/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2018 by Delphix. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright 2017 Nexenta Systems, Inc. */ #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #endif int zap_micro_max_size = MZAP_MAX_BLKSZ; static int mzap_upgrade(zap_t **zapp, const void *tag, dmu_tx_t *tx, zap_flags_t flags); uint64_t zap_getflags(zap_t *zap) { if (zap->zap_ismicro) return (0); return (zap_f_phys(zap)->zap_flags); } int zap_hashbits(zap_t *zap) { if (zap_getflags(zap) & ZAP_FLAG_HASH64) return (48); else return (28); } uint32_t zap_maxcd(zap_t *zap) { if (zap_getflags(zap) & ZAP_FLAG_HASH64) return ((1<<16)-1); else return (-1U); } static uint64_t zap_hash(zap_name_t *zn) { zap_t *zap = zn->zn_zap; uint64_t h = 0; if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) { ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY); h = *(uint64_t *)zn->zn_key_orig; } else { h = zap->zap_salt; ASSERT(h != 0); ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { const uint64_t *wp = zn->zn_key_norm; ASSERT(zn->zn_key_intlen == 8); for (int i = 0; i < zn->zn_key_norm_numints; wp++, i++) { uint64_t word = *wp; for (int j = 0; j < 8; j++) { h = (h >> 8) ^ zfs_crc64_table[(h ^ word) & 0xFF]; word >>= NBBY; } } } else { const uint8_t *cp = zn->zn_key_norm; /* * We previously stored the terminating null on * disk, but didn't hash it, so we need to * continue to not hash it. (The * zn_key_*_numints includes the terminating * null for non-binary keys.) */ int len = zn->zn_key_norm_numints - 1; ASSERT(zn->zn_key_intlen == 1); for (int i = 0; i < len; cp++, i++) { h = (h >> 8) ^ zfs_crc64_table[(h ^ *cp) & 0xFF]; } } } /* * Don't use all 64 bits, since we need some in the cookie for * the collision differentiator. We MUST use the high bits, * since those are the ones that we first pay attention to when * choosing the bucket. */ h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1); return (h); } static int zap_normalize(zap_t *zap, const char *name, char *namenorm, int normflags) { ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY)); size_t inlen = strlen(name) + 1; size_t outlen = ZAP_MAXNAMELEN; int err = 0; (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen, normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err); return (err); } boolean_t zap_match(zap_name_t *zn, const char *matchname) { ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY)); if (zn->zn_matchtype & MT_NORMALIZE) { char norm[ZAP_MAXNAMELEN]; if (zap_normalize(zn->zn_zap, matchname, norm, zn->zn_normflags) != 0) return (B_FALSE); return (strcmp(zn->zn_key_norm, norm) == 0); } else { return (strcmp(zn->zn_key_orig, matchname) == 0); } } static zap_name_t * zap_name_alloc(zap_t *zap) { zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); zn->zn_zap = zap; return (zn); } void zap_name_free(zap_name_t *zn) { kmem_free(zn, sizeof (zap_name_t)); } static int zap_name_init_str(zap_name_t *zn, const char *key, matchtype_t mt) { zap_t *zap = zn->zn_zap; zn->zn_key_intlen = sizeof (*key); zn->zn_key_orig = key; zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1; zn->zn_matchtype = mt; zn->zn_normflags = zap->zap_normflags; /* * If we're dealing with a case sensitive lookup on a mixed or * insensitive fs, remove U8_TEXTPREP_TOUPPER or the lookup * will fold case to all caps overriding the lookup request. */ if (mt & MT_MATCH_CASE) zn->zn_normflags &= ~U8_TEXTPREP_TOUPPER; if (zap->zap_normflags) { /* * We *must* use zap_normflags because this normalization is * what the hash is computed from. */ if (zap_normalize(zap, key, zn->zn_normbuf, zap->zap_normflags) != 0) return (SET_ERROR(ENOTSUP)); zn->zn_key_norm = zn->zn_normbuf; zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1; } else { if (mt != 0) return (SET_ERROR(ENOTSUP)); zn->zn_key_norm = zn->zn_key_orig; zn->zn_key_norm_numints = zn->zn_key_orig_numints; } zn->zn_hash = zap_hash(zn); if (zap->zap_normflags != zn->zn_normflags) { /* * We *must* use zn_normflags because this normalization is * what the matching is based on. (Not the hash!) */ if (zap_normalize(zap, key, zn->zn_normbuf, zn->zn_normflags) != 0) return (SET_ERROR(ENOTSUP)); zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1; } return (0); } zap_name_t * zap_name_alloc_str(zap_t *zap, const char *key, matchtype_t mt) { zap_name_t *zn = zap_name_alloc(zap); if (zap_name_init_str(zn, key, mt) != 0) { zap_name_free(zn); return (NULL); } return (zn); } static zap_name_t * zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints) { zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); ASSERT(zap->zap_normflags == 0); zn->zn_zap = zap; zn->zn_key_intlen = sizeof (*key); zn->zn_key_orig = zn->zn_key_norm = key; zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints; zn->zn_matchtype = 0; zn->zn_hash = zap_hash(zn); return (zn); } static void mzap_byteswap(mzap_phys_t *buf, size_t size) { buf->mz_block_type = BSWAP_64(buf->mz_block_type); buf->mz_salt = BSWAP_64(buf->mz_salt); buf->mz_normflags = BSWAP_64(buf->mz_normflags); int max = (size / MZAP_ENT_LEN) - 1; for (int i = 0; i < max; i++) { buf->mz_chunk[i].mze_value = BSWAP_64(buf->mz_chunk[i].mze_value); buf->mz_chunk[i].mze_cd = BSWAP_32(buf->mz_chunk[i].mze_cd); } } void