/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2012 by Delphix. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include /* * This general routine is responsible for generating all the different ZFS * ereports. The payload is dependent on the class, and which arguments are * supplied to the function: * * EREPORT POOL VDEV IO * block X X X * data X X * device X X * pool X * * If we are in a loading state, all errors are chained together by the same * SPA-wide ENA (Error Numeric Association). * * For isolated I/O requests, we get the ENA from the zio_t. The propagation * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want * to chain together all ereports associated with a logical piece of data. For * read I/Os, there are basically three 'types' of I/O, which form a roughly * layered diagram: * * +---------------+ * | Aggregate I/O | No associated logical data or device * +---------------+ * | * V * +---------------+ Reads associated with a piece of logical data. * | Read I/O | This includes reads on behalf of RAID-Z, * +---------------+ mirrors, gang blocks, retries, etc. * | * V * +---------------+ Reads associated with a particular device, but * | Physical I/O | no logical data. Issued as part of vdev caching * +---------------+ and I/O aggregation. * * Note that 'physical I/O' here is not the same terminology as used in the rest * of ZIO. Typically, 'physical I/O' simply means that there is no attached * blockpointer. But I/O with no associated block pointer can still be related * to a logical piece of data (i.e. RAID-Z requests). * * Purely physical I/O always have unique ENAs. They are not related to a * particular piece of logical data, and therefore cannot be chained together. * We still generate an ereport, but the DE doesn't correlate it with any * logical piece of data. When such an I/O fails, the delegated I/O requests * will issue a retry, which will trigger the 'real' ereport with the correct * ENA. * * We keep track of the ENA for a ZIO chain through the 'io_logical' member. * When a new logical I/O is issued, we set this to point to itself. Child I/Os * then inherit this pointer, so that when it is first set subsequent failures * will use the same ENA. For vdev cache fill and queue aggregation I/O, * this pointer is set to NULL, and no ereport will be generated (since it * doesn't actually correspond to any particular device or piece of data, * and the caller will always retry without caching or queueing anyway). * * For checksum errors, we want to include more information about the actual * error which occurs. Accordingly, we build an ereport when the error is * noticed, but instead of sending it in immediately, we hang it off of the * io_cksum_report field of the logical IO. When the logical IO completes * (successfully or not), zfs_ereport_finish_checksum() is called with the * good and bad versions of the buffer (if available), and we annotate the * ereport with information about the differences. */ #ifdef _KERNEL static void zfs_zevent_post_cb(nvlist_t *nvl, nvlist_t *detector) { if (nvl) fm_nvlist_destroy(nvl, FM_NVA_FREE); if (detector) fm_nvlist_destroy(detector, FM_NVA_FREE); } static void zfs_zevent_post_cb_noop(nvlist_t *nvl, nvlist_t *detector) { } static void zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out, const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio, uint64_t stateoroffset, uint64_t size) { nvlist_t *ereport, *detector; uint64_t ena; char class[64]; /* * If we are doing a spa_tryimport() or in recovery mode, * ignore errors. */ if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT || spa_load_state(spa) == SPA_LOAD_RECOVER) return; /* * If we are in the middle of opening a pool, and the previous attempt * failed, don't bother logging any new ereports - we're just going to * get the same diagnosis anyway. */ if (spa_load_state(spa) != SPA_LOAD_NONE && spa->spa_last_open_failed) return; if (zio != NULL) { /* * If this is not a read or write zio, ignore the error. This * can occur if the DKIOCFLUSHWRITECACHE ioctl fails. */ if (zio->io_type != ZIO_TYPE_READ && zio->io_type != ZIO_TYPE_WRITE) return; if (vd != NULL) { /* * If the vdev has already been marked as failing due * to a failed probe, then ignore any subsequent I/O * errors, as the DE will automatically fault the vdev * on the first such failure. This also catches cases * where vdev_remove_wanted is set and the device has * not yet been asynchronously placed into the REMOVED * state. */ if (zio->io_vd == vd && !vdev_accessible(vd, zio)) return; /* * Ignore checksum errors for reads from DTL regions of * leaf vdevs. */ if (zio->io_type == ZIO_TYPE_READ && zio->io_error == ECKSUM && vd->vdev_ops->vdev_op_leaf && vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1)) return; } } /* * For probe failure, we want to avoid posting ereports if we've * already removed the device in the meantime. */ if (vd != NULL && strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 && (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED)) return; if ((ereport = fm_nvlist_create(NULL)) == NULL) return; if ((detector = fm_nvlist_create(NULL)) == NULL) { fm_nvlist_destroy(ereport, FM_NVA_FREE); return; } /* * Serialize ereport generation */ mutex_enter(&spa->spa_errlist_lock); /* * Determine the ENA to use for this event. If we are in a loading * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use * a root zio-wide ENA. Otherwise, simply use a unique ENA. */ if (spa_load_state(spa) != SPA_LOAD_NONE) { if (spa->spa_ena == 0) spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1); ena = spa->spa_ena; } else if (zio != NULL && zio->io_logical != NULL) { if (zio->io_logical->io_ena == 0) zio->io_logical->io_ena = fm_ena_generate(0, FM_ENA_FMT1); ena = zio->io_logical->io_ena; } else { ena = fm_ena_generate(0, FM_ENA_FMT1); } /* * Construct the full class, detector, and other standard FMA fields. */ (void) snprintf(class, sizeof (class), "%s.%s", ZFS_ERROR_CLASS, subclass); fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa), vd != NULL ? vd->vdev_guid : 0); fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL); /* * Construct the per-ereport payload, depending on which parameters are * passed in. */ /* * Generic payload members common to all ereports. */ fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL, DATA_TYPE_STRING, spa_name(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, DATA_TYPE_UINT64, spa_guid(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32, spa_load_state(spa), NULL); if (spa != NULL) { fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, DATA_TYPE_STRING, spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ? FM_EREPORT_FAILMODE_WAIT : spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ? FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC, NULL); } if (vd != NULL) { vdev_t *pvd = vd->vdev_parent; vdev_queue_t *vq = &vd->vdev_queue; vdev_stat_t *vs = &vd->vdev_stat; vdev_t *spare_vd; uint64_t *spare_guids; char **spare_paths; int i, spare_count; fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, DATA_TYPE_UINT64, vd->vdev_guid, FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE, DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL); if (vd->vdev_path != NULL) fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, DATA_TYPE_STRING, vd->vdev_path, NULL); if (vd->vdev_devid != NULL) fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, DATA_TYPE_STRING, vd->vdev_devid, NULL); if (vd->vdev_fru != NULL) fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, DATA_TYPE_STRING, vd->vdev_fru, NULL); if (vd->vdev_ashift) fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT, DATA_TYPE_UINT64, vd->vdev_ashift, NULL); if (vq != NULL) { fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_COMP_TS, DATA_TYPE_UINT64, vq->vq_io_complete_ts, NULL); fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_DELTA_TS, DATA_TYPE_UINT64, vq->vq_io_delta_ts, NULL); } if (vs != NULL) { fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_READ_ERRORS, DATA_TYPE_UINT64, vs->vs_read_errors, FM_EREPORT_PAYLOAD_ZFS_VDEV_WRITE_ERRORS, DATA_TYPE_UINT64, vs->vs_write_errors, FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_ERRORS, DATA_TYPE_UINT64, vs->vs_checksum_errors, NULL); } if (pvd != NULL) { fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID, DATA_TYPE_UINT64, pvd->vdev_guid, FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE, DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type, NULL); if (pvd->vdev_path) fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH, DATA_TYPE_STRING, pvd->vdev_path, NULL); if (pvd->vdev_devid) fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID, DATA_TYPE_STRING, pvd->vdev_devid, NULL); } spare_count = spa->spa_spares.sav_count; spare_paths = kmem_zalloc(sizeof (char *) * spare_count, KM_SLEEP); spare_guids = kmem_zalloc(sizeof (uint64_t) * spare_count, KM_SLEEP); for (i = 0; i < spare_count; i++) { spare_vd = spa->spa_spares.sav_vdevs[i]; if (spare_vd) { spare_paths[i] = spare_vd->vdev_path; spare_guids[i] = spare_vd->vdev_guid; } } fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_PATHS, DATA_TYPE_STRING_ARRAY, spare_count, spare_paths, FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_GUIDS, DATA_TYPE_UINT64_ARRAY, spare_count, spare_guids, NULL); kmem_free(spare_guids, sizeof (uint64_t) * spare_count); kmem_free(spare_paths, sizeof (char *) * spare_count); } if (zio != NULL) { /* * Payload common to all I/Os. */ fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR, DATA_TYPE_INT32, zio->io_error, NULL); fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS, DATA_TYPE_INT32, zio->io_flags, NULL); fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_STAGE, DATA_TYPE_UINT32, zio->io_stage, NULL); fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PIPELINE, DATA_TYPE_UINT32, zio->io_pipeline, NULL); fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY, DATA_TYPE_UINT64, zio->io_delay, NULL); fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP, DATA_TYPE_UINT64, zio->io_timestamp, NULL); fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA, DATA_TYPE_UINT64, zio->io_delta, NULL); /* * If the 'size' parameter is non-zero, it indicates this is a * RAID-Z or other I/O where the physical offset and length are * provided for us, instead of within the zio_t. */ if (vd != NULL) { if (size) fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, DATA_TYPE_UINT64, stateoroffset, FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, DATA_TYPE_UINT64, size, NULL); else fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, DATA_TYPE_UINT64, zio->io_offset, FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, DATA_TYPE_UINT64, zio->io_size, NULL); } /* * Payload for I/Os with corresponding logical information. */ if (zio->io_logical != NULL) fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET, DATA_TYPE_UINT64, zio->io_logical->io_bookmark.zb_objset, FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT, DATA_TYPE_UINT64, zio->io_logical->io_bookmark.zb_object, FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL, DATA_TYPE_INT64, zio->io_logical->io_bookmark.zb_level, FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID, DATA_TYPE_UINT64, zio->io_logical->io_bookmark.zb_blkid, NULL); } else if (vd != NULL) { /* * If we have a vdev but no zio, this is a device fault, and the * 'stateoroffset' parameter indicates the previous state of the * vdev. */ fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_PREV_STATE, DATA_TYPE_UINT64, stateoroffset, NULL); } mutex_exit(&spa->spa_errlist_lock); *ereport_out = ereport; *detector_out = detector; } /* if it's <= 128 bytes, save the corruption directly */ #define ZFM_MAX_INLINE (128 / sizeof (uint64_t)) #define MAX_RANGES 16 typedef struct zfs_ecksum_info { /* histograms of set and cleared bits by bit number in a 64-bit word */ uint16_t zei_histogram_set[sizeof (uint64_t) * NBBY]; uint16_t zei_histogram_cleared[sizeof (uint64_t) * NBBY]; /* inline arrays of bits set and cleared. */ uint64_t zei_bits_set[ZFM_MAX_INLINE]; uint64_t zei_bits_cleared[ZFM_MAX_INLINE]; /* * for each range, the number of bits set and cleared. The Hamming * distance between the good and bad buffers is the sum of them all. */ uint32_t zei_range_sets[MAX_RANGES]; uint32_t zei_range_clears[MAX_RANGES]; struct zei_ranges { uint32_t zr_start; uint32_t zr_end; } zei_ranges[MAX_RANGES]; size_t zei_range_count; uint32_t zei_mingap; uint32_t zei_allowed_mingap; } zfs_ecksum_info_t; static void update_histogram(uint64_t value_arg, uint16_t *hist, uint32_t *count) { size_t i; size_t bits = 0; uint64_t value = BE_64(value_arg); /* We store the bits in big-endian (largest-first) order */ for (i = 0; i < 