/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #endif static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx); static uint64_t zap_hash(zap_t *zap, const char *normname) { const uint8_t *cp; uint8_t c; uint64_t crc = zap->zap_salt; /* NB: name must already be normalized, if necessary */ ASSERT(crc != 0); ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); for (cp = (const uint8_t *)normname; (c = *cp) != '\0'; cp++) { crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ c) & 0xFF]; } /* * Only use 28 bits, since we need 4 bits in the cookie for the * collision differentiator. We MUST use the high bits, since * those are the ones that we first pay attention to when * chosing the bucket. */ crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1); return (crc); } static int zap_normalize(zap_t *zap, const char *name, char *namenorm) { size_t inlen, outlen; int err; inlen = strlen(name) + 1; outlen = ZAP_MAXNAMELEN; err = 0; (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen, zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err); return (err); } boolean_t zap_match(zap_name_t *zn, const char *matchname) { if (zn->zn_matchtype == MT_FIRST) { char norm[ZAP_MAXNAMELEN]; if (zap_normalize(zn->zn_zap, matchname, norm) != 0) return (B_FALSE); return (strcmp(zn->zn_name_norm, norm) == 0); } else { /* MT_BEST or MT_EXACT */ return (strcmp(zn->zn_name_orij, matchname) == 0); } } void zap_name_free(zap_name_t *zn) { kmem_free(zn, sizeof (zap_name_t)); } /* XXX combine this with zap_lockdir()? */ zap_name_t * zap_name_alloc(zap_t *zap, const char *name, matchtype_t mt) { zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); zn->zn_zap = zap; zn->zn_name_orij = name; zn->zn_matchtype = mt; if (zap->zap_normflags) { if (zap_normalize(zap, name, zn->zn_normbuf) != 0) { zap_name_free(zn); return (NULL); } zn->zn_name_norm = zn->zn_normbuf; } else { if (mt != MT_EXACT) { zap_name_free(zn); return (NULL); } zn->zn_name_norm = zn->zn_name_orij; } zn->zn_hash = zap_hash(zap, zn->zn_name_norm); return (zn); } static void mzap_byteswap(mzap_phys_t *buf, size_t size) { int i, max; buf->mz_block_type = BSWAP_64(buf->mz_block_type); buf->mz_salt = BSWAP_64(buf->mz_salt); buf->mz_normflags = BSWAP_64(buf->mz_normflags); max = (size / MZAP_ENT_LEN) - 1; for (i = 0; i < max; i++) { buf->mz_chunk[i].mze_value = BSWAP_64(buf->mz_chunk[i].mze_value); buf->mz_chunk[i].mze_cd = BSWAP_32(buf->mz_chunk[i].mze_cd); } } void zap_byteswap(void *buf, size_t size) { uint64_t block_type; block_type = *(uint64_t *)buf; if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) { /* ASSERT(magic == ZAP_LEAF_MAGIC); */ mzap_byteswap(buf, size); } else { fzap_byteswap(buf, size); } } static int mze_compare(const void *arg1, const void *arg2) { const mzap_ent_t *mze1 = arg1; const mzap_ent_t *mze2 = arg2; if (mze1->mze_hash > mze2->mze_hash) return (+1); if (mze1->mze_hash < mze2->mze_hash) return (-1); if (mze1->mze_phys.mze_cd > mze2->mze_phys.mze_cd) return (+1); if (mze1->mze_phys.mze_cd < mze2->mze_phys.mze_cd) return (-1); return (0); } static void mze_insert(zap_t *zap, int chunkid, uint64_t hash, mzap_ent_phys_t *mzep) { mzap_ent_t *mze; ASSERT(zap->zap_ismicro); ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); ASSERT(mzep->mze_cd < ZAP_MAXCD); mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP); mze->mze_chunkid = chunkid; mze->mze_hash = hash; mze->mze_phys = *mzep; avl_add(&zap->zap_m.zap_avl, mze); } static mzap_ent_t * mze_find(zap_name_t *zn) { mzap_ent_t mze_tofind; mzap_ent_t *mze; avl_index_t idx; avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl; ASSERT(zn->zn_zap->zap_ismicro); ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock)); if (strlen(zn->zn_name_norm) >= sizeof (mze_tofind.mze_phys.mze_name)) return (NULL); mze_tofind.mze_hash = zn->zn_hash; mze_tofind.mze_phys.mze_cd = 0; again: mze = avl_find(avl, &mze_tofind, &idx); if (mze == NULL) mze = avl_nearest(avl, idx, AVL_AFTER); for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) { if (zap_match(zn, mze->mze_phys.mze_name)) return (mze); } if (zn->zn_matchtype == MT_BEST) { zn->zn_matchtype = MT_FIRST; goto again; } return (NULL); } static uint32_t mze_find_unused_cd(zap_t *zap, uint64_t hash) { mzap_ent_t mze_tofind; mzap_ent_t *mze; avl_index_t idx; avl_tree_t *avl = &zap->zap_m.zap_avl; uint32_t cd; ASSERT(zap->zap_ismicro); ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); mze_tofind.mze_hash = hash; mze_tofind.mze_phys.mze_cd = 0; cd = 0; for (mze = avl_find(avl, &mze_tofind, &idx); mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) { if (mze->mze_phys.mze_cd != cd) break; cd++; } return (cd); } static void mze_remove(zap_t *zap, mzap_ent_t *mze) { ASSERT(zap->zap_ismicro); ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); avl_remove(&zap->zap_m.zap_avl, mze); kmem_free(mze, sizeof (mzap_ent_t)); } static void mze_destroy(zap_t *zap) { mzap_ent_t *mze; void *avlcookie = NULL; while ((mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))) kmem_free(mze, sizeof (mzap_ent_t)); avl_destroy(&zap->zap_m.zap_avl); } static zap_t * mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db) { zap_t *winner; zap_t *zap; int i; ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t)); zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP); rw_init(&zap->zap_rwlock, 0, 0, 0); rw_enter(&zap->zap_rwlock, RW_WRITER); zap->zap_objset = os; zap->zap_object = obj; zap->zap_dbuf = db; if (*(uint64_t *)db->db_data != ZBT_MICRO) { mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0); zap->zap_f.zap_block_shift = highbit(db->db_size) - 1; } else { zap->zap_ismicro = TRUE; } /* * Make sure that zap_ismicro is set before we let others see * it, because zap_lockdir() checks zap_ismicro without the lock * held. */ winner = dmu_buf_set_user(db, zap, &zap->zap_m.zap_phys, zap_evict); if (winner != NULL) { rw_exit(&zap->zap_rwlock); rw_destroy(&zap->zap_rwlock); if (!zap->zap_ismicro) mutex_destroy(&zap->zap_f.zap_num_entries_mtx); kmem_free(zap, sizeof (zap_t)); return (winner); } if (zap->zap_ismicro) { zap->zap_salt = zap->zap_m.zap_phys->mz_salt; zap->zap_normflags = zap->zap_m.zap_phys->mz_normflags; zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1; avl_create(&zap->zap_m.zap_avl, mze_compare, sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node)); for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i]; if (mze->mze_name[0]) { zap_name_t *zn; zap->zap_m.zap_num_entries++; zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT); mze_insert(zap, i, zn->zn_hash, mze); zap_name_free(zn); } } } else { zap->zap_salt = zap->zap_f.zap_phys->zap_salt; zap->zap_normflags = zap->zap_f.zap_phys->zap_normflags; ASSERT3U(sizeof (struct zap_leaf_header), ==, 2*ZAP_LEAF_CHUNKSIZE); /* * The embedded pointer table should not overlap the * other members. */ ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >, &zap->zap_f.zap_phys->zap_salt); /* * The embedded pointer table should end at the end of * the block */ ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap, 1<zap_f.zap_phys, ==, zap->zap_dbuf->db_size); } rw_exit(&zap->zap_rwlock); return (zap); } int zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx, krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp) { zap_t *zap; dmu_buf_t *db; krw_t lt; int err; *zapp = NULL; err = dmu_buf_hold(os, obj, 0, NULL, &db); if (err) return (err); #ifdef ZFS_DEBUG { dmu_object_info_t doi; dmu_object_info_from_db(db, &doi); ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap); } #endif zap = dmu_buf_get_user(db); if (zap == NULL) zap = mzap_open(os, obj, db); /* * We're checking zap_ismicro without the lock held, in order to * tell what type of lock we want. Once we have some sort of * lock, see if it really is the right type. In practice this * can only be different if it was upgraded from micro to fat, * and micro wanted WRITER but fat only needs READER. */ lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti; rw_enter(&zap->zap_rwlock, lt); if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) { /* it