zap_byteswap(void *buf, size_t size) { uint64_t block_type = *(uint64_t *)buf; if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) { /* ASSERT(magic == ZAP_LEAF_MAGIC); */ mzap_byteswap(buf, size); } else { fzap_byteswap(buf, size); } } __attribute__((always_inline)) inline static int mze_compare(const void *arg1, const void *arg2) { const mzap_ent_t *mze1 = arg1; const mzap_ent_t *mze2 = arg2; return (TREE_CMP((uint64_t)(mze1->mze_hash) << 32 | mze1->mze_cd, (uint64_t)(mze2->mze_hash) << 32 | mze2->mze_cd)); } ZFS_BTREE_FIND_IN_BUF_FUNC(mze_find_in_buf, mzap_ent_t, mze_compare) static void mze_insert(zap_t *zap, uint16_t chunkid, uint64_t hash) { mzap_ent_t mze; ASSERT(zap->zap_ismicro); ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); mze.mze_chunkid = chunkid; ASSERT0(hash & 0xffffffff); mze.mze_hash = hash >> 32; ASSERT3U(MZE_PHYS(zap, &mze)->mze_cd, <=, 0xffff); mze.mze_cd = (uint16_t)MZE_PHYS(zap, &mze)->mze_cd; ASSERT(MZE_PHYS(zap, &mze)->mze_name[0] != 0); zfs_btree_add(&zap->zap_m.zap_tree, &mze); } static mzap_ent_t * mze_find(zap_name_t *zn, zfs_btree_index_t *idx) { mzap_ent_t mze_tofind; mzap_ent_t *mze; zfs_btree_t *tree = &zn->zn_zap->zap_m.zap_tree; ASSERT(zn->zn_zap->zap_ismicro); ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock)); ASSERT0(zn->zn_hash & 0xffffffff); mze_tofind.mze_hash = zn->zn_hash >> 32; mze_tofind.mze_cd = 0; mze = zfs_btree_find(tree, &mze_tofind, idx); if (mze == NULL) mze = zfs_btree_next(tree, idx, idx); for (; mze && mze->mze_hash == mze_tofind.mze_hash; mze = zfs_btree_next(tree, idx, idx)) { ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd); if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name)) return (mze); } return (NULL); } static uint32_t mze_find_unused_cd(zap_t *zap, uint64_t hash) { mzap_ent_t mze_tofind; zfs_btree_index_t idx; zfs_btree_t *tree = &zap->zap_m.zap_tree; ASSERT(zap->zap_ismicro); ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); ASSERT0(hash & 0xffffffff); hash >>= 32; mze_tofind.mze_hash = hash; mze_tofind.mze_cd = 0; uint32_t cd = 0; for (mzap_ent_t *mze = zfs_btree_find(tree, &mze_tofind, &idx); mze && mze->mze_hash == hash; mze = zfs_btree_next(tree, &idx, &idx)) { if (mze->mze_cd != cd) break; cd++; } return (cd); } /* * Each mzap entry requires at max : 4 chunks * 3 chunks for names + 1 chunk for value. */ #define MZAP_ENT_CHUNKS (1 + ZAP_LEAF_ARRAY_NCHUNKS(MZAP_NAME_LEN) + \ ZAP_LEAF_ARRAY_NCHUNKS(sizeof (uint64_t))) /* * Check if the current entry keeps the colliding entries under the fatzap leaf * size. */ static boolean_t mze_canfit_fzap_leaf(zap_name_t *zn, uint64_t hash) { zap_t *zap = zn->zn_zap; mzap_ent_t mze_tofind; zfs_btree_index_t idx; zfs_btree_t *tree = &zap->zap_m.zap_tree; uint32_t mzap_ents = 0; ASSERT0(hash & 0xffffffff); hash >>= 32; mze_tofind.mze_hash = hash; mze_tofind.mze_cd = 0; for (mzap_ent_t *mze = zfs_btree_find(tree, &mze_tofind, &idx); mze && mze->mze_hash == hash; mze = zfs_btree_next(tree, &idx, &idx)) { mzap_ents++; } /* Include the new entry being added */ mzap_ents++; return (ZAP_LEAF_NUMCHUNKS_DEF > (mzap_ents * MZAP_ENT_CHUNKS)); } static void mze_destroy(zap_t *zap) { zfs_btree_clear(&zap->zap_m.zap_tree); zfs_btree_destroy(&zap->zap_m.zap_tree); } static zap_t * mzap_open(dmu_buf_t *db) { zap_t *winner; uint64_t *zap_hdr = (uint64_t *)db->db_data; uint64_t zap_block_type = zap_hdr[0]; uint64_t zap_magic = zap_hdr[1]; ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t)); zap_t *zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP); rw_init(&zap->zap_rwlock, NULL, RW_DEFAULT, NULL); rw_enter(&zap->zap_rwlock, RW_WRITER); zap->zap_objset = dmu_buf_get_objset(db); zap->zap_object = db->db_object; zap->zap_dbuf = db; if (zap_block_type != ZBT_MICRO) { mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT, 0); zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1; if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) { winner = NULL; /* No actual winner here... */ goto handle_winner; } } else { zap->zap_ismicro = TRUE; } /* * Make sure that zap_ismicro is set before we let others see * it, because zap_lockdir() checks zap_ismicro without the lock * held. */ dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf); winner = dmu_buf_set_user(db, &zap->zap_dbu); if (winner != NULL) goto handle_winner; if (zap->zap_ismicro) { zap->zap_salt = zap_m_phys(zap)->mz_salt; zap->zap_normflags = zap_m_phys(zap)->mz_normflags; zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1; /* * Reduce B-tree leaf from 4KB to 512 bytes to reduce memmove() * overhead on massive inserts below. It still allows to store * 62 entries before we have to add 2KB B-tree core node. */ zfs_btree_create_custom(&zap->zap_m.zap_tree, mze_compare, mze_find_in_buf, sizeof (mzap_ent_t), 512); zap_name_t *zn = zap_name_alloc(zap); for (uint16_t i = 0; i < zap->zap_m.zap_num_chunks; i++) { mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; if (mze->mze_name[0]) { zap->zap_m.zap_num_entries++; zap_name_init_str(zn, mze->mze_name, 0); mze_insert(zap, i, zn->zn_hash); } } zap_name_free(zn); } else { zap->zap_salt = zap_f_phys(zap)->zap_salt; zap->zap_normflags = zap_f_phys(zap)->zap_normflags; ASSERT3U(sizeof (struct zap_leaf_header), ==, 