/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Virtual device management. */ static vdev_ops_t *vdev_ops_table[] = { &vdev_root_ops, &vdev_raidz_ops, &vdev_mirror_ops, &vdev_replacing_ops, &vdev_spare_ops, &vdev_disk_ops, &vdev_file_ops, &vdev_missing_ops, NULL }; /* maximum scrub/resilver I/O queue per leaf vdev */ int zfs_scrub_limit = 10; /* * Given a vdev type, return the appropriate ops vector. */ static vdev_ops_t * vdev_getops(const char *type) { vdev_ops_t *ops, **opspp; for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) if (strcmp(ops->vdev_op_type, type) == 0) break; return (ops); } /* * Default asize function: return the MAX of psize with the asize of * all children. This is what's used by anything other than RAID-Z. */ uint64_t vdev_default_asize(vdev_t *vd, uint64_t psize) { uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); uint64_t csize; uint64_t c; for (c = 0; c < vd->vdev_children; c++) { csize = vdev_psize_to_asize(vd->vdev_child[c], psize); asize = MAX(asize, csize); } return (asize); } /* * Get the replaceable or attachable device size. * If the parent is a mirror or raidz, the replaceable size is the minimum * psize of all its children. For the rest, just return our own psize. * * e.g. * psize rsize * root - - * mirror/raidz - - * disk1 20g 20g * disk2 40g 20g * disk3 80g 80g */ uint64_t vdev_get_rsize(vdev_t *vd) { vdev_t *pvd, *cvd; uint64_t c, rsize; pvd = vd->vdev_parent; /* * If our parent is NULL or the root, just return our own psize. */ if (pvd == NULL || pvd->vdev_parent == NULL) return (vd->vdev_psize); rsize = 0; for (c = 0; c < pvd->vdev_children; c++) { cvd = pvd->vdev_child[c]; rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1; } return (rsize); } vdev_t * vdev_lookup_top(spa_t *spa, uint64_t vdev) { vdev_t *rvd = spa->spa_root_vdev; ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); if (vdev < rvd->vdev_children) { ASSERT(rvd->vdev_child[vdev] != NULL); return (rvd->vdev_child[vdev]); } return (NULL); } vdev_t * vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) { int c; vdev_t *mvd; if (vd->vdev_guid == guid) return (vd); for (c = 0; c < vd->vdev_children; c++) if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != NULL) return (mvd); return (NULL); } void vdev_add_child(vdev_t *pvd, vdev_t *cvd) { size_t oldsize, newsize; uint64_t id = cvd->vdev_id; vdev_t **newchild; ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); ASSERT(cvd->vdev_parent == NULL); cvd->vdev_parent = pvd; if (pvd == NULL) return; ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); oldsize = pvd->vdev_children * sizeof (vdev_t *); pvd->vdev_children = MAX(pvd->vdev_children, id + 1); newsize = pvd->vdev_children * sizeof (vdev_t *); newchild = kmem_zalloc(newsize, KM_SLEEP); if (pvd->vdev_child != NULL) { bcopy(pvd->vdev_child, newchild, oldsize); kmem_free(pvd->vdev_child, oldsize); } pvd->vdev_child = newchild; pvd->vdev_child[id] = cvd; cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); /* * Walk up all ancestors to update guid sum. */ for (; pvd != NULL; pvd = pvd->vdev_parent) pvd->vdev_guid_sum += cvd->vdev_guid_sum; if (cvd->vdev_ops->vdev_op_leaf) cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit; } void vdev_remove_child(vdev_t *pvd, vdev_t *cvd) { int c; uint_t id = cvd->vdev_id; ASSERT(cvd->vdev_parent == pvd); if (pvd == NULL) return; ASSERT(id < pvd->vdev_children); ASSERT(pvd->vdev_child[id] == cvd); pvd->vdev_child[id] = NULL; cvd->vdev_parent = NULL; for (c = 0; c < pvd->vdev_children; c++) if (pvd->vdev_child[c]) break; if (c == pvd->vdev_children) { kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); pvd->vdev_child = NULL; pvd->vdev_children = 0; } /* * Walk up all ancestors to update guid sum. */ for (; pvd != NULL; pvd = pvd->vdev_parent) pvd->vdev_guid_sum -= cvd->vdev_guid_sum; if (cvd->vdev_ops->vdev_op_leaf) cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit; } /* * Remove any holes in the child array. */ void vdev_compact_children(vdev_t *pvd) { vdev_t **newchild, *cvd; int oldc = pvd->vdev_children; int newc, c; ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); for (c = newc = 0; c < oldc; c++) if (pvd->vdev_child[c]) newc++; newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); for (c = newc = 0; c < oldc; c++) { if ((cvd = pvd->vdev_child[c]) != NULL) { newchild[newc] = cvd; cvd->vdev_id = newc++; } } kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); pvd->vdev_child = newchild; pvd->vdev_children = newc; } /* * Allocate and minimally initialize a vdev_t. */ static vdev_t * vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) { vdev_t *vd; vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); if (spa->spa_root_vdev == NULL) { ASSERT(ops == &vdev_root_ops); spa->spa_root_vdev = vd; } if (guid == 0) { if (spa->spa_root_vdev == vd) { /* * The root vdev's guid will also be the pool guid, * which must be unique among all pools. */ while (guid == 0 || spa_guid_exists(guid, 0)) guid = spa_get_random(-1ULL); } else { /* * Any other vdev's guid must be unique within the pool. */ while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) guid = spa_get_random(-1ULL); } ASSERT(!spa_guid_exists(spa_guid(spa), guid)); } vd->vdev_spa = spa; vd->vdev_id = id; vd->vdev_guid = guid; vd->vdev_guid_sum = guid; vd->vdev_ops = ops; vd->vdev_state = VDEV_STATE_CLOSED; mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); for (int t = 0; t < DTL_TYPES; t++) { space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0, &vd->vdev_dtl_lock); } txg_list_create(&vd->vdev_ms_list, offsetof(struct metaslab, ms_txg_node)); txg_list_create(&vd->vdev_dtl_list, offsetof(struct vdev, vdev_dtl_node)); vd->vdev_stat.vs_timestamp = gethrtime(); vdev_queue_init(vd); vdev_cache_init(vd); return (vd); } /* * Allocate a new vdev. The 'alloctype' is used to control whether we are * creating a new vdev or loading an existing one - the behavior is slightly * different for each case. */ int vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, int alloctype) { vdev_ops_t *ops; char *type; uint64_t guid = 0, islog, nparity; vdev_t *vd; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) return (EINVAL); if ((ops = vdev_getops(type)) == NULL) return (EINVAL); /* * If this is a load, get the vdev guid from the nvlist. * Otherwise, vdev_alloc_common() will generate one for us. */ if (alloctype == VDEV_ALLOC_LOAD) { uint64_t label_id; if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || label_id != id) return (EINVAL); if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) return (EINVAL); } else if (alloctype == VDEV_ALLOC_SPARE) { if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) return (EINVAL); } else if (alloctype == VDEV_ALLOC_L2CACHE) { if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) return (EINVAL); } /* * The first allocated vdev must be of type 'root'. */ if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) return (EINVAL); /* * Determine whether we're a log vdev. */ islog = 0; (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); if (islog && spa_version(spa) < SPA_VERSION_SLOGS) return (ENOTSUP); /* * Set the nparity property for RAID-Z vdevs. */ nparity = -1ULL; if (ops == &vdev_raidz_ops) { if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) == 0) { /* * Currently, we can only support 2 parity devices. */ if (nparity == 0 || nparity > 2) return (EINVAL); /* * Older versions can only support 1 parity device. */ if (nparity == 2 && spa_version(spa) < SPA_VERSION_RAID6) return (ENOTSUP); } else { /* * We require the parity to be specified for SPAs that * support multiple parity levels. */ if (spa_version(spa) >= SPA_VERSION_RAID6) return (EINVAL); /* * Otherwise, we default to 1 parity device for RAID-Z. */ nparity = 1; } } else { nparity = 0; } ASSERT(nparity != -1ULL); vd = vdev_alloc_common(spa, id, guid, ops); vd->vdev_islog = islog; vd->vdev_nparity = nparity; if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) vd->vdev_path = spa_strdup(vd->vdev_path); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) vd->vdev_devid = spa_strdup(vd->vdev_devid); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &vd->vdev_physpath) == 0) vd->vdev_physpath = spa_strdup(vd->vdev_physpath); /* * Set the whole_disk property. If it's not specified, leave the value * as -1. */ if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, &vd->vdev_wholedisk) != 0) vd->vdev_wholedisk = -1ULL; /* * Look for the 'not present' flag. This will only be set if the device * was not present at the time of import. */ if (!spa->spa_import_faulted) (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, &vd->vdev_not_present); /* * Get the alignment requirement. */ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); /* * If we're a top-level vdev, try to load the allocation parameters. */ if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, &vd->vdev_ms_array); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, &vd->vdev_ms_shift); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, &vd->vdev_asize); } /* * If we're a leaf vdev, try to load the DTL object and other state. */ if (vd->vdev_ops->vdev_op_leaf && (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) { if (alloctype == VDEV_ALLOC_LOAD) { (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, &vd->vdev_dtl_smo.smo_object); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, &vd->vdev_unspare); } (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &vd->vdev_offline); /* * When importing a pool, we want to ignore the persistent fault * state, as the diagnosis made on another system may not be * valid in the current context. */ if (spa->spa_load_state == SPA_LOAD_OPEN) { (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, &vd->vdev_faulted); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, &vd->vdev_degraded); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, &vd->vdev_removed); } } /* * Add ourselves to the parent's list of children. */ vdev_add_child(parent, vd); *vdp = vd; return (0); } void vdev_free(vdev_t *vd) { int c; spa_t *spa = vd->vdev_spa; /* * vdev_free() implies closing the vdev first. This is simpler than * trying to ensure complicated semantics for all callers. */ vdev_close(vd); ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); /* * Free all children. */ for (c = 0; c < vd->vdev_children; c++) vdev_free(vd->vdev_child[c]); ASSERT(vd->vdev_child == NULL); ASSERT(vd->vdev_guid_sum == vd->vdev_guid); /* * Discard allocation state. */ if (vd == vd->vdev_top) vdev_metaslab_fini(vd); ASSERT3U(vd->vdev_stat.vs_space, ==, 0); ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); /* * Remove this vdev from its parent's child list. */ vdev_remove_child(vd->vdev_parent, vd); ASSERT(vd->vdev_parent == NULL); /* * Clean up vdev structure. */ vdev_queue_fini(vd); vdev_cache_fini(vd); if (vd->vdev_path) spa_strfree(vd->vdev_path); if (vd->vdev_devid) spa_strfree(vd->vdev_devid); if (vd->vdev_physpath) spa_strfree(vd->vdev_physpath); if (vd->vdev_isspare) spa_spare_remove(vd); if (vd->vdev_isl2cache) spa_l2cache_remove(vd); txg_list_destroy(&vd->vdev_ms_list); txg_list_destroy(&vd->vdev_dtl_list); mutex_enter(&vd->vdev_dtl_lock); for (int t = 0; t < DTL_TYPES; t++) { space_map_unload(&vd->vdev_dtl[t]); space_map_destroy(&vd->vdev_dtl[t]); } mutex_exit(&vd->vdev_dtl_lock); mutex_destroy(&vd->vdev_dtl_lock); mutex_destroy(&vd->vdev_stat_lock); mutex_destroy(&vd->vdev_probe_lock); if (vd == spa->spa_root_vdev) spa->spa_root_vdev = NULL; kmem_free(vd, sizeof (vdev_t)); } /* * Transfer top-level vdev state from svd to tvd. */ static void vdev_top_transfer(vdev_t *svd, vdev_t *tvd) { spa_t *spa = svd->vdev_spa; metaslab_t *msp; vdev_t *vd; int t; ASSERT(tvd == tvd->vdev_top); tvd->vdev_ms_array = svd->vdev_ms_array; tvd->vdev_ms_shift = svd->vdev_ms_shift; tvd->vdev_ms_count = svd->vdev_ms_count; svd->vdev_ms_array = 0; svd->vdev_ms_shift = 0; svd->vdev_ms_count = 0; tvd->vdev_mg = svd->vdev_mg; tvd->vdev_ms = svd->vdev_ms; svd->vdev_mg = NULL; svd->vdev_ms = NULL; if (tvd->vdev_mg != NULL) tvd->vdev_mg->mg_vd = tvd; tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; svd->vdev_stat.vs_alloc = 0; svd->vdev_stat.vs_space = 0; svd->vdev_stat.vs_dspace = 0; for (t = 0; t < TXG_SIZE; t++) { while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) (void) txg_list_add(&tvd->vdev_ms_list, msp, t); while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); } if (list_link_active(&svd->vdev_config_dirty_node)) { vdev_config_clean(svd); vdev_config_dirty(tvd); } if (list_link_active(&svd->vdev_state_dirty_node)) { vdev_state_clean(svd); vdev_state_dirty(tvd); } tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; svd->vdev_deflate_ratio = 0; tvd->vdev_islog = svd->vdev_islog; svd->vdev_islog = 0; } static void vdev_top_update(vdev_t *tvd, vdev_t *vd) { int c; if (vd == NULL) return; vd->vdev_top = tvd; for (c = 0; c < vd->vdev_children; c++) vdev_top_update(tvd, vd->vdev_child[c]); } /* * Add a mirror/replacing vdev above an existing vdev. */ vdev_t * vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) { spa_t *spa = cvd->vdev_spa; vdev_t *pvd = cvd->vdev_parent; vdev_t *mvd; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); mvd->vdev_asize = cvd->vdev_asize; mvd->vdev_ashift = cvd->vdev_ashift; mvd->vdev_state = cvd->vdev_state; vdev_remove_child(pvd, cvd); vdev_add_child(pvd, mvd); cvd->vdev_id = mvd->vdev_children; vdev_add_child(mvd, cvd); vdev_top_update(cvd->vdev_top, cvd->vdev_top); if (mvd == mvd->vdev_top) vdev_top_transfer(cvd, mvd); return (mvd); } /* * Remove a 1-way mirror/replacing vdev from the tree. */ void vdev_remove_parent(vdev_t *cvd) { vdev_t *mvd = cvd->vdev_parent; vdev_t *pvd = mvd->vdev_parent; ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); ASSERT(mvd->vdev_children == 1); ASSERT(mvd->vdev_ops == &vdev_mirror_ops || mvd->vdev_ops == &vdev_replacing_ops || mvd->vdev_ops == &vdev_spare_ops); cvd->vdev_ashift = mvd->vdev_ashift; vdev_remove_child(mvd, cvd); vdev_remove_child(pvd, mvd); /* * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. * Otherwise, we could have detached an offline device, and when we * go to import the pool we'll think we have two top-level vdevs, * instead of a different version of the same top-level vdev. */ if (mvd->vdev_top == mvd) { uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; cvd->vdev_guid += guid_delta; cvd->vdev_guid_sum += guid_delta; } cvd->vdev_id = mvd->vdev_id; vdev_add_child(pvd, cvd); vdev_top_update(cvd->vdev_top, cvd->vdev_top); if (cvd == cvd->vdev_top) vdev_top_transfer(mvd, cvd); ASSERT(mvd->vdev_children == 0); vdev_free(mvd); } int vdev_metaslab_init(vdev_t *vd, uint64_t txg) { spa_t *spa = vd->vdev_spa; objset_t *mos = spa->spa_meta_objset; metaslab_class_t *mc; uint64_t m; uint64_t oldc = vd->vdev_ms_count; uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; metaslab_t **mspp; int error; if (vd->vdev_ms_shift == 0) /* not being allocated from yet */ return (0); ASSERT(oldc <= newc); if (vd->vdev_islog) mc = spa->spa_log_class; else mc = spa->spa_normal_class; if (vd->vdev_mg == NULL) vd->vdev_mg = metaslab_group_create(mc, vd); mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); if (oldc != 0) { bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); } vd->vdev_ms = mspp; vd->vdev_ms_count = newc; for (m = oldc; m < newc; m++) { space_map_obj_t smo = { 0, 0, 0 }; if (txg == 0) { uint64_t object = 0; error = dmu_read(mos, vd->vdev_ms_array, m * sizeof (uint64_t), sizeof (uint64_t), &object); if (error) return (error); if (object != 0) { dmu_buf_t *db; error = dmu_bonus_hold(mos, object, FTAG, &db); if (error) return (error); ASSERT3U(db->db_size, >=, sizeof (smo)); bcopy(db->db_data, &smo, sizeof (smo)); ASSERT3U(smo.smo_object, ==, object); dmu_buf_rele(db, FTAG); } } vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); } return (0); } void vdev_metaslab_fini(vdev_t *vd) { uint64_t m; uint64_t count = vd->vdev_ms_count; if (vd->vdev_ms != NULL) { for (m = 0; m < count; m++) if (vd->vdev_ms[m] != NULL) metaslab_fini(vd->vdev_ms[m]); kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); vd->vdev_ms = NULL; } } typedef struct vdev_probe_stats { boolean_t vps_readable; boolean_t vps_writeable; int vps_flags; } vdev_probe_stats_t; static void vdev_probe_done(zio_t *zio) { spa_t *spa = zio->io_spa; vdev_t *vd = zio->io_vd; vdev_probe_stats_t *vps = zio->io_private; ASSERT(vd->vdev_probe_zio != NULL); if (zio->io_type == ZIO_TYPE_READ) { if (zio->io_error == 0) vps->vps_readable = 1; if (zio->io_error == 0 && spa_writeable(spa)) { zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, zio->io_offset, zio->io_size, zio->io_data, ZIO_CHECKSUM_OFF, vdev_probe_done, vps, ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); } else { zio_buf_free(zio->io_data, zio->io_size); } } else if (zio->io_type == ZIO_TYPE_WRITE) { if (zio->io_error == 0) vps->vps_writeable = 1; zio_buf_free(zio->io_data, zio->io_size); } else if (zio->io_type == ZIO_TYPE_NULL) { zio_t *pio; vd->vdev_cant_read |= !vps->vps_readable; vd->vdev_cant_write |= !vps->vps_writeable; if (vdev_readable(vd) && (vdev_writeable(vd) || !spa_writeable(spa))) { zio->io_error = 0; } else { ASSERT(zio->io_error != 0); zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, spa, vd, NULL, 0, 0); zio->io_error = ENXIO; } mutex_enter(&vd->vdev_probe_lock); ASSERT(vd->vdev_probe_zio == zio); vd->vdev_probe_zio = NULL; mutex_exit(&vd->vdev_probe_lock); while ((pio = zio_walk_parents(zio)) != NULL) if (!vdev_accessible(vd, pio)) pio->io_error = ENXIO; kmem_free(vps, sizeof (*vps)); } } /* * Determine whether this device is accessible by reading and writing * to several known locations: the pad regions of each vdev label * but the first (which we leave alone in case it contains a VTOC). */ zio_t * vdev_probe(vdev_t *vd, zio_t *zio) { spa_t *spa = vd->vdev_spa; vdev_probe_stats_t *vps = NULL; zio_t *pio; ASSERT(vd->vdev_ops->vdev_op_leaf); /* * Don't probe the probe. */ if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) return (NULL); /* * To prevent 'probe storms' when a device fails, we create * just one probe i/o at a time. All zios that want to probe * this vdev will become parents of the probe io. */ mutex_enter(&vd->vdev_probe_lock); if ((pio = vd->vdev_probe_zio) == NULL) { vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_DONT_RETRY; if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { /* * vdev_cant_read and vdev_cant_write can only * transition from TRUE to FALSE when we have the * SCL_ZIO lock as writer; otherwise they can only * transition from FALSE to TRUE. This ensures that * any zio looking at these values can assume that * failures persist for the life of the I/O. That's * important because when a device has intermittent * connectivity problems, we want to ensure that * they're ascribed to the device (ENXIO) and not * the zio (EIO). * * Since we hold SCL_ZIO as writer here, clear both * values so the probe can reevaluate from first * principles. */ vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; vd->vdev_cant_read = B_FALSE; vd->vdev_cant_write = B_FALSE; } vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, vdev_probe_done, vps, vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); if (zio != NULL) { vd->vdev_probe_wanted = B_TRUE; spa_async_request(spa, SPA_ASYNC_PROBE); } } if (zio != NULL) zio_add_child(zio, pio); mutex_exit(&vd->vdev_probe_lock); if (vps == NULL) { ASSERT(zio != NULL); return (NULL); } for (int l = 1; l < VDEV_LABELS; l++) { zio_nowait(zio_read_phys(pio, vd, vdev_label_offset(vd->vdev_psize, l, offsetof(vdev_label_t, vl_pad)), VDEV_SKIP_SIZE, zio_buf_alloc(VDEV_SKIP_SIZE), ZIO_CHECKSUM_OFF, vdev_probe_done, vps, ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); } if (zio == NULL) return (pio); zio_nowait(pio); return (NULL); } /* * Prepare a virtual device for access. */ int vdev_open(vdev_t *vd) { spa_t *spa = vd->vdev_spa; int error; int c; uint64_t osize = 0; uint64_t asize, psize; uint64_t ashift = 0; ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || vd->vdev_state == VDEV_STATE_CANT_OPEN || vd->vdev_state == VDEV_STATE_OFFLINE); vd->vdev_stat.vs_aux = VDEV_AUX_NONE; if (!vd->vdev_removed && vd->vdev_faulted) { ASSERT(vd->vdev_children == 0); vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED); return (ENXIO); } else if (vd->vdev_offline) { ASSERT(vd->vdev_children == 0); vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); return (ENXIO); } error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); if (zio_injection_enabled && error == 0) error = zio_handle_device_injection(vd, ENXIO); if (error) { if (vd->vdev_removed && vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) vd->vdev_removed = B_FALSE; vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, vd->vdev_stat.vs_aux); return (error); } vd->vdev_removed = B_FALSE; if (vd->vdev_degraded) { ASSERT(vd->vdev_children == 0); vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, VDEV_AUX_ERR_EXCEEDED); } else { vd->vdev_state = VDEV_STATE_HEALTHY; } for (c = 0; c < vd->vdev_children; c++) if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); break; } osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); if (vd->vdev_children == 0) { if (osize < SPA_MINDEVSIZE) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_TOO_SMALL); return (EOVERFLOW); } psize = osize; asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); } else { if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_TOO_SMALL); return (EOVERFLOW); } psize = 0; asize = osize; } vd->vdev_psize = psize; if (vd->vdev_asize == 0) { /* * This is the first-ever open, so use the computed values. * For testing purposes, a higher ashift can be requested. */ vd->vdev_asize = asize; vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); } else { /* * Make sure the alignment requirement hasn't increased. */ if (ashift > vd->vdev_top->vdev_ashift) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_BAD_LABEL); return (EINVAL); } /* * Make sure the device hasn't shrunk. */ if (asize < vd->vdev_asize) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_BAD_LABEL); return (EINVAL); } /* * If all children are healthy and the asize has increased, * then we've experienced dynamic LUN growth. */ if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize) { vd->vdev_asize = asize; } } /* * Ensure we can issue some IO before declaring the * vdev open for business. */ if (vd->vdev_ops->vdev_op_leaf && (error = zio_wait(vdev_probe(vd, NULL))) != 0) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_IO_FAILURE); return (error); } /* * If this is a top-level vdev, compute the raidz-deflation * ratio. Note, we hard-code in 128k (1<<17) because it is the * current "typical" blocksize. Even if SPA_MAXBLOCKSIZE * changes, this algorithm must never change, or we will * inconsistently account for existing bp's. */ if (vd->vdev_top == vd) { vd->vdev_deflate_ratio = (1<<17) / (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT); } /* * If a leaf vdev has a DTL, and seems healthy, then kick off a * resilver. But don't do this if we are doing a reopen for a scrub, * since this would just restart the scrub we are already doing. */ if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && vdev_resilver_needed(vd, NULL, NULL)) spa_async_request(spa, SPA_ASYNC_RESILVER); return (0); } /* * Called once the vdevs are all opened, this routine validates the label * contents. This needs to be done before vdev_load() so that we don't * inadvertently do repair I/Os to the wrong device. * * This function will only return failure if one of the vdevs indicates that it * has since been destroyed or exported. This is only possible if * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state * will be updated but the function will return 0. */ int vdev_validate(vdev_t *vd) { spa_t *spa = vd->vdev_spa; int c; nvlist_t *label; uint64_t guid, top_guid; uint64_t state; for (c = 0; c < vd->vdev_children; c++) if (vdev_validate(vd->vdev_child[c]) != 0) return (EBADF); /* * If the device has already failed, or was marked offline, don't do * any further validation. Otherwise, label I/O will fail and we will * overwrite the previous state. */ if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { if ((label = vdev_label_read_config(vd)) == NULL) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_BAD_LABEL); return (0); } if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || guid != spa_guid(spa)) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); return (0); } /* * If this vdev just became a top-level vdev because its * sibling was detached, it will have adopted the parent's * vdev guid -- but the label may or may not be on disk yet. * Fortunately, either version of the label will have the * same top guid, so if we're a top-level vdev, we can * safely compare to that instead. */ if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) != 0 || (vd->vdev_guid != guid && (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); return (0); } if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); return (0); } nvlist_free(label); if (spa->spa_load_state == SPA_LOAD_OPEN && state != POOL_STATE_ACTIVE) return (EBADF); /* * If we were able to open and validate a vdev that was * previously marked permanently unavailable, clear that state * now. */ if (vd->vdev_not_present) vd->vdev_not_present = 0; } return (0); } /* * Close a virtual device. */ void vdev_close(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); vd->vdev_ops->vdev_op_close(vd); vdev_cache_purge(vd); /* * We record the previous state before we close it, so that if we are * doing a reopen(), we don't generate FMA ereports if we notice that * it's still faulted. */ vd->vdev_prevstate = vd->vdev_state; if (vd->vdev_offline) vd->vdev_state = VDEV_STATE_OFFLINE; else vd->vdev_state = VDEV_STATE_CLOSED; vd->vdev_stat.vs_aux = VDEV_AUX_NONE; } void vdev_reopen(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); vdev_close(vd); (void) vdev_open(vd); /* * Call vdev_validate() here to make sure we have the same device. * Otherwise, a device with an invalid label could be successfully * opened in response to vdev_reopen(). */ if (vd->vdev_aux) { (void) vdev_validate_aux(vd); if (vdev_readable(vd) && vdev_writeable(vd) && !l2arc_vdev_present(vd)) { uint64_t size = vdev_get_rsize(vd); l2arc_add_vdev(spa, vd, VDEV_LABEL_START_SIZE, size - VDEV_LABEL_START_SIZE); } } else { (void) vdev_validate(vd); } /* * Reassess parent vdev's health. */ vdev_propagate_state(vd); } int vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) { int error; /* * Normally, partial opens (e.g. of a mirror) are allowed. * For a create, however, we want to fail the request if * there are any components we can't open. */ error = vdev_open(vd); if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { vdev_close(vd); return (error ? error : ENXIO); } /* * Recursively initialize all labels. */ if ((error = vdev_label_init(vd, txg, isreplacing ? VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { vdev_close(vd); return (error); } return (0); } /* * The is the latter half of vdev_create(). It is distinct because it * involves initiating transactions in order to do metaslab creation. * For creation, we want to try to create all vdevs at once and then undo it * if anything fails; this is much harder if we have pending transactions. */ void vdev_init(vdev_t *vd, uint64_t txg) { /* * Aim for roughly 200 metaslabs per vdev. */ vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); /* * Initialize the vdev's metaslabs. This can't fail because * there's nothing to read when creating all new metaslabs. */ VERIFY(vdev_metaslab_init(vd, txg) == 0); } void vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) { ASSERT(vd == vd->vdev_top); ASSERT(ISP2(flags)); if (flags & VDD_METASLAB) (void) txg_list_add(&vd->vdev_ms_list, arg, txg); if (flags & VDD_DTL) (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); } /* * DTLs. * * A vdev's DTL (dirty time log) is the set of transaction groups for which * the vdev has less than perfect replication. There are three kinds of DTL: * * DTL_MISSING: txgs for which the vdev has no valid copies of the data * * DTL_PARTIAL: txgs for which data is available, but not fully replicated * * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of * txgs that was scrubbed. * * DTL_OUTAGE: txgs which cannot currently be read, whether due to * persistent errors or just some device being offline. * Unlike the other three, the DTL_OUTAGE map is not generally * maintained; it's only computed when needed, typically to * determine whether a device can be detached. * * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device * either has the data or it doesn't. * * For interior vdevs such as mirror and RAID-Z the picture is more complex. * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because * if any child is less than fully replicated, then so is its parent. * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, * comprising only those txgs which appear in 'maxfaults' or more children; * those are the txgs we don't have enough replication to read. For example, * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); * thus, its DTL_MISSING consists of the set of txgs that appear in more than * two child DTL_MISSING maps. * * It should be clear from the above that to compute the DTLs and outage maps * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. * Therefore, that is all we keep on disk. When loading the pool, or after * a configuration change, we generate all other DTLs from first principles. */ void vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) { space_map_t *sm = &vd->vdev_dtl[t]; ASSERT(t < DTL_TYPES); ASSERT(vd != vd->vdev_spa->spa_root_vdev); mutex_enter(sm->sm_lock); if (!space_map_contains(sm, txg, size)) space_map_add(sm, txg, size); mutex_exit(sm->sm_lock); } boolean_t vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) { space_map_t *sm = &vd->vdev_dtl[t]; boolean_t dirty = B_FALSE; ASSERT(t < DTL_TYPES); ASSERT(vd != vd->vdev_spa->spa_root_vdev); mutex_enter(sm->sm_lock); if (sm->sm_space != 0) dirty = space_map_contains(sm, txg, size); mutex_exit(sm->sm_lock); return (dirty); } boolean_t vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) { space_map_t *sm = &vd->vdev_dtl[t]; boolean_t empty; mutex_enter(sm->sm_lock); empty = (sm->sm_space == 0); mutex_exit(sm->sm_lock); return (empty); } /* * Reassess DTLs after a config change or scrub completion. */ void vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) { spa_t *spa = vd->vdev_spa; avl_tree_t reftree; int minref; ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); for (int c = 0; c < vd->vdev_children; c++) vdev_dtl_reassess(vd->vdev_child[c], txg, scrub_txg, scrub_done); if (vd == spa->spa_root_vdev) return; if (vd->vdev_ops->vdev_op_leaf) { mutex_enter(&vd->vdev_dtl_lock); if (scrub_txg != 0 && (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) { /* XXX should check scrub_done? */ /* * We completed a scrub up to scrub_txg. If we * did it without rebooting, then the scrub dtl * will be valid, so excise the old region and * fold in the scrub dtl. Otherwise, leave the * dtl as-is if there was an error. * * There's little