was upgraded, now we only need reader */ ASSERT(lt == RW_WRITER); ASSERT(RW_READER == (!zap->zap_ismicro && fatreader) ? RW_READER : lti); rw_downgrade(&zap->zap_rwlock); lt = RW_READER; } zap->zap_objset = os; if (lt == RW_WRITER) dmu_buf_will_dirty(db, tx); ASSERT3P(zap->zap_dbuf, ==, db); ASSERT(!zap->zap_ismicro || zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks); if (zap->zap_ismicro && tx && adding && zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) { uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE; if (newsz > MZAP_MAX_BLKSZ) { dprintf("upgrading obj %llu: num_entries=%u\n", obj, zap->zap_m.zap_num_entries); *zapp = zap; return (mzap_upgrade(zapp, tx)); } err = dmu_object_set_blocksize(os, obj, newsz, 0, tx); ASSERT3U(err, ==, 0); zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1; } *zapp = zap; return (0); } void zap_unlockdir(zap_t *zap) { rw_exit(&zap->zap_rwlock); dmu_buf_rele(zap->zap_dbuf, NULL); } static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx) { mzap_phys_t *mzp; int i, sz, nchunks, err; zap_t *zap = *zapp; ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); sz = zap->zap_dbuf->db_size; mzp = kmem_alloc(sz, KM_SLEEP); bcopy(zap->zap_dbuf->db_data, mzp, sz); nchunks = zap->zap_m.zap_num_chunks; err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object, 1ULL << fzap_default_block_shift, 0, tx); if (err) { kmem_free(mzp, sz); return (err); } dprintf("upgrading obj=%llu with %u chunks\n", zap->zap_object, nchunks); /* XXX destroy the avl later, so we can use the stored hash value */ mze_destroy(zap); fzap_upgrade(zap, tx); for (i = 0; i < nchunks; i++) { int err; mzap_ent_phys_t *mze = &mzp->mz_chunk[i]; zap_name_t *zn; if (mze->mze_name[0] == 0) continue; dprintf("adding %s=%llu\n", mze->mze_name, mze->mze_value); zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT); err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx); zap = zn->zn_zap; /* fzap_add_cd() may change zap */ zap_name_free(zn); if (err) break; } kmem_free(mzp, sz); *zapp = zap; return (err); } static void mzap_create_impl(objset_t *os, uint64_t obj, int normflags, dmu_tx_t *tx) { dmu_buf_t *db; mzap_phys_t *zp; VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db)); #ifdef ZFS_DEBUG { dmu_object_info_t doi; dmu_object_info_from_db(db, &doi); ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap); } #endif dmu_buf_will_dirty(db, tx); zp = db->db_data; zp->mz_block_type = ZBT_MICRO; zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL; zp->mz_normflags = normflags; dmu_buf_rele(db, FTAG); } int zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { return (zap_create_claim_norm(os, obj, 0, ot, bonustype, bonuslen, tx)); } int zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { int err; err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx); if (err != 0) return (err); mzap_create_impl(os, obj, normflags, tx); return (0); } uint64_t zap_create(objset_t *os, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx)); } uint64_t zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) { uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx); mzap_create_impl(os, obj, normflags, tx); return (obj); } int zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx) { /* * dmu_object_free will free the object number and free the * data. Freeing the data will cause our pageout function to be * called, which will destroy our data (zap_leaf_t's and zap_t). */ return (dmu_object_free(os, zapobj, tx)); } _NOTE(ARGSUSED(0)) void zap_evict(dmu_buf_t *db, void *vzap) { zap_t *zap = vzap; rw_destroy(&zap->zap_rwlock); if (zap->zap_ismicro) mze_destroy(zap); else mutex_destroy(&zap->zap_f.zap_num_entries_mtx); kmem_free(zap, sizeof (zap_t)); } int zap_count(objset_t *os, uint64_t zapobj, uint64_t *count) { zap_t *zap; int err; err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); if (err) return (err); if (!zap->zap_ismicro) { err = fzap_count(zap, count); } else { *count = zap->zap_m.zap_num_entries; } zap_unlockdir(zap); return (err); } /* * zn may be NULL; if not specified, it will be computed if needed. * See also the comment above zap_entry_normalization_conflict(). */ static boolean_t mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze) { mzap_ent_t *other; int direction = AVL_BEFORE; boolean_t allocdzn = B_FALSE; if (zap->zap_normflags == 0) return (B_FALSE); again: for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction); other && other->mze_hash == mze->mze_hash; other = avl_walk(&zap->zap_m.zap_avl, other, direction)) { if (zn == NULL) { zn = zap_name_alloc(zap, mze->mze_phys.mze_name, MT_FIRST); allocdzn = B_TRUE; } if (zap_match(zn, other->mze_phys.mze_name)) { if (allocdzn) zap_name_free(zn); return (B_TRUE); } } if (direction == AVL_BEFORE) { direction = AVL_AFTER; goto again; } if (allocdzn) zap_name_free(zn); return (B_FALSE); } /* * Routines for manipulating attributes. */ int zap_lookup(objset_t *os, uint64_t zapobj, const char *name, uint64_t integer_size, uint64_t num_integers, void *buf) { return (zap_lookup_norm(os, zapobj, name, integer_size, num_integers, buf, MT_EXACT, NULL, 0, NULL)); } int zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name, uint64_t integer_size, uint64_t num_integers, void *buf, matchtype_t mt, char *realname, int rn_len, boolean_t *ncp) { zap_t *zap; int err; mzap_ent_t *mze; zap_name_t *zn; err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); if (err) return (err); zn = zap_name_alloc(zap, name, mt); if (zn == NULL) { zap_unlockdir(zap); return (ENOTSUP); } if (!zap->zap_ismicro) { err = fzap_lookup(zn, integer_size, num_integers, buf, realname, rn_len, ncp); } else { mze = mze_find(zn); if (mze == NULL) { err = ENOENT; } else { if (num_integers < 1) { err = EOVERFLOW; } else if (integer_size != 8) { err = EINVAL; } else { *(uint64_t *)buf = mze->mze_phys.mze_value; (void) strlcpy(realname, mze->mze_phys.mze_name, rn_len); if (ncp) { *ncp = mzap_normalization_conflict(zap, zn, mze); } } } } zap_name_free(zn); zap_unlockdir(zap); return (err); } int zap_length(objset_t *os, uint64_t zapobj, const char *name, uint64_t *integer_size, uint64_t *num_integers) { zap_t *zap; int err; mzap_ent_t *mze; zap_name_t *zn; err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); if (err) return (err); zn = zap_name_alloc(zap, name, MT_EXACT); if (zn == NULL) { zap_unlockdir(zap); return (ENOTSUP); } if (!zap->zap_ismicro) { err = fzap_length(zn, integer_size, num_integers); } else { mze = mze_find(zn); if (mze == NULL) { err = ENOENT; } else { if (integer_size) *integer_size = 8; if (num_integers) *num_integers = 1; } } zap_name_free(zn); zap_unlockdir(zap); return (err); } static void mzap_addent(zap_name_t *zn, uint64_t value) { int i; zap_t *zap = zn->zn_zap; int start = zap->zap_m.zap_alloc_next; uint32_t cd; dprintf("obj=%llu %s=%llu\n", zap->zap_object, zn->zn_name_orij, value); ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); #ifdef ZFS_DEBUG for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { ASSERTV(mzap_ent_phys_t *mze=&zap->zap_m.zap_phys->mz_chunk[i]); ASSERT(strcmp(zn->zn_name_orij, mze->mze_name) != 0); } #endif cd = mze_find_unused_cd(zap, zn->zn_hash); /* given the limited size of the microzap, this can't happen */ ASSERT(cd != ZAP_MAXCD); again: for (i = start; i < zap->zap_m.zap_num_chunks; i++) { mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i]; if (mze->mze_name[0] == 0) { mze->mze_value = value; mze->mze_cd = cd; (void) strcpy(mze->mze_name, zn->zn_name_orij); zap->zap_m.zap_num_entries++; zap->zap_m.zap_alloc_next = i+1; if (zap->zap_m.zap_alloc_next == zap->zap_m.zap_num_chunks) zap->zap_m.zap_alloc_next = 0; mze_insert(zap, i, zn->zn_hash, mze); return; } } if (start != 0) { start = 0; goto again; } ASSERT(!"out of entries!"); } int zap_add(objset_t *os, uint64_t zapobj, const char *name, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { zap_t *zap; int err; mzap_ent_t *mze; const uint64_t *intval = val; zap_name_t *zn; err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); if (err) return (err); zn = zap_name_alloc(zap, name, MT_EXACT); if (zn == NULL) { zap_unlockdir(zap); return (ENOTSUP); } if (!zap->zap_ismicro) { err = fzap_add(zn, integer_size, num_integers, val, tx); zap = zn->zn_zap; /* fzap_add() may change zap */ } else if (integer_size != 8 || num_integers != 1 || strlen(name) >= MZAP_NAME_LEN) { dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n", zapobj, integer_size, num_integers, name); err = mzap_upgrade(&zn->zn_zap, tx); if (err == 0) err = fzap_add(zn, integer_size, num_integers, val, tx); zap = zn->zn_zap; /* fzap_add() may change zap */ } else { mze = mze_find(zn); if (mze != NULL) { err = EEXIST; } else { mzap_addent(zn, *intval); } } ASSERT(zap == zn->zn_zap); zap_name_free(zn); if (zap != NULL) /* may be NULL if fzap_add() failed */ zap_unlockdir(zap); return (err); } int zap_update(objset_t *os, uint64_t zapobj, const char *name, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { zap_t *zap; mzap_ent_t *mze; const uint64_t *intval = val; zap_name_t *zn; int err; err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); if (err) return (err); zn = zap_name_alloc(zap, name, MT_EXACT); if (zn == NULL) { zap_unlockdir(zap); return (ENOTSUP); } if (!zap->zap_ismicro) { err = fzap_update(zn, integer_size, num_integers, val, tx); zap = zn->zn_zap; /* fzap_update() may change zap */ } else if (integer_size != 8 || num_integers != 1 || strlen(name) >= MZAP_NAME_LEN) { dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n", zapobj, integer_size, num_integers, name); err = mzap_upgrade(&zn->zn_zap, tx); if (err == 0) err = fzap_update(zn, integer_size, num_integers, val, tx); zap = zn->zn_zap; /* fzap_update() may change zap */ } else { mze = mze_find(zn); if (mze != NULL) { mze->mze_phys.mze_value = *intval; zap->zap_m.zap_phys->mz_chunk [mze->mze_chunkid].mze_value = *intval; } else { mzap_addent(zn, *intval); } } ASSERT(zap == zn->zn_zap); zap_name_free(zn); if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ zap_unlockdir(zap); return (err); } int zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx) { return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx)); } int zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name, matchtype_t mt, dmu_tx_t *tx) { zap_t *zap; int err; mzap_ent_t *mze; zap_name_t *zn; err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap); if (err) return (err); zn = zap_name_alloc(zap, name, mt); if (zn == NULL) { zap_unlockdir(zap); return (ENOTSUP); } if (!zap->zap_ismicro) { err = fzap_remove(zn, tx); } else { mze = mze_find(zn); if (mze == NULL) { err = ENOENT; } else { zap->zap_m.zap_num_entries--; bzero(&zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid], sizeof (mzap_ent_phys_t)); mze_remove(zap, mze); } } zap_name_free(zn); zap_unlockdir(zap); return (err); } /* * Routines for iterating over the attributes. */ /* * We want to keep the high 32 bits of the cursor zero if we can, so * that 32-bit programs can access this. So use a small hash value so * we can fit 4 bits of cd into the 32-bit cursor. * * [ 4 zero bits | 32-bit collision differentiator | 28-bit hash value ] */ void zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj, uint64_t serialized) { zc->zc_objset = os; zc->zc_zap = NULL; zc->zc_leaf = NULL; zc->zc_zapobj = zapobj; if (serialized == -1ULL) { zc->zc_hash = -1ULL; zc->zc_cd = 0; } else { zc->zc_hash = serialized << (64-ZAP_HASHBITS); zc->zc_cd = serialized >> ZAP_HASHBITS; if (zc->zc_cd >= ZAP_MAXCD) /* corrupt serialized */ zc->zc_cd = 0; } } void zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj) { zap_cursor_init_serialized(zc, os, zapobj, 0); } void zap_cursor_fini(zap_cursor_t *zc) { if (zc->zc_zap) { rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); zap_unlockdir(zc->zc_zap); zc->zc_zap = NULL; } if (zc->zc_leaf) { rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); zap_put_leaf(zc->zc_leaf); zc->zc_leaf = NULL; } zc->zc_objset = NULL; } uint64_t zap_cursor_serialize(zap_cursor_t *zc) { if (zc->zc_hash == -1ULL) return (-1ULL); ASSERT((zc->zc_hash & (ZAP_MAXCD-1)) == 0); ASSERT(zc->zc_cd < ZAP_MAXCD); return ((zc->zc_hash >> (64-ZAP_HASHBITS)) | ((uint64_t)zc->zc_cd << ZAP_HASHBITS)); } int zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za) { int err; avl_index_t idx; mzap_ent_t mze_tofind; mzap_ent_t *mze; if (zc->zc_hash == -1ULL) return (ENOENT); if (zc->zc_zap == NULL) { err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL, RW_READER, TRUE, FALSE, &zc->zc_zap); if (err) return (err); } else { rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); } if (!zc->zc_zap->zap_ismicro) { err = fzap_cursor_retrieve(zc->zc_zap, zc, za); } else { err = ENOENT; mze_tofind.mze_hash = zc->zc_hash; mze_tofind.mze_phys.mze_cd = zc->zc_cd; mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx); if (mze == NULL) { mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl, idx, AVL_AFTER); } if (mze) { ASSERT(0 == bcmp(&mze->mze_phys, &zc->zc_zap->zap_m.zap_phys->mz_chunk [mze->mze_chunkid], sizeof (mze->mze_phys))); za->za_normalization_conflict = mzap_normalization_conflict(zc->zc_zap, NULL, mze); za->za_integer_length = 8; za->za_num_integers = 1; za->za_first_integer = mze->mze_phys.mze_value; (void) strcpy(za->za_name, mze->mze_phys.mze_name); zc->zc_hash = mze->mze_hash; zc->zc_cd = mze->mze_phys.mze_cd; err = 0; } else { zc->zc_hash = -1ULL; } } rw_exit(&zc->zc_zap->zap_rwlock); return (err); } void zap_cursor_advance(zap_cursor_t *zc) { if (zc->zc_hash == -1ULL) return; zc->zc_cd++; if (zc->zc_cd >= ZAP_MAXCD) { zc->zc_cd = 0; zc->zc_hash += 1ULL<<(64-ZAP_HASHBITS); if (zc->zc_hash == 0) /* EOF */ zc->zc_hash = -1ULL; } } int zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs) { int err; zap_t *zap; err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); if (err) return (err); bzero(zs, sizeof (zap_stats_t)); if (zap->zap_ismicro) { zs->zs_blocksize = zap->zap_dbuf->db_size; zs->zs_num_entries = zap->zap_m.zap_num_entries; zs->zs_num_blocks = 1; } else { fzap_get_stats(zap, zs); } zap_unlockdir(zap); return (0); } int zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add, uint64_t *towrite, uint64_t *tooverwrite) { zap_t *zap; int err = 0; /* * Since, we don't have a name, we cannot figure out which blocks will * be affected in this operation. So, account for the worst case : * - 3 blocks overwritten: target leaf, ptrtbl block, header block * - 4 new blocks written if adding: * - 2 blocks for possibly split leaves, * - 2 grown ptrtbl blocks * * This also accomodates the case where an add operation to a fairly * large microzap results in a promotion to fatzap. */ if (name == NULL) { *towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE; return (err); } /* * We lock the zap with adding == FALSE. Because, if we pass * the actual value of add, it could trigger a mzap_upgrade(). * At present we are just evaluating the possibility of this operation * and hence we donot want to trigger an upgrade. */ err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); if (err) return (err); if (!zap->zap_ismicro) { zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT); if (zn) { err = fzap_count_write(zn, add, towrite, tooverwrite); zap_name_free(zn); } else { /* * We treat this case as similar to (name == NULL) */ *towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE; } } else { /* * We are here if (name != NULL) and this is a micro-zap. * We account for the header block depending on whether it * is freeable. * * Incase of an add-operation it is hard to find out * if this add will promote this microzap to fatzap. * Hence, we consider the worst case and account for the * blocks assuming this microzap would be promoted to a * fatzap. * * 1 block overwritten : header block * 4 new blocks written : 2 new split leaf, 2 grown * ptrtbl blocks */ if (dmu_buf_freeable(zap->zap_dbuf)) *tooverwrite += SPA_MAXBLOCKSIZE; else *towrite += SPA_MAXBLOCKSIZE; if (add) { *towrite += 4 * SPA_MAXBLOCKSIZE; } } zap_unlockdir(zap); return (err); }