2*ZAP_LEAF_CHUNKSIZE); /* * The embedded pointer table should not overlap the * other members. */ ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >, &zap_f_phys(zap)->zap_salt); /* * The embedded pointer table should end at the end of * the block */ ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap, 1<zap_dbuf->db_size); } rw_exit(&zap->zap_rwlock); return (zap); handle_winner: rw_exit(&zap->zap_rwlock); rw_destroy(&zap->zap_rwlock); if (!zap->zap_ismicro) mutex_destroy(&zap->zap_f.zap_num_entries_mtx); kmem_free(zap, sizeof (zap_t)); return (winner); } /* * This routine "consumes" the caller's hold on the dbuf, which must * have the specified tag. */ static int zap_lockdir_impl(dnode_t *dn, dmu_buf_t *db, const void *tag, dmu_tx_t *tx, krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp) { ASSERT0(db->db_offset); objset_t *os = dmu_buf_get_objset(db); uint64_t obj = db->db_object; dmu_object_info_t doi; *zapp = NULL; dmu_object_info_from_dnode(dn, &doi); if (DMU_OT_BYTESWAP(doi.doi_type) != DMU_BSWAP_ZAP) return (SET_ERROR(EINVAL)); zap_t *zap = dmu_buf_get_user(db); if (zap == NULL) { zap = mzap_open(db); if (zap == NULL) { /* * mzap_open() didn't like what it saw on-disk. * Check for corruption! */ return (SET_ERROR(EIO)); } } /* * We're checking zap_ismicro without the lock held, in order to * tell what type of lock we want. Once we have some sort of * lock, see if it really is the right type. In practice this * can only be different if it was upgraded from micro to fat, * and micro wanted WRITER but fat only needs READER. */ krw_t lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti; rw_enter(&zap->zap_rwlock, lt); if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) { /* it was upgraded, now we only need reader */ ASSERT(lt == RW_WRITER); ASSERT(RW_READER == ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)); rw_downgrade(&zap->zap_rwlock); lt = RW_READER; } zap->zap_objset = os; zap->zap_dnode = dn; if (lt == RW_WRITER) dmu_buf_will_dirty(db, tx); ASSERT3P(zap->zap_dbuf, ==, db); ASSERT(!zap->zap_ismicro || zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks); if (zap->zap_ismicro && tx && adding && zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) { uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE; if (newsz > zap_micro_max_size) { dprintf("upgrading obj %llu: num_entries=%u\n", (u_longlong_t)obj, zap->zap_m.zap_num_entries); *zapp = zap; int err = mzap_upgrade(zapp, tag, tx, 0); if (err != 0) rw_exit(&zap->zap_rwlock); return (err); } VERIFY0(dmu_object_set_blocksize(os, obj, newsz, 0, tx)); zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1; } *zapp = zap; return (0); } static int zap_lockdir_by_dnode(dnode_t *dn, dmu_tx_t *tx, krw_t lti, boolean_t fatreader, boolean_t adding, const void *tag, zap_t **zapp) { dmu_buf_t *db; int err; err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH); if (err != 0) return (err); err = zap_lockdir_impl(dn, db, tag, tx, lti, fatreader, adding, zapp); if (err != 0) dmu_buf_rele(db, tag); else VERIFY(dnode_add_ref(dn, tag)); return (err); } int zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx, krw_t lti, boolean_t fatreader, boolean_t adding, const void *tag, zap_t **zapp) { dnode_t *dn; dmu_buf_t *db; int err; err = dnode_hold(os, obj, tag, &dn); if (err != 0) return (err); err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH); if (err != 0) { dnode_rele(dn, tag); return (err); } err = zap_lockdir_impl(dn, db, tag, tx, lti, fatreader, adding, zapp); if (err != 0) { dmu_buf_rele(db, tag); dnode_rele(dn, tag); } return (err); } void zap_unlockdir(zap_t *zap, const void *tag) { rw_exit(&zap->zap_rwlock); dnode_rele(zap->zap_dnode, tag); dmu_buf_rele(zap->zap_dbuf, tag); } static int mzap_upgrade(zap_t **zapp, const void *tag, dmu_tx_t *tx, zap_flags_t flags) { int err = 0; zap_t *zap = *zapp; ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); int sz = zap->zap_dbuf->db_size; mzap_phys_t *mzp = vmem_alloc(sz, KM_SLEEP); memcpy(mzp, zap->zap_dbuf->db_data, sz); int nchunks = zap->zap_m.zap_num_chunks; if (!flags) { err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object, 1ULL << fzap_default_block_shift, 0, tx); if (err != 0) { vmem_free(mzp, sz); return (err); } } dprintf("upgrading obj=%llu with %u chunks\n", (u_longlong_t)zap->zap_object, nchunks); /* XXX destroy the tree later, so we can use the stored hash value */ mze_destroy(zap); fzap_upgrade(zap, tx, flags); zap_name_t *zn = zap_name_alloc(zap); for (int i = 0; i < nchunks; i++) { mzap_ent_phys_t *mze = &mzp->mz_chunk[i]; if (mze->mze_name[0] == 0) continue; dprintf("adding %s=%llu\n", mze->mze_name, (u_longlong_t)mze->mze_value); zap_name_init_str(zn, mze->mze_name, 0); /* If we fail here, we would end up losing entries */ VERIFY0(fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tag, tx)); zap = zn->zn_zap; /* fzap_add_cd() may change zap */ } zap_name_free(zn); vmem_free(mzp, sz); *zapp = zap; return (0); } /* * The "normflags" determine the behavior of the matchtype_t which is * passed to zap_lookup_norm(). Names which have the same normalized * version will be stored with the same hash value, and therefore we can * perform normalization-insensitive lookups. We can be Unicode form- * insensitive