/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * The 512-byte leaf is broken into 32 16-byte chunks. * chunk number n means l_chunk[n], even though the header precedes it. * the names are stored null-terminated. */ #include #include #include #include #include #include #include static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry); #define CHAIN_END 0xffff /* end of the chunk chain */ /* half the (current) minimum block size */ #define MAX_ARRAY_BYTES (8<<10) #define LEAF_HASH(l, h) \ ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(l)-(l)->l_phys->l_hdr.lh_prefix_len))) #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)]) static void zap_memset(void *a, int c, size_t n) { char *cp = a; char *cpend = cp + n; while (cp < cpend) *cp++ = c; } static void stv(int len, void *addr, uint64_t value) { switch (len) { case 1: *(uint8_t *)addr = value; return; case 2: *(uint16_t *)addr = value; return; case 4: *(uint32_t *)addr = value; return; case 8: *(uint64_t *)addr = value; return; } ASSERT(!"bad int len"); } static uint64_t ldv(int len, const void *addr) { switch (len) { case 1: return (*(uint8_t *)addr); case 2: return (*(uint16_t *)addr); case 4: return (*(uint32_t *)addr); case 8: return (*(uint64_t *)addr); } ASSERT(!"bad int len"); return (0xFEEDFACEDEADBEEFULL); } void zap_leaf_byteswap(zap_leaf_phys_t *buf, int size) { int i; zap_leaf_t l; l.l_bs = highbit(size)-1; l.l_phys = buf; buf->l_hdr.lh_block_type = BSWAP_64(buf->l_hdr.lh_block_type); buf->l_hdr.lh_prefix = BSWAP_64(buf->l_hdr.lh_prefix); buf->l_hdr.lh_magic = BSWAP_32(buf->l_hdr.lh_magic); buf->l_hdr.lh_nfree = BSWAP_16(buf->l_hdr.lh_nfree); buf->l_hdr.lh_nentries = BSWAP_16(buf->l_hdr.lh_nentries); buf->l_hdr.lh_prefix_len = BSWAP_16(buf->l_hdr.lh_prefix_len); buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist); for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++) buf->l_hash[i] = BSWAP_16(buf->l_hash[i]); for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) { zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i); struct zap_leaf_entry *le; switch (lc->l_free.lf_type) { case ZAP_CHUNK_ENTRY: le = &lc->l_entry; le->le_type = BSWAP_8(le->le_type); le->le_int_size = BSWAP_8(le->le_int_size); le->le_next = BSWAP_16(le->le_next); le->le_name_chunk = BSWAP_16(le->le_name_chunk); le->le_name_length = BSWAP_16(le->le_name_length); le->le_value_chunk = BSWAP_16(le->le_value_chunk); le->le_value_length = BSWAP_16(le->le_value_length); le->le_cd = BSWAP_32(le->le_cd); le->le_hash = BSWAP_64(le->le_hash); break; case ZAP_CHUNK_FREE: lc->l_free.lf_type = BSWAP_8(lc->l_free.lf_type); lc->l_free.lf_next = BSWAP_16(lc->l_free.lf_next); break; case ZAP_CHUNK_ARRAY: lc->l_array.la_type = BSWAP_8(lc->l_array.la_type); lc->l_array.la_next = BSWAP_16(lc->l_array.la_next); /* la_array doesn't need swapping */ break; default: ASSERT(!"bad leaf type"); } } } void zap_leaf_init(zap_leaf_t *l, boolean_t sort) { int i; l->l_bs = highbit(l->l_dbuf->db_size)-1; zap_memset(&l->l_phys->l_hdr, 0, sizeof (struct zap_leaf_header)); zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l)); for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE; ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1; } ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END; l->l_phys->l_hdr.lh_block_type = ZBT_LEAF; l->l_phys->l_hdr.lh_magic = ZAP_LEAF_MAGIC; l->l_phys->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l); if (sort) l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; } /* * Routines which manipulate leaf chunks (l_chunk[]). */ static uint16_t zap_leaf_chunk_alloc(zap_leaf_t *l) { int chunk; ASSERT(l->l_phys->l_hdr.lh_nfree > 0); chunk = l->l_phys->l_hdr.lh_freelist; ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE); l->l_phys->l_hdr.lh_freelist = ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next; l->l_phys->l_hdr.lh_nfree--; return (chunk); } static void zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk) { struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free; ASSERT3U(l->l_phys->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l)); ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); ASSERT(zlf->lf_type != ZAP_CHUNK_FREE); zlf->lf_type = ZAP_CHUNK_FREE; zlf->lf_next = l->l_phys->l_hdr.lh_freelist; bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */ l->l_phys->l_hdr.lh_freelist = chunk; l->l_phys->l_hdr.lh_nfree++; } /* * Routines which manipulate leaf arrays (zap_leaf_array type chunks). */ static uint16_t zap_leaf_array_create(zap_leaf_t *l, const char *buf, int integer_size, int num_integers) { uint16_t chunk_head; uint16_t *chunkp = &chunk_head; int byten = 0; uint64_t value = 0; int shift = (integer_size-1)*8; int len = num_integers; ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES); while (len > 0) { uint16_t chunk = zap_leaf_chunk_alloc(l); struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; int i; la->la_type = ZAP_CHUNK_ARRAY; for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) { if (byten == 0) value = ldv(integer_size, buf); la->la_array[i] = value >> shift; value <<= 8; if (++byten == integer_size) { byten = 0; buf += integer_size; if (--len == 0) break; } } *chunkp = chunk; chunkp = &la->la_next; } *chunkp = CHAIN_END; return (chunk_head); } static void zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp) { uint16_t chunk = *chunkp; *chunkp = CHAIN_END; while (chunk != CHAIN_END) { int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next; ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==, ZAP_CHUNK_ARRAY); zap_leaf_chunk_free(l, chunk); chunk = nextchunk; } } /* array_len and buf_len are in integers, not bytes */ static void zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk, int array_int_len, int array_len, int buf_int_len, uint64_t buf_len, char *buf) { int len = MIN(array_len, buf_len); int byten = 0; uint64_t value = 0; ASSERT3U(array_int_len, <=, buf_int_len); /* Fast path for one 8-byte integer */ if (array_int_len == 8 && buf_int_len == 8 && len == 1) { struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; uint8_t *ip = la->la_array; uint64_t *buf64 = (uint64_t *)buf; *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 | (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 | (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 | (uint64_t)ip[6] << 8 | (uint64_t)ip[7]; return; } /* Fast path for an array of 1-byte integers (eg. the entry name) */ if (array_int_len == 1 && buf_int_len == 1 && buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) { while (chunk != CHAIN_END) { struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; bcopy(la->la_array, buf, ZAP_LEAF_ARRAY_BYTES); buf += ZAP_LEAF_ARRAY_BYTES; chunk = la->la_next; } return; } while (len > 0) { struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; int i; ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { value = (value << 8) | la->la_array[i]; byten++; if (byten == array_int_len) { stv(buf_int_len, buf, value); byten = 0; len--; if (len == 0) return; buf += buf_int_len; } } chunk = la->la_next; } } /* * Only to be used on 8-bit arrays. * array_len is actual len in bytes (not encoded le_value_length). * namenorm is null-terminated. */ static boolean_t zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn, int chunk, int array_len) { int bseen = 0; if (zn->zn_matchtype == MT_FIRST) { char *thisname = kmem_alloc(array_len, KM_SLEEP); boolean_t match; zap_leaf_array_read(l, chunk, 1, array_len, 1, array_len, thisname); match = zap_match(zn, thisname); kmem_free(thisname, array_len); return (match); } /* Fast path for exact matching */ while (bseen < array_len) { struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES); ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); if (bcmp(la->la_array, zn->zn_name_orij + bseen, toread)) break; chunk = la->la_next; bseen += toread; } return (bseen == array_len); } /* * Routines which manipulate leaf entries. */ int zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh) { uint16_t *chunkp; struct zap_leaf_entry *le; ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); again: for (chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash); *chunkp != CHAIN_END; chunkp = &le->le_next) { uint16_t chunk = *chunkp; le = ZAP_LEAF_ENTRY(l, chunk); ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); if (le->le_hash != zn->zn_hash) continue; /* * NB: the entry chain is always sorted by cd on * normalized zap objects, so this will find the * lowest-cd match for MT_FIRST. */ ASSERT(zn->zn_matchtype == MT_EXACT || (l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED)); if (zap_leaf_array_match(l, zn, le->le_name_chunk, le->le_name_length)) { zeh->zeh_num_integers = le->le_value_length; zeh->zeh_integer_size = le->le_int_size; zeh->zeh_cd = le->le_cd; zeh->zeh_hash = le->le_hash; zeh->zeh_chunkp = chunkp; zeh->zeh_leaf = l; return (0); } } /* * NB: we could of course do this in one pass, but that would be * a pain. We'll see if MT_BEST is even used much. */ if (zn->zn_matchtype == MT_BEST) { zn->zn_matchtype = MT_FIRST; goto again; } return (ENOENT); } /* Return (h1,cd1 >= h2,cd2) */ #define HCD_GTEQ(h1, cd1, h2, cd2) \ ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE)) int zap_leaf_lookup_closest(zap_leaf_t *l, uint64_t h, uint32_t cd, zap_entry_handle_t *zeh) { uint16_t chunk; uint64_t besth = -1ULL; uint32_t bestcd = ZAP_MAXCD; uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1; uint16_t lh; struct zap_leaf_entry *le; ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) { for (chunk = l->l_phys->l_hash[lh]; chunk != CHAIN_END; chunk = le->le_next) { le = ZAP_LEAF_ENTRY(l, chunk); ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) && HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) { ASSERT3U(bestlh, >=, lh); bestlh = lh; besth = le->le_hash; bestcd = le->le_cd; zeh->zeh_num_integers = le->le_value_length; zeh->zeh_integer_size = le->le_int_size; zeh->zeh_cd = le->le_cd; zeh->zeh_hash = le->le_hash; zeh->zeh_fakechunk = chunk; zeh->zeh_chunkp = &zeh->zeh_fakechunk; zeh->zeh_leaf = l; } } } return (bestcd == ZAP_MAXCD ? ENOENT : 0); } int zap_entry_read(const zap_entry_handle_t *zeh, uint8_t integer_size, uint64_t num_integers, void *buf) { struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); if (le->le_int_size > integer_size) return (EINVAL); zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk, le->le_int_size, le->le_value_length, integer_size, num_integers, buf); if (zeh->zeh_num_integers > num_integers) return (EOVERFLOW); return (0); } int zap_entry_read_name(const zap_entry_handle_t *zeh, uint16_t buflen, char *buf) { struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1, le->le_name_length, 1, buflen, buf); if (le->le_name_length > buflen) return (EOVERFLOW); return (0); } int zap_entry_update(zap_entry_handle_t *zeh, uint8_t integer_size, uint64_t num_integers, const void *buf) { int delta_chunks; zap_leaf_t *l = zeh->zeh_leaf; struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp); delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) - ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_length * le->le_int_size); if ((int)l->l_phys->l_hdr.lh_nfree < delta_chunks) return (EAGAIN); /* * We should search other chained leaves (via * zap_entry_remove,create?) otherwise returning EAGAIN will * just send us into an infinite loop if we have to chain * another leaf block, rather than being able to split this * block. */ zap_leaf_array_free(l, &le->le_value_chunk); le->le_value_chunk = zap_leaf_array_create(l, buf, integer_size, num_integers); le->le_value_length = num_integers; le->le_int_size = integer_size; return (0); } void