replay || uio->uio_resid == start_resid) { ZFS_EXIT(zsb); return (error); } if (ioflag & (FSYNC | FDSYNC) || zsb->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, zp->z_id); ZFS_EXIT(zsb); return (0); } EXPORT_SYMBOL(zfs_write); void zfs_iput_async(struct inode *ip) { objset_t *os = ITOZSB(ip)->z_os; ASSERT(atomic_read(&ip->i_count) > 0); ASSERT(os != NULL); if (atomic_read(&ip->i_count) == 1) taskq_dispatch(dsl_pool_iput_taskq(dmu_objset_pool(os)), (task_func_t *)iput, ip, TQ_SLEEP); else iput(ip); } void zfs_get_done(zgd_t *zgd, int error) { znode_t *zp = zgd->zgd_private; if (zgd->zgd_db) dmu_buf_rele(zgd->zgd_db, zgd); zfs_range_unlock(zgd->zgd_rl); /* * Release the vnode asynchronously as we currently have the * txg stopped from syncing. */ zfs_iput_async(ZTOI(zp)); if (error == 0 && zgd->zgd_bp) zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); kmem_free(zgd, sizeof (zgd_t)); } #ifdef DEBUG static int zil_fault_io = 0; #endif /* * Get data to generate a TX_WRITE intent log record. */ int zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) { zfs_sb_t *zsb = arg; objset_t *os = zsb->z_os; znode_t *zp; uint64_t object = lr->lr_foid; uint64_t offset = lr->lr_offset; uint64_t size = lr->lr_length; blkptr_t *bp = &lr->lr_blkptr; dmu_buf_t *db; zgd_t *zgd; int error = 0; ASSERT(zio != NULL); ASSERT(size != 0); /* * Nothing to do if the file has been removed */ if (zfs_zget(zsb, object, &zp) != 0) return (SET_ERROR(ENOENT)); if (zp->z_unlinked) { /* * Release the vnode asynchronously as we currently have the * txg stopped from syncing. */ zfs_iput_async(ZTOI(zp)); return (SET_ERROR(ENOENT)); } zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); zgd->zgd_zilog = zsb->z_log; zgd->zgd_private = zp; /* * Write records come in two flavors: immediate and indirect. * For small writes it's cheaper to store the data with the * log record (immediate); for large writes it's cheaper to * sync the data and get a pointer to it (indirect) so that * we don't have to write the data twice. */ if (buf != NULL) { /* immediate write */ zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); /* test for truncation needs to be done while range locked */ if (offset >= zp->z_size) { error = SET_ERROR(ENOENT); } else { error = dmu_read(os, object, offset, size, buf, DMU_READ_NO_PREFETCH); } ASSERT(error == 0 || error == ENOENT); } else { /* indirect write */ /* * Have to lock the whole block to ensure when it's * written out and it's checksum is being calculated * that no one can change the data. We need to re-check * blocksize after we get the lock in case it's changed! */ for (;;) { uint64_t blkoff; size = zp->z_blksz; blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; offset -= blkoff; zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); if (zp->z_blksz == size) break; offset += blkoff; zfs_range_unlock(zgd->zgd_rl); } /* test for truncation needs to be done while range locked */ if (lr->lr_offset >= zp->z_size) error = SET_ERROR(ENOENT); #ifdef DEBUG if (zil_fault_io) { error = SET_ERROR(EIO); zil_fault_io = 0; } #endif if (error == 0) error = dmu_buf_hold(os, object, offset, zgd, &db, DMU_READ_NO_PREFETCH); if (error == 0) { blkptr_t *obp = dmu_buf_get_blkptr(db); if (obp) { ASSERT(BP_IS_HOLE(bp)); *bp = *obp; } zgd->zgd_db = db; zgd->zgd_bp = bp; ASSERT(db->db_offset == offset); ASSERT(db->db_size == size); error = dmu_sync(zio, lr->lr_common.lrc_txg, zfs_get_done, zgd); ASSERT(error || lr->lr_length <= zp->z_blksz); /* * On success, we need to wait for the write I/O * initiated by dmu_sync() to complete before we can * release this dbuf. We will finish everything up * in the zfs_get_done() callback. */ if (error == 0) return (0); if (error == EALREADY) { lr->lr_common.lrc_txtype = TX_WRITE2; error = 0; } } } zfs_get_done(zgd, error); return (error); } /*ARGSUSED*/ int zfs_access(struct inode *ip, int mode, int flag, cred_t *cr) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ITOZSB(ip); int error; ZFS_ENTER(zsb); ZFS_VERIFY_ZP(zp); if (flag & V_ACE_MASK) error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); else error = zfs_zaccess_rwx(zp, mode, flag, cr); ZFS_EXIT(zsb); return (error); } EXPORT_SYMBOL(zfs_access); /* * Lookup an entry in a directory, or an extended attribute directory. * If it exists, return a held inode reference for it. * * IN: dip - inode of directory to search. * nm - name of entry to lookup. * flags - LOOKUP_XATTR set if looking for an attribute. * cr - credentials of caller. * direntflags - directory lookup flags * realpnp - returned pathname. * * OUT: ipp - inode of located entry, NULL if not found. * * RETURN: 0 on success, error code on failure. * * Timestamps: * NA */ /* ARGSUSED */ int zfs_lookup(struct inode *dip, char *nm, struct inode **ipp, int flags, cred_t *cr, int *direntflags, pathname_t *realpnp) { znode_t *zdp = ITOZ(dip); zfs_sb_t *zsb = ITOZSB(dip); int error = 0; /* fast path */ if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { if (!S_ISDIR(dip->i_mode)) { return (SET_ERROR(ENOTDIR)); } else if (zdp->z_sa_hdl == NULL) { return (SET_ERROR(EIO)); } if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { error = zfs_fastaccesschk_execute(zdp, cr); if (!error) { *ipp = dip; igrab(*ipp); return (0); } return (error); #ifdef HAVE_DNLC } else { vnode_t *tvp = dnlc_lookup(dvp, nm); if (tvp) { error = zfs_fastaccesschk_execute(zdp, cr); if (error) { iput(tvp); return (error); } if (tvp == DNLC_NO_VNODE) { iput(tvp); return (SET_ERROR(ENOENT)); } else { *vpp = tvp; return (specvp_check(vpp, cr)); } } #endif /* HAVE_DNLC */ } } ZFS_ENTER(zsb); ZFS_VERIFY_ZP(zdp); *ipp = NULL; if (flags & LOOKUP_XATTR) { /* * We don't allow recursive attributes.. * Maybe someday we will. */ if (zdp->z_pflags & ZFS_XATTR) { ZFS_EXIT(zsb); return (SET_ERROR(EINVAL)); } if ((error = zfs_get_xattrdir(zdp, ipp, cr, flags))) { ZFS_EXIT(zsb); return (error); } /* * Do we have permission to get into attribute directory? */ if ((error = zfs_zaccess(ITOZ(*ipp), ACE_EXECUTE, 0, B_FALSE, cr))) { iput(*ipp); *ipp = NULL; } ZFS_EXIT(zsb); return (error); } if (!S_ISDIR(dip->i_mode)) { ZFS_EXIT(zsb); return (SET_ERROR(ENOTDIR)); } /* * Check accessibility of directory. */ if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr))) { ZFS_EXIT(zsb); return (error); } if (zsb->z_utf8 && u8_validate(nm, strlen(nm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { ZFS_EXIT(zsb); return (SET_ERROR(EILSEQ)); } error = zfs_dirlook(zdp, nm, ipp, flags, direntflags, realpnp); if ((error == 0) && (*ipp)) zfs_inode_update(ITOZ(*ipp)); ZFS_EXIT(zsb); return (error); } EXPORT_SYMBOL(zfs_lookup); /* * Attempt to create a new entry in a directory. If the entry * already exists, truncate the file if permissible, else return * an error. Return the ip of the created or trunc'd file. * * IN: dip - inode of directory to put new file entry in. * name - name of new file entry. * vap - attributes of new file. * excl - flag indicating exclusive or non-exclusive mode. * mode - mode to open file with. * cr - credentials of caller. * flag - large file flag [UNUSED]. * vsecp - ACL to be set * * OUT: ipp - inode of created or trunc'd entry. * * RETURN: 0 on success, error code on failure. * * Timestamps: * dip - ctime|mtime updated if new entry created * ip - ctime|mtime always, atime if new */ /* ARGSUSED */ int zfs_create(struct inode *dip, char *name, vattr_t *vap, int excl, int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp) { znode_t *zp, *dzp = ITOZ(dip); zfs_sb_t *zsb = ITOZSB(dip); zilog_t *zilog; objset_t *os; zfs_dirlock_t *dl; dmu_tx_t *tx; int error; uid_t uid; gid_t gid; zfs_acl_ids_t acl_ids; boolean_t fuid_dirtied; boolean_t have_acl = B_FALSE; boolean_t waited = B_FALSE; /* * If we have an ephemeral id, ACL, or XVATTR then * make sure file system is at proper version */ gid = crgetgid(cr); uid = crgetuid(cr); if (zsb->z_use_fuids == B_FALSE && (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) return (SET_ERROR(EINVAL)); ZFS_ENTER(zsb); ZFS_VERIFY_ZP(dzp); os = zsb->z_os; zilog = zsb->z_log; if (zsb->z_utf8 && u8_validate(name, strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { ZFS_EXIT(zsb); return (SET_ERROR(EILSEQ)); } if (vap->va_mask & ATTR_XVATTR) { if ((error = secpolicy_xvattr((xvattr_t *)vap, crgetuid(cr), cr, vap->va_mode)) != 0) { ZFS_EXIT(zsb); return (error); } } top: *ipp = NULL; if (*name == '\0') { /* * Null component name refers to the directory itself. */ igrab(dip); zp = dzp; dl = NULL; error = 0; } else { /* possible igrab(zp) */ int zflg = 0; if (flag & FIGNORECASE) zflg |= ZCILOOK; error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); if (error) { if (have_acl) zfs_acl_ids_free(&acl_ids); if (strcmp(name, "..") == 0) error = SET_ERROR(EISDIR); ZFS_EXIT(zsb); return (error); } } if (zp == NULL) { uint64_t txtype; /* * Create a new file object and update the directory * to reference it. */ if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) { if (have_acl) zfs_acl_ids_free(&acl_ids); goto out; } /* * We only support the creation of regular files in * extended attribute directories. */ if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) { if (have_acl) zfs_acl_ids_free(&acl_ids); error = SET_ERROR(EINVAL); goto out; } if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, &acl_ids)) != 0) goto out; have_acl = B_TRUE; if (zfs_acl_ids_overquota(zsb, &acl_ids)) { zfs_acl_ids_free(&acl_ids); error = SET_ERROR(EDQUOT); goto out; } tx = dmu_tx_create(os); dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + ZFS_SA_BASE_ATTR_SIZE); fuid_dirtied = zsb->z_fuid_dirty; if (fuid_dirtied) zfs_fuid_txhold(zsb, tx); dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); if (!zsb->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, acl_ids.z_aclp->z_acl_bytes); } error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); if (error) { zfs_dirent_unlock(dl); if (error == ERESTART) { waited = B_TRUE; dmu_tx_wait(tx); dmu_tx_abort(tx); goto top; } zfs_acl_ids_free(&acl_ids); dmu_tx_abort(tx); ZFS_EXIT(zsb); return (error); } zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); if (fuid_dirtied) zfs_fuid_sync(zsb, tx); (void) zfs_link_create(dl, zp, tx, ZNEW); txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); if (flag & FIGNORECASE) txtype |= TX_CI; zfs_log_create(zilog, tx, txtype, dzp, zp, name, vsecp, acl_ids.z_fuidp, vap); zfs_acl_ids_free(&acl_ids); dmu_tx_commit(tx); } else { int aflags = (flag & FAPPEND) ? V_APPEND : 0; if (have_acl) zfs_acl_ids_free(&acl_ids); have_acl = B_FALSE; /* * A directory entry already exists for this name. */ /* * Can't truncate an existing file if in exclusive mode. */ if (excl) { error = SET_ERROR(EEXIST); goto out; } /* * Can't open a directory for writing. */ if (S_ISDIR(ZTOI(zp)->i_mode)) { error = SET_ERROR(EISDIR); goto out; } /* * Verify requested access to file. */ if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { goto out; } mutex_enter(&dzp->z_lock); dzp->z_seq++; mutex_exit(&dzp->z_lock); /* * Truncate regular files if requested. */ if (S_ISREG(ZTOI(zp)->i_mode) && (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) { /* we can't hold any locks when calling zfs_freesp() */ zfs_dirent_unlock(dl); dl = NULL; error = zfs_freesp(zp, 0, 0, mode, TRUE); } } out: if (dl) zfs_dirent_unlock(dl); if (error) { if (zp) iput(ZTOI(zp)); } else { zfs_inode_update(dzp); zfs_inode_update(zp); *ipp = ZTOI(zp); } if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); ZFS_EXIT(zsb); return (error); } EXPORT_SYMBOL(zfs_create); /* * Remove an entry from a directory. * * IN: dip - inode of directory to remove entry from. * name - name of entry to remove. * cr - credentials of caller. * * RETURN: 0 if success * error code if failure * * Timestamps: * dip - ctime|mtime * ip - ctime (if nlink > 0) */ uint64_t null_xattr = 0; /*ARGSUSED*/ int zfs_remove(struct inode *dip, char *name, cred_t *cr) { znode_t *zp, *dzp = ITOZ(dip); znode_t *xzp; struct inode *ip; zfs_sb_t *zsb = ITOZSB(dip); zilog_t *zilog; uint64_t xattr_obj; uint64_t xattr_obj_unlinked = 0; uint64_t obj = 0; zfs_dirlock_t *dl; dmu_tx_t *tx; boolean_t unlinked; uint64_t txtype; pathname_t *realnmp = NULL; #ifdef HAVE_PN_UTILS pathname_t realnm; #endif /* HAVE_PN_UTILS */ int error; int zflg = ZEXISTS; boolean_t waited = B_FALSE; ZFS_ENTER(zsb); ZFS_VERIFY_ZP(dzp); zilog = zsb->z_log; #ifdef HAVE_PN_UTILS if (flags & FIGNORECASE) { zflg |= ZCILOOK; pn_alloc(&realnm); realnmp = &realnm; } #endif /* HAVE_PN_UTILS */ top: xattr_obj = 0; xzp = NULL; /* * Attempt to lock directory; fail if entry doesn't exist. */ if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, realnmp))) { #ifdef HAVE_PN_UTILS if (realnmp) pn_free(realnmp); #endif /* HAVE_PN_UTILS */ ZFS_EXIT(zsb); return (error); } ip = ZTOI(zp); if ((error = zfs_zaccess_delete(dzp, zp, cr))) { goto out; } /* * Need to use rmdir for removing directories. */ if (S_ISDIR(ip->i_mode)) { error = SET_ERROR(EPERM); goto out; } #ifdef HAVE_DNLC if (realnmp) dnlc_remove(dvp, realnmp->pn_buf); else dnlc_remove(dvp, name); #endif /* HAVE_DNLC */ /* * We never delete the znode and always place it in the unlinked * set. The dentry cache will always hold the last reference and * is responsible for safely freeing the znode. */ obj = zp->z_id; tx = dmu_tx_create(zsb->z_os); dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); zfs_sa_upgrade_txholds(tx, dzp); /* are there any extended attributes? */ error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb), &xattr_obj, sizeof (xattr_obj)); if (error == 0 && xattr_obj) { error = zfs_zget(zsb, xattr_obj, &xzp); ASSERT0(error); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); } /* charge as an update -- would be nice not to charge at all */ dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL); error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); if (error) { zfs_dirent_unlock(dl); iput(ip); if (xzp) iput(ZTOI(xzp)); if (error == ERESTART) { waited = B_TRUE; dmu_tx_wait(tx); dmu_tx_abort(tx); goto top; } #ifdef HAVE_PN_UTILS if (realnmp) pn_free(realnmp); #endif /* HAVE_PN_UTILS */ dmu_tx_abort(tx); ZFS_EXIT(zsb); return (error); } /* * Remove the directory entry. */ error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); if (error) { dmu_tx_commit(tx); goto out; } if (unlinked) { /* * Hold z_lock so that we can make sure that the ACL obj * hasn't changed. Could have been deleted due to * zfs_sa_upgrade(). */ mutex_enter(&zp->z_lock); (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb), &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); mutex_exit(&zp->z_lock); zfs_unlinked_add(zp, tx); } txtype = TX_REMOVE; #ifdef HAVE_PN_UTILS if (flags & FIGNORECASE) txtype |= TX_CI; #endif /* HAVE_PN_UTILS */ zfs_log_remove(zilog, tx, txtype, dzp, name, obj); dmu_tx_commit(tx); out: #ifdef HAVE_PN_UTILS if (realnmp) pn_free(realnmp); #endif /* HAVE_PN_UTILS */ zfs_dirent_unlock(dl); zfs_inode_update(dzp); zfs_inode_update(zp); if (xzp) zfs_inode_update(xzp); iput(ip); if (xzp) iput(ZTOI(xzp)); if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); ZFS_EXIT(zsb); return (error); } EXPORT_SYMBOL(zfs_remove); /* * Create a new directory and insert it into dip using the name * provided. Return a pointer to the inserted directory. * * IN: dip - inode of directory to add subdir to. * dirname - name of new directory. * vap - attributes of new directory. * cr - credentials of caller. * vsecp - ACL to be set * * OUT: ipp - inode of created directory. * * RETURN: 0 if success * error code if failure * * Timestamps: * dip - ctime|mtime updated * ipp - ctime|mtime|atime updated */ /*ARGSUSED*/ int zfs_mkdir(struct inode *dip, char *dirname, vattr_t *vap, struct inode **ipp, cred_t *cr, int flags, vsecattr_t *vsecp) { znode_t *zp, *dzp = ITOZ(dip); zfs_sb_t *zsb = ITOZSB(dip); zilog_t *zilog; zfs_dirlock_t *dl; uint64_t txtype; dmu_tx_t *tx; int error; int zf = ZNEW; uid_t uid; gid_t gid = crgetgid(cr); zfs_acl_ids_t acl_ids; boolean_t fuid_dirtied; boolean_t waited = B_FALSE; ASSERT(S_ISDIR(vap->va_mode)); /* * If we have an ephemeral id, ACL, or XVATTR then * make sure file system is at proper version */ uid = crgetuid(cr); if (zsb->z_use_fuids == B_FALSE && (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) return (SET_ERROR(EINVAL)); ZFS_ENTER(zsb); ZFS_VERIFY_ZP(dzp); zilog = zsb->z_log; if (dzp->z_pflags & ZFS_XATTR) { ZFS_EXIT(zsb); return (SET_ERROR(EINVAL)); } if (zsb->z_utf8 && u8_validate(dirname, strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { ZFS_EXIT(zsb); return (SET_ERROR(EILSEQ)); } if (flags & FIGNORECASE) zf |= ZCILOOK; if (vap->va_mask & ATTR_XVATTR) { if ((error = secpolicy_xvattr((xvattr_t *)vap, crgetuid(cr), cr, vap->va_mode)) != 0) { ZFS_EXIT(zsb); return (error); } } if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, &acl_ids)) != 0) { ZFS_EXIT(zsb); return (error); } /* * First make sure the new directory doesn't exist. * * Existence is checked first to make sure we don't return * EACCES instead of EEXIST which can cause some applications * to fail. */ top: *ipp = NULL; if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, NULL, NULL))) { zfs_acl_ids_free(&acl_ids); ZFS_EXIT(zsb); return (error); } if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr))) { zfs_acl_ids_free(&acl_ids); zfs_dirent_unlock(dl); ZFS_EXIT(zsb); return (error); } if (zfs_acl_ids_overquota(zsb, &acl_ids)) { zfs_acl_ids_free(&acl_ids); zfs_dirent_unlock(dl); ZFS_EXIT(zsb); return (SET_ERROR(EDQUOT)); } /* * Add a new entry to the directory. */ tx = dmu_tx_create(zsb->z_os); dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); fuid_dirtied = zsb->z_fuid_dirty; if (fuid_dirtied) zfs_fuid_txhold(zsb, tx); if (!zsb->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, acl_ids.z_aclp->z_acl_bytes); } dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + ZFS_SA_BASE_ATTR_SIZE); error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); if (error) { zfs_dirent_unlock(dl); if (error == ERESTART) { waited = B_TRUE; dmu_tx_wait(tx); dmu_tx_abort(tx); goto top; } zfs_acl_ids_free(&acl_ids); dmu_tx_abort(tx); ZFS_EXIT(zsb); return (error); } /* * Create new node. */ zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); if (fuid_dirtied) zfs_fuid_sync(zsb, tx); /* * Now put new name in parent dir. */ (void) zfs_link_create(dl, zp, tx, ZNEW); *ipp = ZTOI(zp); txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); if (flags & FIGNORECASE) txtype |= TX_CI; zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, acl_ids.z_fuidp, vap); zfs_acl_ids_free(&acl_ids); dmu_tx_commit(tx); zfs_dirent_unlock(dl); if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); zfs_inode_update(dzp); zfs_inode_update(zp); ZFS_EXIT(zsb); return (0); } EXPORT_SYMBOL(zfs_mkdir); /* * Remove a directory subdir entry. If the current working * directory is the same as the subdir to be removed, the * remove will fail. * * IN: dip - inode of directory to remove from. * name - name of directory to be removed. * cwd - inode of current working directory. * cr - credentials of caller. * flags - case flags * * RETURN: 0 on success, error code on failure. * * Timestamps: * dip - ctime|mtime updated */ /*ARGSUSED*/ int zfs_rmdir(struct inode *dip, char *name, struct inode *cwd, cred_t *cr, int flags) { znode_t *dzp = ITOZ(dip); znode_t *zp; struct inode *ip; zfs_sb_t *zsb = ITOZSB(dip); zilog_t *zilog; zfs_dirlock_t *dl; dmu_tx_t *tx; int error; int zflg = ZEXISTS; boolean_t waited = B_FALSE; ZFS_ENTER(zsb); ZFS_VERIFY_ZP(dzp); zilog = zsb->z_log; if (flags & FIGNORECASE) zflg |= ZCILOOK; top: zp = NULL; /* * Attempt to lock directory; fail if entry doesn't exist. */ if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL))) { ZFS_EXIT(zsb); return (error); } ip = ZTOI(zp); if ((error = zfs_zaccess_delete(dzp, zp, cr))) { goto out; } if (!S_ISDIR(ip->i_mode)) { error = SET_ERROR(ENOTDIR); goto out; } if (ip == cwd) { error = SET_ERROR(EINVAL); goto out; } /* * Grab a lock on the directory to make sure that noone is * trying to add (or lookup) entries while we are removing it. */ rw_enter(&zp->z_name_lock, RW_WRITER); /* * Grab a lock on the parent pointer to make sure we play well * with the treewalk and directory rename code. */ rw_enter(&zp->z_parent_lock, RW_WRITER); tx = dmu_tx_create(zsb->z_os); dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL); zfs_sa_upgrade_txholds(tx, zp); zfs_sa_upgrade_txholds(tx, dzp); error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); if (error) { rw_exit(&zp->z_parent_lock); rw_exit(&zp->z_name_lock); zfs_dirent_unlock(dl); iput(ip); if (error == ERESTART) { waited = B_TRUE; dmu_tx_wait(tx); dmu_tx_abort(tx); goto top; } dmu_tx_abort(tx); ZFS_EXIT(zsb); return (error); } error = zfs_link_destroy(dl, zp, tx, zflg, NULL); if (error == 0) { uint64_t txtype = TX_RMDIR; if (flags & FIGNORECASE) txtype |= TX_CI; zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); } dmu_tx_commit(tx); rw_exit(&zp->z_parent_lock); rw_exit(&zp->z_name_lock); out: zfs_dirent_unlock(dl); zfs_inode_update(dzp); zfs_inode_update(zp); iput(ip); if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); ZFS_EXIT(zsb); return (error); } EXPORT_SYMBOL(zfs_rmdir); /* * Read as many directory entries as will fit into the provided * dirent buffer from the given directory cursor position. * * IN: ip - inode of directory to read. * dirent - buffer for directory entries. * * OUT: dirent - filler buffer of directory entries. * * RETURN: 0 if success * error code if failure * * Timestamps: * ip - atime updated * * Note that the low 4 bits of the cookie returned by zap is always zero. * This allows us to use the low range for "special" directory entries: * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, * we use the offset 2 for the '.zfs' directory. */ /* ARGSUSED */ int zfs_readdir(struct inode *ip, struct dir_context *ctx, cred_t *cr) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ITOZSB(ip); objset_t *os; zap_cursor_t zc; zap_attribute_t zap; int error; uint8_t prefetch; uint8_t type; int done = 0; uint64_t parent; uint64_t offset; /* must be unsigned; checks for < 1 */ ZFS_ENTER(zsb); ZFS_VERIFY_ZP(zp); if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zsb), &parent, sizeof (parent))) != 0) goto out; /* * Quit if directory has been removed (posix) */ if (zp->z_unlinked) goto out; error = 0; os = zsb->z_os; offset = ctx->pos; prefetch = zp->z_zn_prefetch; /* * Initialize the iterator cursor. */ if (offset <= 3) { /* * Start iteration from the beginning of the directory. */ zap_cursor_init(&zc, os, zp->z_id); } else { /* * The offset is a serialized cursor. */ zap_cursor_init_serialized(&zc, os, zp->z_id, offset); } /* * Transform to file-system independent format */ while (!done) { uint64_t objnum; /* * Special case `.', `..', and `.zfs'. */ if (offset == 0) { (void) strcpy(zap.za_name, "."); zap.za_normalization_conflict = 0; objnum = zp->z_id; type = DT_DIR; } else if (offset == 1) { (void) strcpy(zap.za_name, ".."); zap.za_normalization_conflict = 0; objnum = parent; type = DT_DIR; } else if (offset == 2 && zfs_show_ctldir(zp)) { (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); zap.za_normalization_conflict = 0; objnum = ZFSCTL_INO_ROOT; type = DT_DIR; } else { /* * Grab next entry. */ if ((error = zap_cursor_retrieve(&zc, &zap))) { if (error == ENOENT) break; else goto update; } /* * Allow multiple entries provided the first entry is * the object id. Non-zpl consumers may safely make * use of the additional space. * * XXX: This should be a feature flag for compatibility */ if (zap.za_integer_length != 8 || zap.za_num_integers == 0) { cmn_err(CE_WARN, "zap_readdir: bad directory " "entry, obj = %lld, offset = %lld, " "length = %d, num = %lld\n", (u_longlong_t)zp->z_id, (u_longlong_t)offset, zap.za_integer_length, (u_longlong_t)zap.za_num_integers); error = SET_ERROR(ENXIO); goto update; } objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); type = ZFS_DIRENT_TYPE(zap.za_first_integer); } done = !dir_emit(ctx, zap.za_name, strlen(zap.za_name), objnum, type); if (done) break; /* Prefetch znode */ if (prefetch) { dmu_prefetch(os, objnum, 0, 0); } /* * Move to the next entry, fill in the previous offset. */ if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { zap_cursor_advance(&zc); offset = zap_cursor_serialize(&zc); } else { offset += 1; } ctx->pos = offset; } zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ update: zap_cursor_fini(&zc); if (error == ENOENT) error = 0; ZFS_ACCESSTIME_STAMP(zsb, zp); out: ZFS_EXIT(zsb); return (error); } EXPORT_SYMBOL(zfs_readdir); ulong_t zfs_fsync_sync_cnt = 4; int zfs_fsync(struct inode *ip, int syncflag, cred_t *cr) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ITOZSB(ip); (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); if (zsb->z_os->os_sync != ZFS_SYNC_DISABLED) { ZFS_ENTER(zsb); ZFS_VERIFY_ZP(zp); zil_commit(zsb->z_log, zp->z_id); ZFS_EXIT(zsb); } tsd_set(zfs_fsyncer_key, NULL); return (0); } EXPORT_SYMBOL(zfs_fsync); /* * Get the requested file attributes and place them in the provided * vattr structure. * * IN: ip - inode of file. * vap - va_mask identifies requested attributes. * If ATTR_XVATTR set, then optional attrs are requested * flags - ATTR_NOACLCHECK (CIFS server context) * cr - credentials of caller. * * OUT: vap - attribute values. * * RETURN: 0 (always succeeds) */ /* ARGSUSED */ int zfs_getattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ITOZSB(ip); int error = 0; uint64_t links; uint64_t mtime[2], ctime[2]; xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ xoptattr_t *xoap = NULL; boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; sa_bulk_attr_t bulk[2]; int count = 0; ZFS_ENTER(zsb); ZFS_VERIFY_ZP(zp); zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL, &mtime, 16); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL, &ctime, 16); if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { ZFS_EXIT(zsb); return (error); } /* * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. * Also, if we are the owner don't bother, since owner should * always be allowed to read basic attributes of file. */ if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && (vap->va_uid != crgetuid(cr))) { if ((error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, skipaclchk, cr))) { ZFS_EXIT(zsb); return (error); } } /* * Return all attributes. It's cheaper to provide the answer * than to determine whether we were asked the question. */ mutex_enter(&zp->z_lock); vap->va_type = vn_mode_to_vtype(zp->z_mode); vap->va_mode = zp->z_mode; vap->va_fsid = ZTOI(zp)->i_sb->s_dev; vap->va_nodeid = zp->z_id; if ((zp->z_id == zsb->z_root) && zfs_show_ctldir(zp)) links = zp->z_links + 1; else links = zp->z_links; vap->va_nlink = MIN(links, ZFS_LINK_MAX); vap->va_size = i_size_read(ip); vap->va_rdev = ip->i_rdev; vap->va_seq = ip->i_generation; /* * Add in any requested optional attributes and the create time. * Also set the corresponding bits in the returned attribute bitmap. */ if ((xoap = xva_getxoptattr(xvap)) != NULL && zsb->z_use_fuids) { if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { xoap->xoa_archive = ((zp->z_pflags & ZFS_ARCHIVE) != 0); XVA_SET_RTN(xvap, XAT_ARCHIVE); } if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { xoap->xoa_readonly = ((zp->z_pflags & ZFS_READONLY) != 0); XVA_SET_RTN(xvap, XAT_READONLY); } if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { xoap->xoa_system = ((zp->z_pflags & ZFS_SYSTEM) != 0); XVA_SET_RTN(xvap, XAT_SYSTEM); } if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { xoap->xoa_hidden = ((zp->z_pflags & ZFS_HIDDEN) != 0); XVA_SET_RTN(xvap, XAT_HIDDEN); } if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { xoap->xoa_nounlink = ((zp->z_pflags & ZFS_NOUNLINK) != 0); XVA_SET_RTN(xvap, XAT_NOUNLINK); } if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { xoap->xoa_immutable = ((zp->z_pflags & ZFS_IMMUTABLE) != 0); XVA_SET_RTN(xvap, XAT_IMMUTABLE); } if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { xoap->xoa_appendonly = ((zp->z_pflags & ZFS_APPENDONLY) != 0); XVA_SET_RTN(xvap, XAT_APPENDONLY); } if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { xoap->xoa_nodump = ((zp->z_pflags & ZFS_NODUMP) != 0); XVA_SET_RTN(xvap, XAT_NODUMP); } if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { xoap->xoa_opaque = ((zp->z_pflags & ZFS_OPAQUE) != 0); XVA_SET_RTN(xvap, XAT_OPAQUE); } if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { xoap->xoa_av_quarantined = ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); } if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { xoap->xoa_av_modified = ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); XVA_SET_RTN(xvap, XAT_AV_MODIFIED); } if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && S_ISREG(ip->i_mode)) { zfs_sa_get_scanstamp(zp, xvap); } if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { uint64_t times[2]; (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zsb), times, sizeof (times)); ZFS_TIME_DECODE(&xoap->xoa_createtime, times); XVA_SET_RTN(xvap, XAT_CREATETIME); } if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); XVA_SET_RTN(xvap, XAT_REPARSE); } if (XVA_ISSET_REQ(xvap, XAT_GEN)) { xoap->xoa_generation = zp->z_gen; XVA_SET_RTN(xvap, XAT_GEN); } if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { xoap->xoa_offline = ((zp->z_pflags & ZFS_OFFLINE) != 0); XVA_SET_RTN(xvap, XAT_OFFLINE); } if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { xoap->xoa_sparse = ((zp->z_pflags & ZFS_SPARSE) != 0); XVA_SET_RTN(xvap, XAT_SPARSE); } } ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); ZFS_TIME_DECODE(&vap->va_mtime, mtime); ZFS_TIME_DECODE(&vap->va_ctime, ctime); mutex_exit(&zp->z_lock); sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); if (zp->z_blksz == 0) { /* * Block size hasn't been set; suggest maximal I/O transfers. */ vap->va_blksize = zsb->z_max_blksz; } ZFS_EXIT(zsb); return (0); } EXPORT_SYMBOL(zfs_getattr); /* * Get the basic file attributes and place them in the provided kstat * structure. The inode is assumed to be the authoritative source * for most of the attributes. However, the znode currently has the * authoritative atime, blksize, and block count. * * IN: ip - inode of file. * * OUT: sp - kstat values. * * RETURN: 0 (always succeeds) */ /* ARGSUSED */ int zfs_getattr_fast(struct inode *ip, struct kstat *sp) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ITOZSB(ip); uint32_t blksize; u_longlong_t nblocks; ZFS_ENTER(zsb); ZFS_VERIFY_ZP(zp); mutex_enter(&zp->z_lock); generic_fillattr(ip, sp); ZFS_TIME_DECODE(&sp->atime, zp->z_atime); sa_object_size(zp->z_sa_hdl, &blksize, &nblocks); sp->blksize = blksize; sp->blocks = nblocks; if (unlikely(zp->z_blksz == 0)) { /* * Block size hasn't been set; suggest maximal I/O transfers. */ sp->blksize = zsb->z_max_blksz; } mutex_exit(&zp->z_lock); ZFS_EXIT(zsb); return (0); } EXPORT_SYMBOL(zfs_getattr_fast); /* * Set the file attributes to the values contained in the * vattr structure. * * IN: ip - inode of file to be modified. * vap - new attribute values. * If ATTR_XVATTR set, then optional attrs are being set * flags - ATTR_UTIME set if non-default time values provided. * - ATTR_NOACLCHECK (CIFS context only). * cr - credentials of caller. * * RETURN: 0 if success * error code if failure * * Timestamps: * ip - ctime updated, mtime updated if size changed. */ /* ARGSUSED */ int zfs_setattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ITOZSB(ip); zilog_t *zilog; dmu_tx_t *tx; vattr_t oldva; xvattr_t *tmpxvattr; uint_t mask = vap->va_mask; uint_t saved_mask = 0; int trim_mask = 0; uint64_t new_mode; uint64_t new_uid, new_gid; uint64_t xattr_obj; uint64_t mtime[2], ctime[2]; znode_t *attrzp; int need_policy = FALSE; int err, err2; zfs_fuid_info_t *fuidp = NULL; xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ xoptattr_t *xoap; zfs_acl_t *aclp; boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; boolean_t fuid_dirtied = B_FALSE; sa_bulk_attr_t *bulk, *xattr_bulk; int count = 0, xattr_count = 0; if (mask == 0) return (0); ZFS_ENTER(zsb); ZFS_VERIFY_ZP(zp); zilog = zsb->z_log; /* * Make sure that if we have ephemeral uid/gid or xvattr specified * that file system is at proper version level */ if (zsb->z_use_fuids == B_FALSE && (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) || ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) || (mask & ATTR_XVATTR))) { ZFS_EXIT(zsb); return (SET_ERROR(EINVAL)); } if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) { ZFS_EXIT(zsb); return (SET_ERROR(EISDIR)); } if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) { ZFS_EXIT(zsb); return (SET_ERROR(EINVAL)); } /* * If this is an xvattr_t, then get a pointer to the structure of * optional attributes. If this is NULL, then we have a vattr_t. */ xoap = xva_getxoptattr(xvap); tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP); xva_init(tmpxvattr); bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * 7, KM_SLEEP); xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * 7, KM_SLEEP); /* * Immutable files can only alter immutable bit and atime */ if ((zp->z_pflags & ZFS_IMMUTABLE) && ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) || ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { err = EPERM; goto out3; } if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) { err = EPERM; goto out3; } /* * Verify timestamps doesn't overflow 32 bits. * ZFS can handle large timestamps, but 32bit syscalls can't * handle times greater than 2039. This check should be removed * once large timestamps are fully supported. */ if (mask & (ATTR_ATIME | ATTR_MTIME)) { if (((mask & ATTR_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || ((mask & ATTR_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { err = EOVERFLOW; goto out3; } } top: attrzp = NULL; aclp = NULL; /* Can this be moved to before the top label? */ if (zfs_is_readonly(zsb)) { err = EROFS; goto out3; } /* * First validate permissions */ if (mask & ATTR_SIZE) { err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); if (err) goto out3; /* * XXX - Note, we are not providing any open * mode flags here (like FNDELAY), so we may * block if there are locks present... this * should be addressed in openat(). */ /* XXX - would it be OK to generate a log record here? */ err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); if (err) goto out3; } if (mask & (ATTR_ATIME|ATTR_MTIME) || ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || XVA_ISSET_REQ(xvap, XAT_READONLY) || XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || XVA_ISSET_REQ(xvap, XAT_OFFLINE) || XVA_ISSET_REQ(xvap, XAT_SPARSE) || XVA_ISSET_REQ(xvap, XAT_CREATETIME) || XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, skipaclchk, cr); } if (mask & (ATTR_UID|ATTR_GID)) { int idmask = (mask & (ATTR_UID|ATTR_GID)); int take_owner; int take_group; /* * NOTE: even if a new mode is being set, * we may clear S_ISUID/S_ISGID bits. */ if (!(mask & ATTR_MODE)) vap->va_mode = zp->z_mode; /* * Take ownership or chgrp to group we are a member of */ take_owner = (mask & ATTR_UID) && (vap->va_uid == crgetuid(cr)); take_group = (mask & ATTR_GID) && zfs_groupmember(zsb, vap->va_gid, cr); /* * If both ATTR_UID and ATTR_GID are set then take_owner and * take_group must both be set in order to allow taking * ownership. * * Otherwise, send the check through secpolicy_vnode_setattr() * */ if (((idmask == (ATTR_UID|ATTR_GID)) && take_owner && take_group) || ((idmask == ATTR_UID) && take_owner) || ((idmask == ATTR_GID) && take_group)) { if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, skipaclchk, cr) == 0) { /* * Remove setuid/setgid for non-privileged users */ (void) secpolicy_setid_clear(vap, cr); trim_mask = (mask & (ATTR_UID|ATTR_GID)); } else { need_policy = TRUE; } } else { need_policy = TRUE; } } mutex_enter(&zp->z_lock); oldva.va_mode = zp->z_mode; zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); if (mask & ATTR_XVATTR) { /* * Update xvattr mask to include only those attributes * that are actually changing. * * the bits will be restored prior to actually setting * the attributes so the caller thinks they were set. */ if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { if (xoap->xoa_appendonly != ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_APPENDONLY); XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY); } } if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { if (xoap->xoa_nounlink != ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_NOUNLINK); XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK); } } if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { if (xoap->xoa_immutable != ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_IMMUTABLE); XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE); } } if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { if (xoap->xoa_nodump != ((zp->z_pflags & ZFS_NODUMP) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_NODUMP); XVA_SET_REQ(tmpxvattr, XAT_NODUMP); } } if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { if (xoap->xoa_av_modified != ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED); } } if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { if ((!S_ISREG(ip->i_mode) && xoap->xoa_av_quarantined) || xoap->xoa_av_quarantined != ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED); } } if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { mutex_exit(&zp->z_lock); err = EPERM; goto out3; } if (need_policy == FALSE && (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { need_policy = TRUE; } } mutex_exit(&zp->z_lock); if (mask & ATTR_MODE) { if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { err = secpolicy_setid_setsticky_clear(ip, vap, &oldva, cr); if (err) goto out3; trim_mask |= ATTR_MODE; } else { need_policy = TRUE; } } if (need_policy) { /* * If trim_mask is set then take ownership * has been granted or write_acl is present and user * has the ability to modify mode. In that case remove * UID|GID and or MODE from mask so that * secpolicy_vnode_setattr() doesn't revoke it. */ if (trim_mask) { saved_mask = vap->va_mask; vap->va_mask &= ~trim_mask; } err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags, (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); if (err) goto out3; if (trim_mask) vap->va_mask |= saved_mask; } /* * secpolicy_vnode_setattr, or take ownership may have * changed va_mask */ mask = vap->va_mask; if ((mask & (ATTR_UID | ATTR_GID))) { err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb), &xattr_obj, sizeof (xattr_obj)); if (err == 0 && xattr_obj) { err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp); if (err) goto out2; } if (mask & ATTR_UID) { new_uid = zfs_fuid_create(zsb, (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); if (new_uid != zp->z_uid && zfs_fuid_overquota(zsb, B_FALSE, new_uid)) { if (attrzp) iput(ZTOI(attrzp)); err = EDQUOT; goto out2; } } if (mask & ATTR_GID) { new_gid = zfs_fuid_create(zsb, (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp); if (new_gid != zp->z_gid && zfs_fuid_overquota(zsb, B_TRUE, new_gid)) { if (attrzp) iput(ZTOI(attrzp)); err = EDQUOT; goto out2; } } } tx = dmu_tx_create(zsb->z_os); if (mask & ATTR_MODE) { uint64_t pmode = zp->z_mode; uint64_t acl_obj; new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); zfs_acl_chmod_setattr(zp, &aclp, new_mode); mutex_enter(&zp->z_lock); if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { /* * Are we upgrading ACL from old V0 format * to V1 format? */ if (zsb->z_version >= ZPL_VERSION_FUID && zfs_znode_acl_version(zp) == ZFS_ACL_VERSION_INITIAL) { dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes); } else { dmu_tx_hold_write(tx, acl_obj, 0, aclp->z_acl_bytes); } } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes); } mutex_exit(&zp->z_lock); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); } else { if ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); else dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); } if (attrzp) { dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); } fuid_dirtied = zsb->z_fuid_dirty; if (fuid_dirtied) zfs_fuid_txhold(zsb, tx); zfs_sa_upgrade_txholds(tx, zp); err = dmu_tx_assign(tx, TXG_WAIT); if (err) goto out; count = 0; /* * Set each attribute requested. * We group settings according to the locks they need to acquire. * * Note: you cannot set ctime directly, although it will be * updated as a side-effect of calling this function. */ if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE)) mutex_enter(&zp->z_acl_lock); mutex_enter(&zp->z_lock); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb), NULL, &zp->z_pflags, sizeof (zp->z_pflags)); if (attrzp) { if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE)) mutex_enter(&attrzp->z_acl_lock); mutex_enter(&attrzp->z_lock); SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, SA_ZPL_FLAGS(zsb), NULL, &attrzp->z_pflags, sizeof (attrzp->z_pflags)); } if (mask & (ATTR_UID|ATTR_GID)) { if (mask & ATTR_UID) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zsb), NULL, &new_uid, sizeof (new_uid)); zp->z_uid = new_uid; if (attrzp) { SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, SA_ZPL_UID(zsb), NULL, &new_uid, sizeof (new_uid)); attrzp->z_uid = new_uid; } } if (mask & ATTR_GID) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zsb), NULL, &new_gid, sizeof (new_gid)); zp->z_gid = new_gid; if (attrzp) { SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, SA_ZPL_GID(zsb), NULL, &new_gid, sizeof (new_gid)); attrzp->z_gid = new_gid; } } if (!(mask & ATTR_MODE)) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zsb), NULL, &new_mode, sizeof (new_mode)); new_mode = zp->z_mode; } err = zfs_acl_chown_setattr(zp); ASSERT(err == 0); if (attrzp) { err = zfs_acl_chown_setattr(attrzp); ASSERT(err == 0); } } if (mask & ATTR_MODE) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zsb), NULL, &new_mode, sizeof (new_mode)); zp->z_mode = new_mode; ASSERT3P(aclp, !=, NULL); err = zfs_aclset_common(zp, aclp, cr, tx); ASSERT0(err); if (zp->z_acl_cached) zfs_acl_free(zp->z_acl_cached); zp->z_acl_cached = aclp; aclp = NULL; } if (mask & ATTR_ATIME) { ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zsb), NULL, &zp->z_atime, sizeof (zp->z_atime)); } if (mask & ATTR_MTIME) { ZFS_TIME_ENCODE(&vap->va_mtime, mtime); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL, mtime, sizeof (mtime)); } /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ if (mask & ATTR_SIZE && !(mask & ATTR_MTIME)) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL, mtime, sizeof (mtime)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL, &ctime, sizeof (ctime)); zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); } else if (mask != 0) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL, &ctime, sizeof (ctime)); zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, B_TRUE); if (attrzp) { SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, SA_ZPL_CTIME(zsb), NULL, &ctime, sizeof (ctime)); zfs_tstamp_update_setup(attrzp, STATE_CHANGED, mtime, ctime, B_TRUE); } } /* * Do this after setting timestamps to prevent timestamp * update from toggling bit */ if (xoap && (mask & ATTR_XVATTR)) { /* * restore trimmed off masks * so that return masks can be set for caller. */ if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) { XVA_SET_REQ(xvap, XAT_APPENDONLY); } if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) { XVA_SET_REQ(xvap, XAT_NOUNLINK); } if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) { XVA_SET_REQ(xvap, XAT_IMMUTABLE); } if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) { XVA_SET_REQ(xvap, XAT_NODUMP); } if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) { XVA_SET_REQ(xvap, XAT_AV_MODIFIED); } if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) { XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); } if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ASSERT(S_ISREG(ip->i_mode)); zfs_xvattr_set(zp, xvap, tx); } if (fuid_dirtied) zfs_fuid_sync(zsb, tx); if (mask != 0) zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); mutex_exit(&zp->z_lock); if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE)) mutex_exit(&zp->z_acl_lock); if (attrzp) { if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE)) mutex_exit(&attrzp->z_acl_lock); mutex_exit(&attrzp->z_lock); } out: if (err == 0 && attrzp) { err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, xattr_count, tx); ASSERT(err2 == 0); } if (attrzp) iput(ZTOI(attrzp)); if (aclp) zfs_acl_free(aclp); if (fuidp) { zfs_fuid_info_free(fuidp); fuidp = NULL; } if (err) { dmu_tx_abort(tx); if (err == ERESTART) goto top; } else { err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); dmu_tx_commit(tx); zfs_inode_update(zp); } out2: if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); out3: kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * 7); kmem_free(bulk, sizeof (sa_bulk_attr_t) * 7); kmem_free(tmpxvattr, sizeof (xvattr_t)); ZFS_EXIT(zsb); return (err); } EXPORT_SYMBOL(zfs_setattr); typedef struct zfs_zlock { krwlock_t *zl_rwlock; /* lock we acquired */ znode_t *zl_znode; /* znode we held */ struct zfs_zlock *zl_next; /* next in list */ } zfs_zlock_t; /* * Drop locks and release vnodes that were held by zfs_rename_lock(). */ static void zfs_rename_unlock(zfs_zlock_t **zlpp) { zfs_zlock_t *zl; while ((zl = *zlpp) != NULL) { if (zl->zl_znode != NULL) iput(ZTOI(zl->zl_znode)); rw_exit(zl->zl_rwlock); *zlpp = zl->zl_next; kmem_free(zl, sizeof (*zl)); } } /* * Search back through the directory tree, using the ".." entries. * Lock each directory in the chain to prevent concurrent renames. * Fail any attempt to move a directory into one of its own descendants. * XXX - z_parent_lock can overlap with map or grow locks */ static int zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) { zfs_zlock_t *zl; znode_t *zp = tdzp; uint64_t rootid = ZTOZSB(zp)->z_root; uint64_t oidp = zp->z_id; krwlock_t *rwlp = &szp->z_parent_lock; krw_t rw = RW_WRITER; /* * First pass write-locks szp and compares to zp->z_id. * Later passes read-lock zp and compare to zp->z_parent. */ do { if (!rw_tryenter(rwlp, rw)) { /* * Another thread is renaming in this path. * Note that if we are a WRITER, we don't have any * parent_locks held yet. */ if (rw == RW_READER && zp->z_id > szp->z_id) { /* * Drop our locks and restart */ zfs_rename_unlock(&zl); *zlpp = NULL; zp = tdzp; oidp = zp->z_id; rwlp = &szp->z_parent_lock; rw = RW_WRITER; continue; } else { /* * Wait for other thread to drop its locks */ rw_enter(rwlp, rw); } } zl = kmem_alloc(sizeof (*zl), KM_SLEEP); zl->zl_rwlock = rwlp; zl->zl_znode = NULL; zl->zl_next = *zlpp; *zlpp = zl; if (oidp == szp->z_id) /* We're a descendant of szp */ return (SET_ERROR(EINVAL)); if (oidp == rootid) /* We've hit the top */ return (0); if (rw == RW_READER) { /* i.e. not the first pass */ int error = zfs_zget(ZTOZSB(zp), oidp, &zp); if (error) return (error); zl->zl_znode = zp; } (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)), &oidp, sizeof (oidp)); rwlp = &zp->z_parent_lock; rw = RW_READER; } while (zp->z_id != sdzp->z_id); return (0); } /* * Move an entry from the provided source directory to the target * directory. Change the entry name as indicated. * * IN: sdip - Source directory containing the "old entry". * snm - Old entry name. * tdip - Target directory to contain the "new entry". * tnm - New entry name. * cr - credentials of caller. * flags - case flags * * RETURN: 0 on success, error code on failure. * * Timestamps: * sdip,tdip - ctime|mtime updated */ /*ARGSUSED*/ int zfs_rename(struct inode *sdip, char *snm, struct inode *tdip, char *tnm, cred_t *cr, int flags) { znode_t *tdzp, *szp, *tzp; znode_t *sdzp = ITOZ(sdip); zfs_sb_t *zsb = ITOZSB(sdip); zilog_t *zilog; zfs_dirlock_t *sdl, *tdl; dmu_tx_t *tx; zfs_zlock_t *zl; int cmp, serr, terr; int error = 0; int zflg = 0; boolean_t waited = B_FALSE; ZFS_ENTER(zsb); ZFS_VERIFY_ZP(sdzp); zilog = zsb->z_log; if (tdip->i_sb != sdip->i_sb || zfsctl_is_node(tdip)) { ZFS_EXIT(zsb); return (SET_ERROR(EXDEV)); } tdzp = ITOZ(tdip); ZFS_VERIFY_ZP(tdzp); if (zsb->z_utf8 && u8_validate(tnm, strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { ZFS_EXIT(zsb); return (SET_ERROR(EILSEQ)); } if (flags & FIGNORECASE) zflg |= ZCILOOK; top: szp = NULL; tzp = NULL; zl = NULL; /* * This is to prevent the creation of links into attribute space * by renaming a linked file into/outof an attribute directory. * See the comment in zfs_link() for why this is considered bad. */ if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { ZFS_EXIT(zsb); return (SET_ERROR(EINVAL)); } /* * Lock source and target directory entries. To prevent deadlock, * a lock ordering must be defined. We lock the directory with * the smallest object id first, or if it's a tie, the one with * the lexically first name. */ if (sdzp->z_id < tdzp->z_id) { cmp = -1; } else if (sdzp->z_id > tdzp->z_id) { cmp = 1; } else { /* * First compare the two name arguments without * considering any case folding. */ int nofold = (zsb->z_norm & ~U8_TEXTPREP_TOUPPER); cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); ASSERT(error == 0 || !zsb->z_utf8); if (cmp == 0) { /* * POSIX: "If the old argument and the new argument * both refer to links to the same existing file, * the rename() function shall return successfully * and perform no other action." */ ZFS_EXIT(zsb); return (0); } /* * If the file system is case-folding, then we may * have some more checking to do. A case-folding file * system is either supporting mixed case sensitivity * access or is completely case-insensitive. Note * that the file system is always case preserving. * * In mixed sensitivity mode case sensitive behavior * is the default. FIGNORECASE must be used to * explicitly request case insensitive behavior. * * If the source and target names provided differ only * by case (e.g., a request to rename 'tim' to 'Tim'), * we will treat this as a special case in the * case-insensitive mode: as long as the source name * is an exact match, we will allow this to proceed as * a name-change request. */ if ((zsb->z_case == ZFS_CASE_INSENSITIVE || (zsb->z_case == ZFS_CASE_MIXED && flags & FIGNORECASE)) && u8_strcmp(snm, tnm, 0, zsb->z_norm, U8_UNICODE_LATEST, &error) == 0) { /* * case preserving rename request, require exact * name matches */ zflg |= ZCIEXACT; zflg &= ~ZCILOOK; } } /* * If the source and destination directories are the same, we should * grab the z_name_lock of that directory only once. */ if (sdzp == tdzp) { zflg |= ZHAVELOCK; rw_enter(&sdzp->z_name_lock, RW_READER); } if (cmp < 0) { serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS | zflg, NULL, NULL); terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); } else { terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, zflg, NULL, NULL); serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, NULL, NULL); } if (serr) { /* * Source entry invalid or not there. */ if (!terr) { zfs_dirent_unlock(tdl); if (tzp) iput(ZTOI(tzp)); } if (sdzp == tdzp) rw_exit(&sdzp->z_name_lock); if (strcmp(snm, "..") == 0) serr = EINVAL; ZFS_EXIT(zsb); return (serr); } if (terr) { zfs_dirent_unlock(sdl); iput(ZTOI(szp)); if (sdzp == tdzp) rw_exit(&sdzp->z_name_lock); if (strcmp(tnm, "..") == 0) terr = EINVAL; ZFS_EXIT(zsb); return (terr); } /* * Must have write access at the source to remove the old entry * and write access at the target to create the new entry. * Note that if target and source are the same, this can be * done in a single check. */ if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))) goto out; if (S_ISDIR(ZTOI(szp)->i_mode)) { /* * Check to make sure rename is valid. * Can't do a move like this: /usr/a/b to /usr/a/b/c/d */ if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl))) goto out; } /* * Does target exist? */ if (tzp) { /* * Source and target must be the same type. */ if (S_ISDIR(ZTOI(szp)->i_mode)) { if (!S_ISDIR(ZTOI(tzp)->i_mode)) { error = SET_ERROR(ENOTDIR); goto out; } } else { if (S_ISDIR(ZTOI(tzp)->i_mode)) { error = SET_ERROR(EISDIR); goto out; } } /* * POSIX dictates that when the source and target * entries refer to the same file object, rename * must do nothing and exit without error. */ if (szp->z_id == tzp->z_id) { error = 0; goto out; } } tx = dmu_tx_create(zsb->z_os); dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); if (sdzp != tdzp) { dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, tdzp); } if (tzp) { dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, tzp); } zfs_sa_upgrade_txholds(tx, szp); dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL); error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); if (error) { if (zl != NULL) zfs_rename_unlock(&zl); zfs_dirent_unlock(sdl); zfs_dirent_unlock(tdl); if (sdzp == tdzp) rw_exit(&sdzp->z_name_lock); iput(ZTOI(szp)); if (tzp) iput(ZTOI(tzp)); if (error == ERESTART) { waited = B_TRUE; dmu_tx_wait(tx); dmu_tx_abort(tx); goto top; } dmu_tx_abort(tx); ZFS_EXIT(zsb); return (error); } if (tzp) /* Attempt to remove the existing target */ error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); if (error == 0) { error = zfs_link_create(tdl, szp, tx, ZRENAMING); if (error == 0) { szp->z_pflags |= ZFS_AV_MODIFIED; error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zsb), (void *)&szp->z_pflags, sizeof (uint64_t), tx); ASSERT0(error); error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); if (error == 0) { zfs_log_rename(zilog, tx, TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); } else { /* * At this point, we have successfully created * the target name, but have failed to remove * the source name. Since the create was done * with the ZRENAMING flag, there are * complications; for one, the link count is * wrong. The easiest way to deal with this * is to remove the newly created target, and * return the original error. This must * succeed; fortunately, it is very unlikely to * fail, since we just created it. */ VERIFY3U(zfs_link_destroy(tdl, szp, tx, ZRENAMING, NULL), ==, 0); } } } dmu_tx_commit(tx); out: if (zl != NULL) zfs_rename_unlock(&zl); zfs_dirent_unlock(sdl); zfs_dirent_unlock(tdl); zfs_inode_update(sdzp); if (sdzp == tdzp) rw_exit(&sdzp->z_name_lock); if (sdzp != tdzp) zfs_inode_update(tdzp); zfs_inode_update(szp); iput(ZTOI(szp)); if (tzp) { zfs_inode_update(tzp); iput(ZTOI(tzp)); } if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); ZFS_EXIT(zsb); return (error); } EXPORT_SYMBOL(zfs_rename); /* * Insert the indicated symbolic reference entry into the directory. * * IN: dip - Directory to contain new symbolic link. * link - Name for new symlink entry. * vap - Attributes of new entry. * target - Target path of new symlink. * * cr - credentials of caller. * flags - case flags * * RETURN: 0 on success, error code on failure. * * Timestamps: * dip - ctime|mtime updated */ /*ARGSUSED*/ int zfs_symlink(struct inode *dip, char *name, vattr_t *vap, char *link, struct inode **ipp, cred_t *cr, int flags) { znode_t *zp, *dzp = ITOZ(dip); zfs_dirlock_t *dl; dmu_tx_t *tx; zfs_sb_t *zsb = ITOZSB(dip); zilog_t *zilog; uint64_t len = strlen(link); int error; int zflg = ZNEW; zfs_acl_ids_t acl_ids; boolean_t fuid_dirtied; uint64_t txtype = TX_SYMLINK; boolean_t waited = B_FALSE; ASSERT(S_ISLNK(vap->va_mode)); ZFS_ENTER(zsb); ZFS_VERIFY_ZP(dzp); zilog = zsb->z_log; if (zsb->z_utf8 && u8_validate(name, strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { ZFS_EXIT(zsb); return (SET_ERROR(EILSEQ)); } if (flags & FIGNORECASE) zflg |= ZCILOOK; if (len > MAXPATHLEN) { ZFS_EXIT(zsb); return (SET_ERROR(ENAMETOOLONG)); } if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, NULL, &acl_ids)) != 0) { ZFS_EXIT(zsb); return (error); } top: *ipp = NULL; /* * Attempt to lock directory; fail if entry already exists. */ error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); if (error) { zfs_acl_ids_free(&acl_ids); ZFS_EXIT(zsb); return (error); } if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) { zfs_acl_ids_free(&acl_ids); zfs_dirent_unlock(dl); ZFS_EXIT(zsb); return (error); } if (zfs_acl_ids_overquota(zsb, &acl_ids)) { zfs_acl_ids_free(&acl_ids); zfs_dirent_unlock(dl); ZFS_EXIT(zsb); return (SET_ERROR(EDQUOT)); } tx = dmu_tx_create(zsb->z_os); fuid_dirtied = zsb->z_fuid_dirty; dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + ZFS_SA_BASE_ATTR_SIZE + len); dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); if (!zsb->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, acl_ids.z_aclp->z_acl_bytes); } if (fuid_dirtied) zfs_fuid_txhold(zsb, tx); error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); if (error) { zfs_dirent_unlock(dl); if (error == ERESTART) { waited = B_TRUE; dmu_tx_wait(tx); dmu_tx_abort(tx); goto top; } zfs_acl_ids_free(&acl_ids); dmu_tx_abort(tx); ZFS_EXIT(zsb); return (error); } /* * Create a new object for the symlink. * for version 4 ZPL datsets the symlink will be an SA attribute */ zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); if (fuid_dirtied) zfs_fuid_sync(zsb, tx); mutex_enter(&zp->z_lock); if (zp->z_is_sa) error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zsb), link, len, tx); else zfs_sa_symlink(zp, link, len, tx); mutex_exit(&zp->z_lock); zp->z_size = len; (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zsb), &zp->z_size, sizeof (zp->z_size), tx); /* * Insert the new object into the directory. */ (void) zfs_link_create(dl, zp, tx, ZNEW); if (flags & FIGNORECASE) txtype |= TX_CI; zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); zfs_inode_update(dzp); zfs_inode_update(zp); zfs_acl_ids_free(&acl_ids); dmu_tx_commit(tx); zfs_dirent_unlock(dl); *ipp = ZTOI(zp); if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); ZFS_EXIT(zsb); return (error); } EXPORT_SYMBOL(zfs_symlink); /* * Return, in the buffer contained in the provided uio structure, * the symbolic path referred to by ip. * * IN: ip - inode of symbolic link * uio - structure to contain the link path. * cr - credentials of caller. * * RETURN: 0 if success * error code if failure * * Timestamps: * ip - atime updated */ /* ARGSUSED */ int zfs_readlink(struct inode *ip, uio_t *uio, cred_t *cr) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ITOZSB(ip); int error; ZFS_ENTER(zsb); ZFS_VERIFY_ZP(zp); mutex_enter(&zp->z_lock); if (zp->z_is_sa) error = sa_lookup_uio(zp->z_sa_hdl, SA_ZPL_SYMLINK(zsb), uio); else error = zfs_sa_readlink(zp, uio); mutex_exit(&zp->z_lock); ZFS_ACCESSTIME_STAMP(zsb, zp); ZFS_EXIT(zsb); return (error); } EXPORT_SYMBOL(zfs_readlink); /* * Insert a new entry into directory tdip referencing sip. * * IN: tdip - Directory to contain new entry. * sip - inode of new entry. * name - name of new entry. * cr - credentials of caller. * * RETURN: 0 if success * error code if failure * * Timestamps: * tdip - ctime|mtime updated * sip - ctime updated */ /* ARGSUSED */ int zfs_link(struct inode *tdip, struct inode *sip, char *name, cred_t *cr) { znode_t *dzp = ITOZ(tdip); znode_t *tzp, *szp; zfs_sb_t *zsb = ITOZSB(tdip); zilog_t *zilog; zfs_dirlock_t *dl; dmu_tx_t *tx; int error; int zf = ZNEW; uint64_t parent; uid_t owner; boolean_t waited = B_FALSE; ASSERT(S_ISDIR(tdip->i_mode)); ZFS_ENTER(zsb); ZFS_VERIFY_ZP(dzp); zilog = zsb->z_log; /* * POSIX dictates that we return EPERM here. * Better