and/or case-insensitive. The following flags are valid for * "normflags": * * U8_TEXTPREP_NFC * U8_TEXTPREP_NFD * U8_TEXTPREP_NFKC * U8_TEXTPREP_NFKD * U8_TEXTPREP_TOUPPER * * The *_NF* (Normalization Form) flags are mutually exclusive; at most one * of them may be supplied. */ void mzap_create_impl(dnode_t *dn, int normflags, zap_flags_t flags, dmu_tx_t *tx) { dmu_buf_t *db; VERIFY0(dmu_buf_hold_by_dnode(dn, 0, FTAG, &db, DMU_READ_NO_PREFETCH)); dmu_buf_will_dirty(db, tx); mzap_phys_t *zp = db->db_data; zp->mz_block_type = ZBT_MICRO; zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (dn->dn_object << 1)) | 1ULL; zp->mz_normflags = normflags; if (flags != 0) { zap_t *zap; /* Only fat zap supports flags; upgrade immediately. */ VERIFY(dnode_add_ref(dn, FTAG)); VERIFY0(zap_lockdir_impl(dn, db, FTAG, tx, RW_WRITER, B_FALSE, B_FALSE, &zap)); VERIFY0(mzap_upgrade(&zap, FTAG, tx, flags)); zap_unlockdir(zap, FTAG); } else { dmu_buf_rele(db, FTAG); } } static uint64_t zap_create_impl(objset_t *os, int normflags, zap_flags_t flags, dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen, int dnodesize, dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx) { uint64_t obj; ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP); if (allocated_dnode == NULL) { dnode_t *dn; obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift, indirect_blockshift, bonustype, bonuslen, dnodesize, &dn, FTAG, tx); mzap_create_impl(dn, normflags, flags, tx); dnode_rele(dn, FTAG); } else { obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift, indirect_blockshift, bonustype, bonuslen, dnodesize, allocated_dnode, tag, tx); mzap_create_impl(*allocated_dnode, normflags, flags, tx); } return (obj); } int zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { return (zap_create_claim_dnsize(os, obj, ot, bonustype, bonuslen, 0, tx)); } int zap_create_claim_dnsize(objset_t *os, uint64_t obj, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) { return (zap_create_claim_norm_dnsize(os, obj, 0, ot, bonustype, bonuslen, dnodesize, tx)); } int zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { return (zap_create_claim_norm_dnsize(os, obj, normflags, ot, bonustype, bonuslen, 0, tx)); } int zap_create_claim_norm_dnsize(objset_t *os, uint64_t obj, int normflags, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) { dnode_t *dn; int error; ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP); error = dmu_object_claim_dnsize(os, obj, ot, 0, bonustype, bonuslen, dnodesize, tx); if (error != 0) return (error); error = dnode_hold(os, obj, FTAG, &dn); if (error != 0) return (error); mzap_create_impl(dn, normflags, 0, tx); dnode_rele(dn, FTAG); return (0); } uint64_t zap_create(objset_t *os, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx)); } uint64_t zap_create_dnsize(objset_t *os, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) { return (zap_create_norm_dnsize(os, 0, ot, bonustype, bonuslen, dnodesize, tx)); } uint64_t zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { return (zap_create_norm_dnsize(os, normflags, ot, bonustype, bonuslen, 0, tx)); } uint64_t zap_create_norm_dnsize(objset_t *os, int normflags, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) { return (zap_create_impl(os, normflags, 0, ot, 0, 0, bonustype, bonuslen, dnodesize, NULL, NULL, tx)); } uint64_t zap_create_flags(objset_t *os, int normflags, zap_flags_t flags, dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { return (zap_create_flags_dnsize(os, normflags, flags, ot, leaf_blockshift, indirect_blockshift, bonustype, bonuslen, 0, tx)); } uint64_t zap_create_flags_dnsize(objset_t *os, int normflags, zap_flags_t flags, dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) { return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift, indirect_blockshift, bonustype, bonuslen, dnodesize, NULL, NULL, tx)); } /* * Create a zap object and return a pointer to the newly allocated dnode via * the allocated_dnode argument. The returned dnode will be held and the * caller is responsible for releasing the hold by calling dnode_rele(). */ uint64_t zap_create_hold(objset_t *os, int normflags, zap_flags_t flags, dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen, int dnodesize, dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx) { return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift, indirect_blockshift, bonustype, bonuslen, dnodesize, allocated_dnode, tag, tx)); } int zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx) { /* * dmu_object_free will free the object number and free the * data. Freeing the data will cause our pageout function to be * called, which will destroy our data (zap_leaf_t's and zap_t). */ return (dmu_object_free(os, zapobj, tx)); } void zap_evict_sync(void *dbu) { zap_t *zap = dbu; rw_destroy(&zap->zap_rwlock); if (zap->zap_ismicro) mze_destroy(zap); else mutex_destroy(&zap->zap_f.zap_num_entries_mtx); kmem_free(zap, sizeof (zap_t)); } int zap_count(objset_t *os, uint64_t zapobj, uint64_t *count) { zap_t *zap; int err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); if (err != 0) return (err); if (!zap->zap_ismicro) { err = fzap_count(zap, count); } else { *count = zap->zap_m.zap_num_entries; } zap_unlockdir(zap, FTAG); return (err); } /* * zn may be