zap_entry_remove(zap_entry_handle_t *zeh) { uint16_t entry_chunk; struct zap_leaf_entry *le; zap_leaf_t *l = zeh->zeh_leaf; ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk); entry_chunk = *zeh->zeh_chunkp; le = ZAP_LEAF_ENTRY(l, entry_chunk); ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); zap_leaf_array_free(l, &le->le_name_chunk); zap_leaf_array_free(l, &le->le_value_chunk); *zeh->zeh_chunkp = le->le_next; zap_leaf_chunk_free(l, entry_chunk); l->l_phys->l_hdr.lh_nentries--; } int zap_entry_create(zap_leaf_t *l, const char *name, uint64_t h, uint32_t cd, uint8_t integer_size, uint64_t num_integers, const void *buf, zap_entry_handle_t *zeh) { uint16_t chunk; uint16_t *chunkp; struct zap_leaf_entry *le; uint64_t namelen, valuelen; int numchunks; valuelen = integer_size * num_integers; namelen = strlen(name) + 1; ASSERT(namelen >= 2); numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(namelen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen); if (numchunks > ZAP_LEAF_NUMCHUNKS(l)) return (E2BIG); if (cd == ZAP_MAXCD) { /* find the lowest unused cd */ if (l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) { cd = 0; for (chunk = *LEAF_HASH_ENTPTR(l, h); chunk != CHAIN_END; chunk = le->le_next) { le = ZAP_LEAF_ENTRY(l, chunk); if (le->le_cd > cd) break; if (le->le_hash == h) { ASSERT3U(cd, ==, le->le_cd); cd++; } } } else { /* old unsorted format; do it the O(n^2) way */ for (cd = 0; cd < ZAP_MAXCD; cd++) { for (chunk = *LEAF_HASH_ENTPTR(l, h); chunk != CHAIN_END; chunk = le->le_next) { le = ZAP_LEAF_ENTRY(l, chunk); if (le->le_hash == h && le->le_cd == cd) { break; } } /* If this cd is not in use, we are good. */ if (chunk == CHAIN_END) break; } } /* * we would run out of space in a block before we could * have ZAP_MAXCD entries */ ASSERT3U(cd, <, ZAP_MAXCD); } if (l->l_phys->l_hdr.lh_nfree < numchunks) return (EAGAIN); /* make the entry */ chunk = zap_leaf_chunk_alloc(l); le = ZAP_LEAF_ENTRY(l, chunk); le->le_type = ZAP_CHUNK_ENTRY; le->le_name_chunk = zap_leaf_array_create(l, name, 1, namelen); le->le_name_length = namelen; le->le_value_chunk = zap_leaf_array_create(l, buf, integer_size, num_integers); le->le_value_length = num_integers; le->le_int_size = integer_size; le->le_hash = h; le->le_cd = cd; /* link it into the hash chain */ /* XXX if we did the search above, we could just use that */ chunkp = zap_leaf_rehash_entry(l, chunk); l->l_phys->l_hdr.lh_nentries++; zeh->zeh_leaf = l; zeh->zeh_num_integers = num_integers; zeh->zeh_integer_size = le->le_int_size; zeh->zeh_cd = le->le_cd; zeh->zeh_hash = le->le_hash; zeh->zeh_chunkp = chunkp; return (0); } /* * Determine if there is another entry with the same normalized form. * For performance purposes, either zn or name must be provided (the * other can be NULL). Note, there usually won't be any hash * conflicts, in which case we don't need the concatenated/normalized * form of the name. But all callers have one of these on hand anyway, * so might as well take advantage. A cleaner but slower interface * would accept neither argument, and compute the normalized name as * needed (using zap_name_alloc(zap_entry_read_name(zeh))). */ boolean_t zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn, const char *name, zap_t *zap) { uint64_t chunk; struct zap_leaf_entry *le; boolean_t allocdzn = B_FALSE; if (zap->zap_normflags == 0) return (B_FALSE); for (chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash); chunk != CHAIN_END; chunk = le->le_next) { le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk); if (le->le_hash != zeh->zeh_hash) continue; if (le->le_cd == zeh->zeh_cd) continue; if (zn == NULL) { zn = zap_name_alloc(zap, name, MT_FIRST); allocdzn = B_TRUE; } if (zap_leaf_array_match(zeh->zeh_leaf, zn, le->le_name_chunk, le->le_name_length)) { if (allocdzn) zap_name_free(zn); return (B_TRUE); } } if (allocdzn) zap_name_free(zn); return (B_FALSE); } /* * Routines