64; i++) { if (value & (1ull << i)) { if (hist[63 - i] < UINT16_MAX) hist[63 - i]++; ++bits; } } /* update the count of bits changed */ *count += bits; } /* * We've now filled up the range array, and need to increase "mingap" and * shrink the range list accordingly. zei_mingap is always the smallest * distance between array entries, so we set the new_allowed_gap to be * one greater than that. We then go through the list, joining together * any ranges which are closer than the new_allowed_gap. * * By construction, there will be at least one. We also update zei_mingap * to the new smallest gap, to prepare for our next invocation. */ static void zei_shrink_ranges(zfs_ecksum_info_t *eip) { uint32_t mingap = UINT32_MAX; uint32_t new_allowed_gap = eip->zei_mingap + 1; size_t idx, output; size_t max = eip->zei_range_count; struct zei_ranges *r = eip->zei_ranges; ASSERT3U(eip->zei_range_count, >, 0); ASSERT3U(eip->zei_range_count, <=, MAX_RANGES); output = idx = 0; while (idx < max - 1) { uint32_t start = r[idx].zr_start; uint32_t end = r[idx].zr_end; while (idx < max - 1) { uint32_t nstart, nend, gap; idx++; nstart = r[idx].zr_start; nend = r[idx].zr_end; gap = nstart - end; if (gap < new_allowed_gap) { end = nend; continue; } if (gap < mingap) mingap = gap; break; } r[output].zr_start = start; r[output].zr_end = end; output++; } ASSERT3U(output, <, eip->zei_range_count); eip->zei_range_count = output; eip->zei_mingap = mingap; eip->zei_allowed_mingap = new_allowed_gap; } static void zei_add_range(zfs_ecksum_info_t *eip, int start, int end) { struct zei_ranges *r = eip->zei_ranges; size_t count = eip->zei_range_count; if (count >= MAX_RANGES) { zei_shrink_ranges(eip); count = eip->zei_range_count; } if (count == 0) { eip->zei_mingap = UINT32_MAX; eip->zei_allowed_mingap = 1; } else { int gap = start - r[count - 1].zr_end; if (gap < eip->zei_allowed_mingap) { r[count - 1].zr_end = end; return; } if (gap < eip->zei_mingap) eip->zei_mingap = gap; } r[count].zr_start = start; r[count].zr_end = end; eip->zei_range_count++; } static size_t zei_range_total_size(zfs_ecksum_info_t *eip) { struct zei_ranges *r = eip->zei_ranges; size_t count = eip->zei_range_count; size_t result = 0; size_t idx; for (idx = 0; idx < count; idx++) result += (r[idx].zr_end - r[idx].zr_start); return (result); } static zfs_ecksum_info_t * annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info, const uint8_t *goodbuf, const uint8_t *badbuf, size_t size, boolean_t drop_if_identical) { const uint64_t *good = (const uint64_t *)goodbuf; const uint64_t *bad = (const uint64_t *)badbuf; uint64_t allset = 0; uint64_t allcleared = 0; size_t nui64s = size / sizeof (uint64_t); size_t inline_size; int no_inline = 0; size_t idx; size_t range; size_t offset = 0; ssize_t start = -1; zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP); /* don't do any annotation for injected checksum errors */ if (info != NULL && info->zbc_injected) return (eip); if (info != NULL && info->zbc_has_cksum) { fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED, DATA_TYPE_UINT64_ARRAY, sizeof (info->zbc_expected) / sizeof (uint64_t), (uint64_t *)&info->zbc_expected, FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL, DATA_TYPE_UINT64_ARRAY, sizeof (info->zbc_actual) / sizeof (uint64_t), (uint64_t *)&info->zbc_actual, FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO, DATA_TYPE_STRING, info->zbc_checksum_name, NULL); if (info->zbc_byteswapped) { fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP, DATA_TYPE_BOOLEAN, 1, NULL); } } if (badbuf == NULL || goodbuf == NULL) return (eip); ASSERT3U(size, ==, nui64s * sizeof (uint64_t)); ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); ASSERT3U(size, <=, UINT32_MAX); /* build up the range list by comparing the two buffers. */ for (idx = 0; idx < nui64s; idx++) { if (good[idx] == bad[idx]) { if (start == -1) continue; zei_add_range(eip, start, idx); start = -1; } else { if (start != -1) continue; start = idx; } } if (start != -1) zei_add_range(eip, start, idx); /* See if it will fit in our inline buffers */ inline_size = zei_range_total_size(eip); if (inline_size > ZFM_MAX_INLINE) no_inline = 1; /* * If there is no change and we want to drop if the buffers are * identical, do so. */ if (inline_size == 0 && drop_if_identical) { kmem_free(eip, sizeof (*eip)); return (NULL); } /* * Now walk through the ranges, filling in the details of the * differences. Also convert our uint64_t-array offsets to byte * offsets. */ for (range = 0; range < eip->zei_range_count; range++) { size_t start = eip->zei_ranges[range].zr_start; size_t end = eip->zei_ranges[range].zr_end; for (idx = start; idx < end; idx++) { uint64_t set, cleared; // bits set in bad, but not in good set = ((~good[idx]) & bad[idx]); // bits set in good, but not in bad cleared = (good[idx] & (~bad[idx])); allset |= set; allcleared |= cleared; if (!no_inline) { ASSERT3U(offset, <, inline_size); eip->zei_bits_set[offset] = set; eip->zei_bits_cleared[offset] = cleared; offset++; } update_histogram(set, eip->zei_histogram_set, &eip->zei_range_sets[range]); update_histogram(cleared, eip->zei_histogram_cleared, &eip->zei_range_clears[range]); } /* convert to byte offsets */ eip->zei_ranges[range].zr_start *= sizeof (uint64_t); eip->zei_ranges[range].zr_end *= sizeof (uint64_t); } eip->zei_allowed_mingap *= sizeof (uint64_t); inline_size *= sizeof (uint64_t); /* fill in ereport */ fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES, DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count, (uint32_t *)eip->zei_ranges, FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP, DATA_TYPE_UINT32, eip->zei_allowed_mingap, FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS, DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets, FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS, DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears, NULL); if (!no_inline) { fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS, DATA_TYPE_UINT8_ARRAY, inline_size, (uint8_t *)eip->zei_bits_set, FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS, DATA_TYPE_UINT8_ARRAY, inline_size, (uint8_t *)eip->zei_bits_cleared, NULL); } else { fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM, DATA_TYPE_UINT16_ARRAY, NBBY * sizeof (uint64_t), eip->zei_histogram_set, FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM, DATA_TYPE_UINT16_ARRAY, NBBY * sizeof (uint64_t), eip->zei_histogram_cleared, NULL); } return (eip); } #endif void zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio, uint64_t stateoroffset, uint64_t size) { #ifdef _KERNEL nvlist_t *ereport = NULL; nvlist_t *detector = NULL; zfs_ereport_start(&ereport, &detector, subclass, spa, vd, zio, stateoroffset, size); if (ereport == NULL) return; /* Cleanup is handled by the callback function */ zfs_zevent_post(ereport, detector, zfs_zevent_post_cb); #endif } void zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, struct zio *zio, uint64_t offset, uint64_t length, void *arg, zio_bad_cksum_t *info) { zio_cksum_report_t *report = kmem_zalloc(sizeof (*report), KM_SLEEP); if (zio->io_vsd != NULL) zio->io_vsd_ops->vsd_cksum_report(zio, report, arg); else zio_vsd_default_cksum_report(zio, report, arg); /* copy the checksum failure information if it was provided */ if (info != NULL) { report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP); bcopy(info, report->zcr_ckinfo, sizeof (*info)); } report->zcr_align = 1ULL << vd->vdev_top->vdev_ashift; report->zcr_length = length; #ifdef _KERNEL zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector, FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length); if (report->zcr_ereport == NULL) { zfs_ereport_free_checksum(report); return; } #endif mutex_enter(&spa->spa_errlist_lock); report->zcr_next = zio->io_logical->io_cksum_report; zio->io_logical->io_cksum_report = report; mutex_exit(&spa->spa_errlist_lock); } void zfs_ereport_finish_checksum(zio_cksum_report_t *report, const void *good_data, const void *bad_data, boolean_t drop_if_identical) { #ifdef _KERNEL zfs_ecksum_info_t *info; info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo, good_data, bad_data, report->zcr_length, drop_if_identical); if (info != NULL) zfs_zevent_post(report->zcr_ereport, report->zcr_detector, zfs_zevent_post_cb); else zfs_zevent_post_cb(report->zcr_ereport, report->zcr_detector); report->zcr_ereport = report->zcr_detector = NULL; if (info != NULL) kmem_free(info, sizeof (*info)); #endif } void zfs_ereport_free_checksum(zio_cksum_report_t *rpt) { #ifdef _KERNEL if (rpt->zcr_ereport != NULL) { fm_nvlist_destroy(rpt->zcr_ereport, FM_NVA_FREE); fm_nvlist_destroy(rpt->zcr_detector, FM_NVA_FREE); } #endif rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo); if (rpt->zcr_ckinfo != NULL) kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo)); kmem_free(rpt, sizeof (*rpt)); } void zfs_ereport_send_interim_checksum(zio_cksum_report_t *report) { #ifdef _KERNEL zfs_zevent_post(report->zcr_ereport, report->zcr_detector, zfs_zevent_post_cb_noop); #endif } void zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, struct zio *zio, uint64_t offset, uint64_t length, const void *good_data, const void *bad_data, zio_bad_cksum_t *zbc) { #ifdef _KERNEL nvlist_t *ereport = NULL; nvlist_t *detector = NULL; zfs_ecksum_info_t *info; zfs_ereport_start(&ereport, &detector, FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio, offset, length); if (ereport == NULL) return; info = annotate_ecksum(ereport, zbc, good_data, bad_data, length, B_FALSE); if (info != NULL) { zfs_zevent_post(ereport, detector, zfs_zevent_post_cb); kmem_free(info, sizeof (*info)); } #endif } static void zfs_post_common(spa_t *spa, vdev_t *vd, const char *type, const char *name) { #ifdef _KERNEL nvlist_t *resource; char class[64]; if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT) return; if ((resource = fm_nvlist_create(NULL)) == NULL) return; (void) snprintf(class, sizeof (class), "%s.%s.%s", type, ZFS_ERROR_CLASS, name); VERIFY0(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION)); VERIFY0(nvlist_add_string(resource, FM_CLASS, class)); VERIFY0(nvlist_add_uint64(resource, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa))); VERIFY0(nvlist_add_int32(resource, FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, spa_load_state(spa))); if (vd) { VERIFY0(nvlist_add_uint64(resource, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid)); VERIFY0(nvlist_add_uint64(resource, FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, vd->vdev_state)); if (vd->vdev_path != NULL) VERIFY0(nvlist_add_string(resource, FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, vd->vdev_path)); if (vd->vdev_devid != NULL) VERIFY0(nvlist_add_string(resource, FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, vd->vdev_devid)); if (vd->vdev_fru != NULL) VERIFY0(nvlist_add_string(resource, FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, vd->vdev_fru)); } zfs_zevent_post(resource, NULL, zfs_zevent_post_cb); #endif } /* * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev * has been removed from the system. This will cause the DE to ignore any * recent I/O errors, inferring that they are due to the asynchronous device * removal. */ void zfs_post_remove(spa_t *spa, vdev_t *vd) { zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_REMOVED); } /* * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool * has the 'autoreplace' property set, and therefore any broken vdevs will be * handled by higher level logic, and no vdev fault should be generated. */ void zfs_post_autoreplace(spa_t *spa, vdev_t *vd) { zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_AUTOREPLACE); } /* * The 'resource.fs.zfs.statechange' event is an internal signal that the * given vdev has transitioned its state to DEGRADED or HEALTHY. This will * cause the retire agent to repair any outstanding fault management cases * open because the device was not found (fault.fs.zfs.device). */ void zfs_post_state_change(spa_t *spa, vdev_t *vd) { zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_STATECHANGE); } /* * The 'sysevent.fs.zfs.*' events are signals posted to notify user space of * change in the pool. All sysevents are listed in sys/sysevent/eventdefs.h * and are designed to be consumed by the ZFS Event Daemon (ZED). For * additional details refer to the zed(8) man page. */ void zfs_post_sysevent(spa_t *spa, vdev_t *vd, const char *name) { zfs_post_common(spa, vd, FM_SYSEVENT_CLASS, name); } #if defined(_KERNEL) && defined(HAVE_SPL) EXPORT_SYMBOL(zfs_ereport_post); EXPORT_SYMBOL(zfs_ereport_post_checksum); EXPORT_SYMBOL(zfs_post_remove); EXPORT_SYMBOL(zfs_post_autoreplace); EXPORT_SYMBOL(zfs_post_state_change); EXPORT_SYMBOL(zfs_post_sysevent); #endif /* _KERNEL */