NULL; if not specified, it will be computed if needed. * See also the comment above zap_entry_normalization_conflict(). */ static boolean_t mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze, zfs_btree_index_t *idx) { boolean_t allocdzn = B_FALSE; mzap_ent_t *other; zfs_btree_index_t oidx; if (zap->zap_normflags == 0) return (B_FALSE); for (other = zfs_btree_prev(&zap->zap_m.zap_tree, idx, &oidx); other && other->mze_hash == mze->mze_hash; other = zfs_btree_prev(&zap->zap_m.zap_tree, &oidx, &oidx)) { if (zn == NULL) { zn = zap_name_alloc_str(zap, MZE_PHYS(zap, mze)->mze_name, MT_NORMALIZE); allocdzn = B_TRUE; } if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) { if (allocdzn) zap_name_free(zn); return (B_TRUE); } } for (other = zfs_btree_next(&zap->zap_m.zap_tree, idx, &oidx); other && other->mze_hash == mze->mze_hash; other = zfs_btree_next(&zap->zap_m.zap_tree, &oidx, &oidx)) { if (zn == NULL) { zn = zap_name_alloc_str(zap, MZE_PHYS(zap, mze)->mze_name, MT_NORMALIZE); allocdzn = B_TRUE; } if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) { if (allocdzn) zap_name_free(zn); return (B_TRUE); } } if (allocdzn) zap_name_free(zn); return (B_FALSE); } /* * Routines for manipulating attributes. */ int zap_lookup(objset_t *os, uint64_t zapobj, const char *name, uint64_t integer_size, uint64_t num_integers, void *buf) { return (zap_lookup_norm(os, zapobj, name, integer_size, num_integers, buf, 0, NULL, 0, NULL)); } static int zap_lookup_impl(zap_t *zap, const char *name, uint64_t integer_size, uint64_t num_integers, void *buf, matchtype_t mt, char *realname, int rn_len, boolean_t *ncp) { int err = 0; zap_name_t *zn = zap_name_alloc_str(zap, name, mt); if (zn == NULL) return (SET_ERROR(ENOTSUP)); if (!zap->zap_ismicro) { err = fzap_lookup(zn, integer_size, num_integers, buf, realname, rn_len, ncp); } else { zfs_btree_index_t idx; mzap_ent_t *mze = mze_find(zn, &idx); if (mze == NULL) { err = SET_ERROR(ENOENT); } else { if (num_integers < 1) { err = SET_ERROR(EOVERFLOW); } else if (integer_size != 8) { err = SET_ERROR(EINVAL); } else { *(uint64_t *)buf = MZE_PHYS(zap, mze)->mze_value; if (realname != NULL) (void) strlcpy(realname, MZE_PHYS(zap, mze)->mze_name, rn_len); if (ncp) { *ncp = mzap_normalization_conflict(zap, zn, mze, &idx); } } } } zap_name_free(zn); return (err); } int zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name, uint64_t integer_size, uint64_t num_integers, void *buf, matchtype_t mt, char *realname, int rn_len, boolean_t *ncp) { zap_t *zap; int err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); if (err != 0) return (err); err = zap_lookup_impl(zap, name, integer_size, num_integers, buf, mt, realname, rn_len, ncp); zap_unlockdir(zap, FTAG); return (err); } int zap_prefetch(objset_t *os, uint64_t zapobj, const char *name) { zap_t *zap; int err; zap_name_t *zn; err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); if (err) return (err); zn = zap_name_alloc_str(zap, name, 0); if (zn == NULL) { zap_unlockdir(zap, FTAG); return (SET_ERROR(ENOTSUP)); } fzap_prefetch(zn); zap_name_free(zn); zap_unlockdir(zap, FTAG); return (err); } int zap_prefetch_object(objset_t *os, uint64_t zapobj) { int error; dmu_object_info_t doi; error = dmu_object_info(os, zapobj, &doi); if (error == 0 && DMU_OT_BYTESWAP(doi.doi_type) != DMU_BSWAP_ZAP) error = SET_ERROR(EINVAL); if (error == 0) dmu_prefetch_wait(os, zapobj, 0, doi.doi_max_offset); return (error); } int zap_lookup_by_dnode(dnode_t *dn, const char *name, uint64_t integer_size, uint64_t num_integers, void *buf) { return (zap_lookup_norm_by_dnode(dn, name, integer_size, num_integers, buf, 0, NULL, 0, NULL)); } int zap_lookup_norm_by_dnode(dnode_t *dn, const char *name, uint64_t integer_size, uint64_t num_integers, void *buf, matchtype_t mt, char *realname, int rn_len, boolean_t *ncp) { zap_t *zap; int err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); if (err != 0) return (err); err = zap_lookup_impl(zap, name, integer_size, num_integers, buf, mt, realname, rn_len, ncp); zap_unlockdir(zap, FTAG); return (err); } int zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, int key_numints) { zap_t *zap; int err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); if (err != 0) return (err); zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); if (zn == NULL) { zap_unlockdir(zap, FTAG); return (SET_ERROR(ENOTSUP)); } fzap_prefetch(zn); zap_name_free(zn); zap_unlockdir(zap, FTAG); return (err); } int zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf) { zap_t *zap; int err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); if (err != 0) return (err); zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); if (zn == NULL) { zap_unlockdir(zap, FTAG); return (SET_ERROR(ENOTSUP)); } err = fzap_lookup(zn, integer_size, num_integers, buf, NULL, 0, NULL); zap_name_free(zn); zap_unlockdir(zap, FTAG); return (err); } int zap_contains(objset_t *os, uint64_t zapobj, const char *name) { int err = zap_lookup_norm(os, zapobj, name, 0, 0, NULL, 0, NULL, 0, NULL); if (err == EOVERFLOW || err == EINVAL) err = 0; /* found, but skipped reading the value */ return (err); } int zap_length(objset_t *os, uint64_t zapobj, const char *name, uint64_t *integer_size, uint64_t *num_integers) { zap_t *zap; int err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); if (err != 0) return (err); zap_name_t *zn = zap_name_alloc_str(zap, name, 0); if (zn == NULL) { zap_unlockdir(zap, FTAG); return (SET_ERROR(ENOTSUP)); } if (!zap->zap_ismicro) { err = fzap_length(zn, integer_size, num_integers); } else { zfs_btree_index_t idx; mzap_ent_t *mze = mze_find(zn, &idx); if (mze == NULL) { err = SET_ERROR(ENOENT); } else { if (integer_size) *integer_size = 8; if (num_integers) *num_integers = 1; } } zap_name_free(zn); zap_unlockdir(zap, FTAG); return (err); } int zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, int key_numints, uint64_t *integer_size, uint64_t *num_integers) { zap_t *zap; int err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); if (err != 0) return (err); zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); if (zn == NULL) { zap_unlockdir(zap, FTAG); return (SET_ERROR(ENOTSUP)); } err = fzap_length(zn, integer_size, num_integers); zap_name_free(zn); zap_unlockdir(zap, FTAG); return (err); } static void mzap_addent(zap_name_t *zn, uint64_t value) { zap_t *zap = zn->zn_zap; uint16_t start = zap->zap_m.zap_alloc_next; ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); #ifdef ZFS_DEBUG for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) { mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0); } #endif uint32_t cd = mze_find_unused_cd(zap, zn->zn_hash); /* given the limited size of the microzap, this can't happen */ ASSERT(cd < zap_maxcd(zap)); again: for (uint16_t i = start; i < zap->zap_m.zap_num_chunks; i++) { mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; if (mze->mze_name[0] == 0) { mze->mze_value = value; mze->mze_cd = cd; (void) strlcpy(mze->mze_name, zn->zn_key_orig, sizeof (mze->mze_name)); zap->zap_m.zap_num_entries++; zap->zap_m.zap_alloc_next = i+1; if (zap->zap_m.zap_alloc_next == zap->zap_m.zap_num_chunks) zap->zap_m.zap_alloc_next = 0; mze_insert(zap, i, zn->zn_hash); return; } } if (start != 0) { start = 0; goto again; } cmn_err(CE_PANIC, "out of entries!"); } static int zap_add_impl(zap_t *zap, const char *key, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx, const void *tag) { const uint64_t *intval = val; int err = 0; zap_name_t *zn = zap_name_alloc_str(zap, key, 0); if (zn == NULL) { zap_unlockdir(zap, tag); return (SET_ERROR(ENOTSUP)); } if (!zap->zap_ismicro) { err = fzap_add(zn, integer_size, num_integers, val, tag, tx); zap = zn->zn_zap; /* fzap_add() may change zap */ } else if (integer_size != 8 || num_integers != 1 || strlen(key) >= MZAP_NAME_LEN || !mze_canfit_fzap_leaf(zn, zn->zn_hash)) { err = mzap_upgrade(&zn->zn_zap, tag, tx, 0); if (err == 0) { err = fzap_add(zn, integer_size, num_integers, val, tag, tx); } zap = zn->zn_zap; /* fzap_add() may change zap */ } else { zfs_btree_index_t idx; if (mze_find(zn, &idx) != NULL) { err = SET_ERROR(EEXIST); } else { mzap_addent(zn, *intval); } } ASSERT(zap == zn->zn_zap); zap_name_free(zn); if (zap != NULL) /* may be NULL if fzap_add() failed */ zap_unlockdir(zap, tag); return (err); } int zap_add(objset_t *os, uint64_t zapobj, const char *key, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { zap_t *zap; int err; err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); if (err != 0) return (err); err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG); /* zap_add_impl() calls zap_unlockdir() */ return (err); } int zap_add_by_dnode(dnode_t *dn, const char *key, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { zap_t *zap; int err; err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); if (err != 0) return (err); err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG); /* zap_add_impl() calls zap_unlockdir() */ return (err); } static int zap_add_uint64_impl(zap_t *zap, const uint64_t *key, int key_numints, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx, const void *tag) { int err; zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); if (zn == NULL) { zap_unlockdir(zap, tag); return (SET_ERROR(ENOTSUP)); } err = fzap_add(zn, integer_size, num_integers, val, tag, tx); zap = zn->zn_zap; /* fzap_add() may change zap */ zap_name_free(zn); if (zap != NULL) /* may be NULL if fzap_add() failed */ zap_unlockdir(zap, tag); return (err); } int zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, int key_numints, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { zap_t *zap; int err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); if (err != 0) return (err); err = zap_add_uint64_impl(zap, key, key_numints, integer_size, num_integers, val, tx, FTAG); /* zap_add_uint64_impl() calls zap_unlockdir() */ return (err); } int zap_add_uint64_by_dnode(dnode_t *dn, const uint64_t *key, int key_numints, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { zap_t *zap; int err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); if (err != 0) return (err); err = zap_add_uint64_impl(zap, key, key_numints, integer_size, num_integers, val, tx, FTAG); /* zap_add_uint64_impl() calls zap_unlockdir() */ return (err); } int zap_update(objset_t *os, uint64_t zapobj, const char *name, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { zap_t *zap; const uint64_t *intval = val; int err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); if (err != 0) return (err); zap_name_t *zn = zap_name_alloc_str(zap, name, 0); if (zn == NULL) { zap_unlockdir(zap, FTAG); return (SET_ERROR(ENOTSUP)); } if (!zap->zap_ismicro) { err = fzap_update(zn, integer_size, num_integers, val, FTAG, tx); zap = zn->zn_zap; /* fzap_update() may change zap */ } else if (integer_size != 8 || num_integers != 1 || strlen(name) >= MZAP_NAME_LEN) { dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n", (u_longlong_t)zapobj, integer_size, (u_longlong_t)num_integers, name); err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0); if (err == 0) { err = fzap_update(zn, integer_size, num_integers, val, FTAG, tx); } zap = zn->zn_zap; /* fzap_update() may change zap */ } else { zfs_btree_index_t idx; mzap_ent_t *mze = mze_find(zn, &idx); if (mze != NULL) { MZE_PHYS(zap, mze)->mze_value = *intval; } else { mzap_addent(zn, *intval); } } ASSERT(zap == zn->zn_zap); zap_name_free(zn); if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ zap_unlockdir(zap, FTAG); return (err); } static int zap_update_uint64_impl(zap_t *zap, const uint64_t *key, int key_numints, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx, const void *tag) { int err; zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); if (zn == NULL) { zap_unlockdir(zap, tag); return (SET_ERROR(ENOTSUP)); } err = fzap_update(zn, integer_size, num_integers, val, tag, tx); zap = zn->zn_zap; /* fzap_update() may change zap */ zap_name_free(zn); if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ zap_unlockdir(zap, tag); return (err); } int zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, int key_numints, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { zap_t *zap; int err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); if (err != 0) return (err); err = zap_update_uint64_impl(zap, key, key_numints, integer_size, num_integers, val, tx, FTAG); /* zap_update_uint64_impl() calls zap_unlockdir() */ return (err); } int zap_update_uint64_by_dnode(dnode_t *dn, const uint64_t *key, int key_numints, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { zap_t *zap; int err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); if (err != 0) return (err); err = zap_update_uint64_impl(zap, key, key_numints, integer_size, num_integers, val, tx, FTAG); /* zap_update_uint64_impl() calls zap_unlockdir() */ return (err); } int zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx) { return (zap_remove_norm(os, zapobj, name, 0, tx)); } static int zap_remove_impl(zap_t *zap, const char *name, matchtype_t mt, dmu_tx_t *tx) { int err = 0; zap_name_t *zn = zap_name_alloc_str(zap, name, mt); if (zn == NULL) return (SET_ERROR(ENOTSUP)); if (!zap->zap_ismicro) { err = fzap_remove(zn, tx); } else { zfs_btree_index_t idx; mzap_ent_t *mze = mze_find(zn, &idx); if (mze == NULL) { err = SET_ERROR(ENOENT); } else { zap->zap_m.zap_num_entries--; memset(MZE_PHYS(zap, mze), 0, sizeof (mzap_ent_phys_t)); zfs_btree_remove_idx(&zap->zap_m.zap_tree, &idx); } } zap_name_free(zn); return (err); } int zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name, matchtype_t mt, dmu_tx_t *tx) { zap_t *zap; int err; err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap); if (err) return (err); err = zap_remove_impl(zap, name, mt, tx); zap_unlockdir(zap, FTAG); return (err); } int zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx) { zap_t *zap; int err; err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap); if (err) return (err); err = zap_remove_impl(zap, name, 0, tx); zap_unlockdir(zap, FTAG); return (err); } static int zap_remove_uint64_impl(zap_t *zap, const uint64_t *key, int key_numints, dmu_tx_t *tx, const void *tag) { int err; zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); if (zn == NULL) { zap_unlockdir(zap, tag); return (SET_ERROR(ENOTSUP)); } err = fzap_remove(zn, tx); zap_name_free(zn); zap_unlockdir(zap, tag); return (err); } int zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, int key_numints, dmu_tx_t *tx) { zap_t *zap; int err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap); if (err != 0) return (err); err = zap_remove_uint64_impl(zap, key, key_numints, tx, FTAG); /* zap_remove_uint64_impl() calls zap_unlockdir() */ return (err); } int zap_remove_uint64_by_dnode(dnode_t *dn, const uint64_t *key, int key_numints, dmu_tx_t *tx) { zap_t *zap; int err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap); if (err != 0) return (err); err = zap_remove_uint64_impl(zap, key, key_numints, tx, FTAG); /* zap_remove_uint64_impl() calls zap_unlockdir() */ return (err); } /* * Routines for iterating over the attributes. */ static void zap_cursor_init_impl(zap_cursor_t *zc, objset_t *os, uint64_t zapobj, uint64_t serialized, boolean_t prefetch) { zc->zc_objset = os; zc->zc_zap = NULL; zc->zc_leaf = NULL; zc->zc_zapobj = zapobj; zc->zc_serialized = serialized; zc->zc_hash = 0; zc->zc_cd = 0; zc->zc_prefetch = prefetch; } void zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj, uint64_t serialized) { zap_cursor_init_impl(zc, os, zapobj, serialized, B_TRUE); } /* * Initialize a cursor at the beginning of the ZAP object. The entire * ZAP object will be prefetched. */ void zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj) { zap_cursor_init_impl(zc, os, zapobj, 