choices include ENOTSUP or EISDIR. */ if (S_ISDIR(sip->i_mode)) { ZFS_EXIT(zsb); return (SET_ERROR(EPERM)); } if (sip->i_sb != tdip->i_sb || zfsctl_is_node(sip)) { ZFS_EXIT(zsb); return (SET_ERROR(EXDEV)); } szp = ITOZ(sip); ZFS_VERIFY_ZP(szp); /* Prevent links to .zfs/shares files */ if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zsb), &parent, sizeof (uint64_t))) != 0) { ZFS_EXIT(zsb); return (error); } if (parent == zsb->z_shares_dir) { ZFS_EXIT(zsb); return (SET_ERROR(EPERM)); } if (zsb->z_utf8 && u8_validate(name, strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { ZFS_EXIT(zsb); return (SET_ERROR(EILSEQ)); } #ifdef HAVE_PN_UTILS if (flags & FIGNORECASE) zf |= ZCILOOK; #endif /* HAVE_PN_UTILS */ /* * We do not support links between attributes and non-attributes * because of the potential security risk of creating links * into "normal" file space in order to circumvent restrictions * imposed in attribute space. */ if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { ZFS_EXIT(zsb); return (SET_ERROR(EINVAL)); } owner = zfs_fuid_map_id(zsb, szp->z_uid, cr, ZFS_OWNER); if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { ZFS_EXIT(zsb); return (SET_ERROR(EPERM)); } if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) { ZFS_EXIT(zsb); return (error); } top: /* * Attempt to lock directory; fail if entry already exists. */ error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); if (error) { ZFS_EXIT(zsb); return (error); } tx = dmu_tx_create(zsb->z_os); dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); zfs_sa_upgrade_txholds(tx, szp); zfs_sa_upgrade_txholds(tx, dzp); error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); if (error) { zfs_dirent_unlock(dl); if (error == ERESTART) { waited = B_TRUE; dmu_tx_wait(tx); dmu_tx_abort(tx); goto top; } dmu_tx_abort(tx); ZFS_EXIT(zsb); return (error); } error = zfs_link_create(dl, szp, tx, 0); if (error == 0) { uint64_t txtype = TX_LINK; #ifdef HAVE_PN_UTILS if (flags & FIGNORECASE) txtype |= TX_CI; #endif /* HAVE_PN_UTILS */ zfs_log_link(zilog, tx, txtype, dzp, szp, name); } dmu_tx_commit(tx); zfs_dirent_unlock(dl); if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); zfs_inode_update(dzp); zfs_inode_update(szp); ZFS_EXIT(zsb); return (error); } EXPORT_SYMBOL(zfs_link); static void zfs_putpage_commit_cb(void *arg) { struct page *pp = arg; ClearPageError(pp); end_page_writeback(pp); } /* * Push a page out to disk, once the page is on stable storage the * registered commit callback will be run as notification of completion. * * IN: ip - page mapped for inode. * pp - page to push (page is locked) * wbc - writeback control data * * RETURN: 0 if success * error code if failure * * Timestamps: * ip - ctime|mtime updated */ /* ARGSUSED */ int zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ITOZSB(ip); loff_t offset; loff_t pgoff; unsigned int pglen; rl_t *rl; dmu_tx_t *tx; caddr_t va; int err = 0; uint64_t mtime[2], ctime[2]; sa_bulk_attr_t bulk[3]; int cnt = 0; struct address_space *mapping; ZFS_ENTER(zsb); ZFS_VERIFY_ZP(zp); ASSERT(PageLocked(pp)); pgoff = page_offset(pp); /* Page byte-offset in file */ offset = i_size_read(ip); /* File length in bytes */ pglen = MIN(PAGE_CACHE_SIZE, /* Page length in bytes */ P2ROUNDUP(offset, PAGE_CACHE_SIZE)-pgoff); /* Page is beyond end of file */ if (pgoff >= offset) { unlock_page(pp); ZFS_EXIT(zsb); return (0); } /* Truncate page length to end of file */ if (pgoff + pglen > offset) pglen = offset - pgoff; #if 0 /* * FIXME: Allow mmap writes past its quota. The correct fix * is to register a page_mkwrite() handler to count the page * against its quota when it is about to be dirtied. */ if (zfs_owner_overquota(zsb, zp, B_FALSE) || zfs_owner_overquota(zsb, zp, B_TRUE)) { err = EDQUOT; } #endif /* * The ordering here is critical and must adhere to the following * rules in order to avoid deadlocking in either zfs_read() or * zfs_free_range() due to a lock inversion. * * 1) The page must be unlocked prior to acquiring the range lock. * This is critical because zfs_read() calls find_lock_page() * which may block on the page lock while holding the range lock. * * 2) Before setting or clearing write back on a page the range lock * must be held in order to prevent a lock inversion with the * zfs_free_range() function. * * This presents a problem because upon entering this function the * page lock is already held. To safely acquire the range lock the * page lock must be dropped. This creates a window where another * process could truncate, invalidate, dirty, or write out the page. * * Therefore, after successfully reacquiring the range and page locks * the current page state is checked. In the common case everything * will be as is expected and it can be written out. However, if * the page state has changed it must be handled accordingly. */ mapping = pp->mapping; redirty_page_for_writepage(wbc, pp); unlock_page(pp); rl = zfs_range_lock(zp, pgoff, pglen, RL_WRITER); lock_page(pp); /* Page mapping changed or it was no longer dirty, we're done */ if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) { unlock_page(pp); zfs_range_unlock(rl); ZFS_EXIT(zsb); return (0); } /* Another process started write block if required */ if (PageWriteback(pp)) { unlock_page(pp); zfs_range_unlock(rl); if (wbc->sync_mode != WB_SYNC_NONE) wait_on_page_writeback(pp); ZFS_EXIT(zsb); return (0); } /* Clear the dirty flag the required locks are held */ if (!clear_page_dirty_for_io(pp)) { unlock_page(pp); zfs_range_unlock(rl); ZFS_EXIT(zsb); return (0); } /* * Counterpart for redirty_page_for_writepage() above. This page * was in fact not skipped and should not be counted as if it were. */ wbc->pages_skipped--; set_page_writeback(pp); unlock_page(pp); tx = dmu_tx_create(zsb->z_os); dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); err = dmu_tx_assign(tx, TXG_NOWAIT); if (err != 0) { if (err == ERESTART) dmu_tx_wait(tx); dmu_tx_abort(tx); __set_page_dirty_nobuffers(pp); ClearPageError(pp); end_page_writeback(pp); zfs_range_unlock(rl); ZFS_EXIT(zsb); return (err); } va = kmap(pp); ASSERT3U(pglen, <=, PAGE_CACHE_SIZE); dmu_write(zsb->z_os, zp->z_id, pgoff, pglen, va, tx); kunmap(pp); SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zsb), NULL, &mtime, 16); SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zsb), NULL, &ctime, 16); SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zsb), NULL, &zp->z_pflags, 8); /* Preserve the mtime and ctime provided by the inode */ ZFS_TIME_ENCODE(&ip->i_mtime, mtime); ZFS_TIME_ENCODE(&ip->i_ctime, ctime); zp->z_atime_dirty = 0; zp->z_seq++; err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx); zfs_log_write(zsb->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0, zfs_putpage_commit_cb, pp); dmu_tx_commit(tx); zfs_range_unlock(rl); if (wbc->sync_mode != WB_SYNC_NONE) { /* * Note that this is rarely called under writepages(), because * writepages() normally handles the entire commit for * performance reasons. */ if (zsb->z_log != NULL) zil_commit(zsb->z_log, zp->z_id); } ZFS_EXIT(zsb); return (err); } /* * Update the system attributes when the inode has been dirtied. For the * moment we only update the mode, atime, mtime, and ctime. */ int zfs_dirty_inode(struct inode *ip, int flags) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ITOZSB(ip); dmu_tx_t *tx; uint64_t mode, atime[2], mtime[2], ctime[2]; sa_bulk_attr_t bulk[4]; int error; int cnt = 0; if (zfs_is_readonly(zsb) || dmu_objset_is_snapshot(zsb->z_os)) return (0); ZFS_ENTER(zsb); ZFS_VERIFY_ZP(zp); tx = dmu_tx_create(zsb->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); goto out; } mutex_enter(&zp->z_lock); SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zsb), NULL, &mode, 8); SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zsb), NULL, &atime, 16); SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zsb), NULL, &mtime, 16); SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zsb), NULL, &ctime, 16); /* Preserve the mode, mtime and ctime provided by the inode */ ZFS_TIME_ENCODE(&ip->i_atime, atime); ZFS_TIME_ENCODE(&ip->i_mtime, mtime); ZFS_TIME_ENCODE(&ip->i_ctime, ctime); mode = ip->i_mode; zp->z_mode = mode; zp->z_atime_dirty = 0; error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx); mutex_exit(&zp->z_lock); dmu_tx_commit(tx); out: ZFS_EXIT(zsb); return (error); } EXPORT_SYMBOL(zfs_dirty_inode); /*ARGSUSED*/ void zfs_inactive(struct inode *ip) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ITOZSB(ip); int error; if (zfsctl_is_node(ip)) { zfsctl_inode_inactive(ip); return; } rw_enter(&zsb->z_teardown_inactive_lock, RW_READER); if (zp->z_sa_hdl == NULL) { rw_exit(&zsb->z_teardown_inactive_lock); return; } if (zp->z_atime_dirty && zp->z_unlinked == 0) { dmu_tx_t *tx = dmu_tx_create(zsb->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); } else { mutex_enter(&zp->z_lock); (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zsb), (void *)&zp->z_atime, sizeof (zp->z_atime), tx); zp->z_atime_dirty = 0; mutex_exit(&zp->z_lock); dmu_tx_commit(tx); } } zfs_zinactive(zp); rw_exit(&zsb->z_teardown_inactive_lock); } EXPORT_SYMBOL(zfs_inactive); /* * Bounds-check the seek operation. * * IN: ip - inode seeking within * ooff - old file offset * noffp - pointer to new file offset * ct - caller context * * RETURN: 0 if success * EINVAL if new offset invalid */ /* ARGSUSED */ int zfs_seek(struct inode *ip, offset_t ooff, offset_t *noffp) { if (S_ISDIR(ip->i_mode)) return (0); return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); } EXPORT_SYMBOL(zfs_seek); /* * Fill pages with data from the disk. */ static int zfs_fillpage(struct inode *ip, struct page *pl[], int nr_pages) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ITOZSB(ip); objset_t *os; struct page *cur_pp; u_offset_t io_off, total; size_t io_len; loff_t i_size; unsigned page_idx; int err; os = zsb->z_os; io_len = nr_pages << PAGE_CACHE_SHIFT; i_size = i_size_read(ip); io_off = page_offset(pl[0]); if (io_off + io_len > i_size) io_len = i_size - io_off; /* * Iterate over list of pages and read each page individually. */ page_idx = 0; cur_pp = pl[0]; for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { caddr_t va; va = kmap(cur_pp); err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, DMU_READ_PREFETCH); kunmap(cur_pp); if (err) { /* convert checksum errors into IO errors */ if (err == ECKSUM) err = SET_ERROR(EIO); return (err); } cur_pp = pl[++page_idx]; } return (0); } /* * Uses zfs_fillpage to read data from the file and fill the pages. * * IN: ip - inode of file to get data from. * pl - list of pages to read * nr_pages - number of pages to read * * RETURN: 0 on success, error code on failure. * * Timestamps: * vp - atime updated */ /* ARGSUSED */ int zfs_getpage(struct inode *ip, struct page *pl[], int nr_pages) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ITOZSB(ip); int err; if (pl == NULL) return (0); ZFS_ENTER(zsb); ZFS_VERIFY_ZP(zp); err = zfs_fillpage(ip, pl, nr_pages); if (!err) ZFS_ACCESSTIME_STAMP(zsb, zp); ZFS_EXIT(zsb); return (err); } EXPORT_SYMBOL(zfs_getpage); /* * Check ZFS specific permissions to memory map a section of a file. * * IN: ip - inode of the file to mmap * off - file offset * addrp - start address in memory region * len - length of memory region * vm_flags- address flags * * RETURN: 0 if success * error code if failure */ /*ARGSUSED*/ int zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len, unsigned long vm_flags) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ITOZSB(ip); ZFS_ENTER(zsb); ZFS_VERIFY_ZP(zp); if ((vm_flags & VM_WRITE) && (zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { ZFS_EXIT(zsb); return (SET_ERROR(EPERM)); } if ((vm_flags & (VM_READ | VM_EXEC)) && (zp->z_pflags & ZFS_AV_QUARANTINED)) { ZFS_EXIT(zsb); return (SET_ERROR(EACCES)); } if (off < 0 || len > MAXOFFSET_T - off) { ZFS_EXIT(zsb); return (SET_ERROR(ENXIO)); } ZFS_EXIT(zsb); return (0); } EXPORT_SYMBOL(zfs_map); /* * convoff - converts the given data (start, whence) to the * given whence. */ int convoff(struct inode *ip, flock64_t *lckdat, int whence, offset_t offset) { vattr_t vap; int error; if ((lckdat->l_whence == 2) || (whence == 2)) { if ((error = zfs_getattr(ip, &vap, 0, CRED()) != 0)) return (error); } switch (lckdat->l_whence) { case 1: lckdat->l_start += offset; break; case 2: lckdat->l_start += vap.va_size; /* FALLTHRU */ case 0: break; default: return (SET_ERROR(EINVAL)); } if (lckdat->l_start < 0) return (SET_ERROR(EINVAL)); switch (whence) { case 1: lckdat->l_start -= offset; break; case 2: lckdat->l_start -= vap.va_size; /* FALLTHRU */ case 0: break; default: return (SET_ERROR(EINVAL)); } lckdat->l_whence = (short)whence; return (0); } /* * Free or allocate space in a file. Currently, this function only * supports the `F_FREESP' command. However, this command is somewhat * misnamed, as its functionality includes the ability to allocate as * well as free space. * * IN: ip - inode of file to free data in. * cmd - action to take (only F_FREESP supported). * bfp - section of file to free/alloc. * flag - current file open mode flags. * offset - current file offset. * cr - credentials of caller [UNUSED]. * * RETURN: 0 on success, error code on failure. * * Timestamps: * ip - ctime|mtime updated */ /* ARGSUSED */ int zfs_space(struct inode *ip, int cmd, flock64_t *bfp, int flag, offset_t offset, cred_t *cr) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ITOZSB(ip); uint64_t off, len; int error; ZFS_ENTER(zsb); ZFS_VERIFY_ZP(zp); if (cmd != F_FREESP) { ZFS_EXIT(zsb); return (SET_ERROR(EINVAL)); } if ((error = convoff(ip, bfp, 0, offset))) { ZFS_EXIT(zsb); return (error); } if (bfp->l_len < 0) { ZFS_EXIT(zsb); return (SET_ERROR(EINVAL)); } /* * Permissions aren't checked on Solaris because on this OS * zfs_space() can only be called with an opened file handle. * On Linux we can get here through truncate_range() which * operates directly on inodes, so we need to check access rights. */ if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr))) { ZFS_EXIT(zsb); return (error); } off = bfp->l_start; len = bfp->l_len; /* 0 means from off to end of file */ error = zfs_freesp(zp, off, len, flag, TRUE); ZFS_EXIT(zsb); return (error); } EXPORT_SYMBOL(zfs_space); /*ARGSUSED*/ int zfs_fid(struct inode *ip, fid_t *fidp) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ITOZSB(ip); uint32_t gen; uint64_t gen64; uint64_t object = zp->z_id; zfid_short_t *zfid; int size, i, error; ZFS_ENTER(zsb); ZFS_VERIFY_ZP(zp); if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zsb), &gen64, sizeof (uint64_t))) != 0) { ZFS_EXIT(zsb); return (error); } gen = (uint32_t)gen64; size = (zsb->z_parent != zsb) ? LONG_FID_LEN : SHORT_FID_LEN; if (fidp->fid_len < size) { fidp->fid_len = size; ZFS_EXIT(zsb); return (SET_ERROR(ENOSPC)); } zfid = (zfid_short_t *)fidp; zfid->zf_len = size; for (i = 0; i < sizeof (zfid->zf_object); i++) zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); /* Must have a non-zero generation number to distinguish from .zfs */ if (gen == 0) gen = 1; for (i = 0; i < sizeof (zfid->zf_gen); i++) zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); if (size == LONG_FID_LEN) { uint64_t objsetid = dmu_objset_id(zsb->z_os); zfid_long_t *zlfid; zlfid = (zfid_long_t *)fidp; for (i = 0; i < sizeof (zlfid->zf_setid); i++) zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); /* XXX - this should be the generation number for the objset */ for (i = 0; i < sizeof (zlfid->zf_setgen); i++) zlfid->zf_setgen[i] = 0; } ZFS_EXIT(zsb); return (0); } EXPORT_SYMBOL(zfs_fid); /*ARGSUSED*/ int zfs_getsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ITOZSB(ip); int error; boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; ZFS_ENTER(zsb); ZFS_VERIFY_ZP(zp); error = zfs_getacl(zp, vsecp, skipaclchk, cr); ZFS_EXIT(zsb); return (error); } EXPORT_SYMBOL(zfs_getsecattr); /*ARGSUSED*/ int zfs_setsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ITOZSB(ip); int error; boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; zilog_t *zilog = zsb->z_log; ZFS_ENTER(zsb); ZFS_VERIFY_ZP(zp); error = zfs_setacl(zp, vsecp, skipaclchk, cr); if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); ZFS_EXIT(zsb); return (error); } EXPORT_SYMBOL(zfs_setsecattr); #ifdef HAVE_UIO_ZEROCOPY /* * Tunable, both must be a power of 2. * * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf * zcr_blksz_max: if set to less than the file block size, allow loaning out of * an arcbuf for a partial block read */ int zcr_blksz_min = (1 << 10); /* 1K */ int zcr_blksz_max = (1 << 17); /* 128K */ /*ARGSUSED*/ static int zfs_reqzcbuf(struct inode *ip, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr) { znode_t *zp = ITOZ(ip); zfs_sb_t *zsb = ITOZSB(ip); int max_blksz = zsb->z_max_blksz; uio_t *uio = &xuio->xu_uio; ssize_t size = uio->uio_resid; offset_t offset = uio->uio_loffset; int blksz; int fullblk, i; arc_buf_t *abuf; ssize_t maxsize; int preamble, postamble; if (xuio->xu_type != UIOTYPE_ZEROCOPY) return (SET_ERROR(EINVAL)); ZFS_ENTER(zsb); ZFS_VERIFY_ZP(zp); switch (ioflag) { case UIO_WRITE: /* * Loan out an arc_buf for write if write size is bigger than * max_blksz, and the file's block size is also max_blksz. */ blksz = max_blksz; if (size < blksz || zp->z_blksz != blksz) { ZFS_EXIT(zsb); return (SET_ERROR(EINVAL)); } /* * Caller requests buffers for write before knowing where the * write offset might be (e.g. NFS TCP write). */ if (offset == -1) { preamble = 0; } else { preamble = P2PHASE(offset, blksz); if (preamble) { preamble = blksz - preamble; size -= preamble; } } postamble = P2PHASE(size, blksz); size -= postamble; fullblk = size / blksz; (void) dmu_xuio_init(xuio, (preamble != 0) + fullblk + (postamble != 0)); /* * Have to fix iov base/len for partial buffers. They * currently represent full arc_buf's. */ if (preamble) { /* data begins in the middle of the arc_buf */ abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), blksz); ASSERT(abuf); (void) dmu_xuio_add(xuio, abuf, blksz - preamble, preamble); } for (i = 0; i < fullblk; i++) { abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), blksz); ASSERT(abuf); (void) dmu_xuio_add(xuio, abuf, 0, blksz); } if (postamble) { /* data ends in the middle of the arc_buf */ abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), blksz); ASSERT(abuf); (void) dmu_xuio_add(xuio, abuf, 0, postamble); } break; case UIO_READ: /* * Loan out an arc_buf for read if the read size is larger than * the current file block size. Block alignment is not * considered. Partial arc_buf will be loaned out for read. */ blksz = zp->z_blksz; if (blksz < zcr_blksz_min) blksz = zcr_blksz_min; if (blksz > zcr_blksz_max) blksz = zcr_blksz_max; /* avoid potential complexity of dealing with it */ if (blksz > max_blksz) { ZFS_EXIT(zsb); return (SET_ERROR(EINVAL)); } maxsize = zp->z_size - uio->uio_loffset; if (size > maxsize) size = maxsize; if (size < blksz) { ZFS_EXIT(zsb); return (SET_ERROR(EINVAL)); } break; default: ZFS_EXIT(zsb); return (SET_ERROR(EINVAL)); } uio->uio_extflg = UIO_XUIO; XUIO_XUZC_RW(xuio) = ioflag; ZFS_EXIT(zsb); return (0); } /*ARGSUSED*/ static int zfs_retzcbuf(struct inode *ip, xuio_t *xuio, cred_t *cr) { int i; arc_buf_t *abuf; int ioflag = XUIO_XUZC_RW(xuio); ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); i = dmu_xuio_cnt(xuio); while (i-- > 0) { abuf = dmu_xuio_arcbuf(xuio, i); /* * if abuf == NULL, it must be a write buffer * that has been returned in zfs_write(). */ if (abuf) dmu_return_arcbuf(abuf); ASSERT(abuf || ioflag == UIO_WRITE); } dmu_xuio_fini(xuio); return (0); } #endif /* HAVE_UIO_ZEROCOPY */ #if defined(_KERNEL) && defined(HAVE_SPL) module_param(zfs_read_chunk_size, long, 0644); MODULE_PARM_DESC(zfs_read_chunk_size, "Bytes to read per chunk"); #endif