for transferring entries between leafs. */ static uint16_t * zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry) { struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry); struct zap_leaf_entry *le2; uint16_t *chunkp; /* * keep the entry chain sorted by cd * NB: this will not cause problems for unsorted leafs, though * it is unnecessary there. */ for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash); *chunkp != CHAIN_END; chunkp = &le2->le_next) { le2 = ZAP_LEAF_ENTRY(l, *chunkp); if (le2->le_cd > le->le_cd) break; } le->le_next = *chunkp; *chunkp = entry; return (chunkp); } static uint16_t zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl) { uint16_t new_chunk; uint16_t *nchunkp = &new_chunk; while (chunk != CHAIN_END) { uint16_t nchunk = zap_leaf_chunk_alloc(nl); struct zap_leaf_array *nla = &ZAP_LEAF_CHUNK(nl, nchunk).l_array; struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; int nextchunk = la->la_next; ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l)); *nla = *la; /* structure assignment */ zap_leaf_chunk_free(l, chunk); chunk = nextchunk; *nchunkp = nchunk; nchunkp = &nla->la_next; } *nchunkp = CHAIN_END; return (new_chunk); } static void zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl) { struct zap_leaf_entry *le, *nle; uint16_t chunk; le = ZAP_LEAF_ENTRY(l, entry); ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); chunk = zap_leaf_chunk_alloc(nl); nle = ZAP_LEAF_ENTRY(nl, chunk); *nle = *le; /* structure assignment */ (void) zap_leaf_rehash_entry(nl, chunk); nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl); nle->le_value_chunk = zap_leaf_transfer_array(l, le->le_value_chunk, nl); zap_leaf_chunk_free(l, entry); l->l_phys->l_hdr.lh_nentries--; nl->l_phys->l_hdr.lh_nentries++; } /* * Transfer the entries whose hash prefix ends in 1 to the new leaf. */ void zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort) { int i; int bit = 64 - 1 - l->l_phys->l_hdr.lh_prefix_len; /* set new prefix and prefix_len */ l->l_phys->l_hdr.lh_prefix <<= 1; l->l_phys->l_hdr.lh_prefix_len++; nl->l_phys->l_hdr.lh_prefix = l->l_phys->l_hdr.lh_prefix | 1; nl->l_phys->l_hdr.lh_prefix_len = l->l_phys->l_hdr.lh_prefix_len; /* break existing hash chains */ zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l)); if (sort) l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; /* * Transfer entries whose hash bit 'bit' is set to nl; rehash * the remaining entries * * NB: We could find entries via the hashtable instead. That * would be O(hashents+numents) rather than O(numblks+numents), * but this accesses memory more sequentially, and when we're * called, the block is usually pretty full. */ for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i); if (le->le_type != ZAP_CHUNK_ENTRY) continue; if (le->le_hash & (1ULL << bit)) zap_leaf_transfer_entry(l, i, nl); else (void) zap_leaf_rehash_entry(l, i); } } void zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs) { int i, n; n = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift - l->l_phys->l_hdr.lh_prefix_len; n = MIN(n, ZAP_HISTOGRAM_SIZE-1); zs->zs_leafs_with_2n_pointers[n]++; n = l->l_phys->l_hdr.lh_nentries/5; n = MIN(n, ZAP_HISTOGRAM_SIZE-1); zs->zs_blocks_with_n5_entries[n]++; n = ((1<l_phys->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 / (1<zs_blocks_n_tenths_full[n]++; for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) { int nentries = 0; int chunk = l->l_phys->l_hash[i]; while (chunk != CHAIN_END) { struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, chunk); n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_length) + ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_length * le->le_int_size); n = MIN(n, ZAP_HISTOGRAM_SIZE-1); zs->zs_entries_using_n_chunks[n]++; chunk = le->le_next; nentries++; } n = nentries; n = MIN(n, ZAP_HISTOGRAM_SIZE-1); zs->zs_buckets_with_n_entries[n]++; } }