0, B_TRUE); } /* * Initialize a cursor at the beginning, but request that we not prefetch * the entire ZAP object. */ void zap_cursor_init_noprefetch(zap_cursor_t *zc, objset_t *os, uint64_t zapobj) { zap_cursor_init_impl(zc, os, zapobj, 0, B_FALSE); } void zap_cursor_fini(zap_cursor_t *zc) { if (zc->zc_zap) { rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); zap_unlockdir(zc->zc_zap, NULL); zc->zc_zap = NULL; } if (zc->zc_leaf) { rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); zap_put_leaf(zc->zc_leaf); zc->zc_leaf = NULL; } zc->zc_objset = NULL; } uint64_t zap_cursor_serialize(zap_cursor_t *zc) { if (zc->zc_hash == -1ULL) return (-1ULL); if (zc->zc_zap == NULL) return (zc->zc_serialized); ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0); ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap)); /* * We want to keep the high 32 bits of the cursor zero if we can, so * that 32-bit programs can access this. So usually use a small * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits * of the cursor. * * [ collision differentiator | zap_hashbits()-bit hash value ] */ return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) | ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap))); } int zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za) { int err; if (zc->zc_hash == -1ULL) return (SET_ERROR(ENOENT)); if (zc->zc_zap == NULL) { int hb; err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL, RW_READER, TRUE, FALSE, NULL, &zc->zc_zap); if (err != 0) return (err); /* * To support zap_cursor_init_serialized, advance, retrieve, * we must add to the existing zc_cd, which may already * be 1 due to the zap_cursor_advance. */ ASSERT(zc->zc_hash == 0); hb = zap_hashbits(zc->zc_zap); zc->zc_hash = zc->zc_serialized << (64 - hb); zc->zc_cd += zc->zc_serialized >> hb; if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */ zc->zc_cd = 0; } else { rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); } if (!zc->zc_zap->zap_ismicro) { err = fzap_cursor_retrieve(zc->zc_zap, zc, za); } else { zfs_btree_index_t idx; mzap_ent_t mze_tofind; mze_tofind.mze_hash = zc->zc_hash >> 32; mze_tofind.mze_cd = zc->zc_cd; mzap_ent_t *mze = zfs_btree_find(&zc->zc_zap->zap_m.zap_tree, &mze_tofind, &idx); if (mze == NULL) { mze = zfs_btree_next(&zc->zc_zap->zap_m.zap_tree, &idx, &idx); } if (mze) { mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze); ASSERT3U(mze->mze_cd, ==, mzep->mze_cd); za->za_normalization_conflict = mzap_normalization_conflict(zc->zc_zap, NULL, mze, &idx); za->za_integer_length = 8; za->za_num_integers = 1; za->za_first_integer = mzep->mze_value; (void) strlcpy(za->za_name, mzep->mze_name, sizeof (za->za_name)); zc->zc_hash = (uint64_t)mze->mze_hash << 32; zc->zc_cd = mze->mze_cd; err = 0; } else { zc->zc_hash = -1ULL; err = SET_ERROR(ENOENT); } } rw_exit(&zc->zc_zap->zap_rwlock); return (err); } void zap_cursor_advance(zap_cursor_t *zc) { if (zc->zc_hash == -1ULL) return; zc->zc_cd++; } int zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs) { zap_t *zap; int err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); if (err != 0) return (err); memset(zs, 0, sizeof (zap_stats_t)); if (zap->zap_ismicro) { zs->zs_blocksize = zap->zap_dbuf->db_size; zs->zs_num_entries = zap->zap_m.zap_num_entries; zs->zs_num_blocks = 1; } else { fzap_get_stats(zap, zs); } zap_unlockdir(zap, FTAG); return (0); } #if defined(_KERNEL) EXPORT_SYMBOL(zap_create); EXPORT_SYMBOL(zap_create_dnsize); EXPORT_SYMBOL(zap_create_norm); EXPORT_SYMBOL(zap_create_norm_dnsize); EXPORT_SYMBOL(zap_create_flags); EXPORT_SYMBOL(zap_create_flags_dnsize); EXPORT_SYMBOL(zap_create_claim); EXPORT_SYMBOL(zap_create_claim_norm); EXPORT_SYMBOL(zap_create_claim_norm_dnsize); EXPORT_SYMBOL(zap_create_hold); EXPORT_SYMBOL(zap_destroy); EXPORT_SYMBOL(zap_lookup); EXPORT_SYMBOL(zap_lookup_by_dnode); EXPORT_SYMBOL(zap_lookup_norm); EXPORT_SYMBOL(zap_lookup_uint64); EXPORT_SYMBOL(zap_contains); EXPORT_SYMBOL(zap_prefetch); EXPORT_SYMBOL(zap_prefetch_uint64); EXPORT_SYMBOL(zap_prefetch_object); EXPORT_SYMBOL(zap_add); EXPORT_SYMBOL(zap_add_by_dnode); EXPORT_SYMBOL(zap_add_uint64); EXPORT_SYMBOL(zap_add_uint64_by_dnode); EXPORT_SYMBOL(zap_update); EXPORT_SYMBOL(zap_update_uint64); EXPORT_SYMBOL(zap_update_uint64_by_dnode); EXPORT_SYMBOL(zap_length); EXPORT_SYMBOL(zap_length_uint64); EXPORT_SYMBOL(zap_remove); EXPORT_SYMBOL(zap_remove_by_dnode); EXPORT_SYMBOL(zap_remove_norm); EXPORT_SYMBOL(zap_remove_uint64); EXPORT_SYMBOL(zap_remove_uint64_by_dnode); EXPORT_SYMBOL(zap_count); EXPORT_SYMBOL(zap_value_search); EXPORT_SYMBOL(zap_join); EXPORT_SYMBOL(zap_join_increment); EXPORT_SYMBOL(zap_add_int); EXPORT_SYMBOL(zap_remove_int); EXPORT_SYMBOL(zap_lookup_int); EXPORT_SYMBOL(zap_increment_int); EXPORT_SYMBOL(zap_add_int_key); EXPORT_SYMBOL(zap_lookup_int_key); EXPORT_SYMBOL(zap_increment); EXPORT_SYMBOL(zap_cursor_init); EXPORT_SYMBOL(zap_cursor_fini); EXPORT_SYMBOL(zap_cursor_retrieve); EXPORT_SYMBOL(zap_cursor_advance); EXPORT_SYMBOL(zap_cursor_serialize); EXPORT_SYMBOL(zap_cursor_init_serialized); EXPORT_SYMBOL(zap_get_stats); /* CSTYLED */ ZFS_MODULE_PARAM(zfs, , zap_micro_max_size, INT, ZMOD_RW, "Maximum micro ZAP size, before converting to a fat ZAP, in bytes"); #endif