trick here: to excise the beginning * of the DTL_MISSING map, we put it into a reference * tree and then add a segment with refcnt -1 that * covers the range [0, scrub_txg). This means * that each txg in that range has refcnt -1 or 0. * We then add DTL_SCRUB with a refcnt of 2, so that * entries in the range [0, scrub_txg) will have a * positive refcnt -- either 1 or 2. We then convert * the reference tree into the new DTL_MISSING map. */ space_map_ref_create(&reftree); space_map_ref_add_map(&reftree, &vd->vdev_dtl[DTL_MISSING], 1); space_map_ref_add_seg(&reftree, 0, scrub_txg, -1); space_map_ref_add_map(&reftree, &vd->vdev_dtl[DTL_SCRUB], 2); space_map_ref_generate_map(&reftree, &vd->vdev_dtl[DTL_MISSING], 1); space_map_ref_destroy(&reftree); } space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); space_map_walk(&vd->vdev_dtl[DTL_MISSING], space_map_add, &vd->vdev_dtl[DTL_PARTIAL]); if (scrub_done) space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL); space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); if (!vdev_readable(vd)) space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); else space_map_walk(&vd->vdev_dtl[DTL_MISSING], space_map_add, &vd->vdev_dtl[DTL_OUTAGE]); mutex_exit(&vd->vdev_dtl_lock); if (txg != 0) vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); return; } mutex_enter(&vd->vdev_dtl_lock); for (int t = 0; t < DTL_TYPES; t++) { if (t == DTL_SCRUB) continue; /* leaf vdevs only */ if (t == DTL_PARTIAL) minref = 1; /* i.e. non-zero */ else if (vd->vdev_nparity != 0) minref = vd->vdev_nparity + 1; /* RAID-Z */ else minref = vd->vdev_children; /* any kind of mirror */ space_map_ref_create(&reftree); for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; mutex_enter(&cvd->vdev_dtl_lock); space_map_ref_add_map(&reftree, &cvd->vdev_dtl[t], 1); mutex_exit(&cvd->vdev_dtl_lock); } space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref); space_map_ref_destroy(&reftree); } mutex_exit(&vd->vdev_dtl_lock); } static int vdev_dtl_load(vdev_t *vd) { spa_t *spa = vd->vdev_spa; space_map_obj_t *smo = &vd->vdev_dtl_smo; objset_t *mos = spa->spa_meta_objset; dmu_buf_t *db; int error; ASSERT(vd->vdev_children == 0); if (smo->smo_object == 0) return (0); if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) return (error); ASSERT3U(db->db_size, >=, sizeof (*smo)); bcopy(db->db_data, smo, sizeof (*smo)); dmu_buf_rele(db, FTAG); mutex_enter(&vd->vdev_dtl_lock); error = space_map_load(&vd->vdev_dtl[DTL_MISSING], NULL, SM_ALLOC, smo, mos); mutex_exit(&vd->vdev_dtl_lock); return (error); } void vdev_dtl_sync(vdev_t *vd, uint64_t txg) { spa_t *spa = vd->vdev_spa; space_map_obj_t *smo = &vd->vdev_dtl_smo; space_map_t *sm = &vd->vdev_dtl[DTL_MISSING]; objset_t *mos = spa->spa_meta_objset; space_map_t smsync; kmutex_t smlock; dmu_buf_t *db; dmu_tx_t *tx; tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); if (vd->vdev_detached) { if (smo->smo_object != 0) { int err = dmu_object_free(mos, smo->smo_object, tx); ASSERT3U(err, ==, 0); smo->smo_object = 0; } dmu_tx_commit(tx); return; } if (smo->smo_object == 0) { ASSERT(smo->smo_objsize == 0); ASSERT(smo->smo_alloc == 0); smo->smo_object = dmu_object_alloc(mos, DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); ASSERT(smo->smo_object != 0); vdev_config_dirty(vd->vdev_top); } mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, &smlock); mutex_enter(&smlock); mutex_enter(&vd->vdev_dtl_lock); space_map_walk(sm, space_map_add, &smsync); mutex_exit(&vd->vdev_dtl_lock); space_map_truncate(smo, mos, tx); space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); space_map_destroy(&smsync); mutex_exit(&smlock); mutex_destroy(&smlock); VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); dmu_buf_will_dirty(db, tx); ASSERT3U(db->db_size, >=, sizeof (*smo)); bcopy(smo, db->db_data, sizeof (*smo)); dmu_buf_rele(db, FTAG); dmu_tx_commit(tx); } /* * Determine whether the specified vdev can be offlined/detached/removed * without losing data. */ boolean_t vdev_dtl_required(vdev_t *vd) { spa_t *spa = vd->vdev_spa; vdev_t *tvd = vd->vdev_top; uint8_t cant_read = vd->vdev_cant_read; boolean_t required; ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); if (vd == spa->spa_root_vdev || vd == tvd) return (B_TRUE); /* * Temporarily mark the device as unreadable, and then determine * whether this results in any DTL outages in the top-level vdev. * If not, we can safely offline/detach/remove the device. */ vd->vdev_cant_read = B_TRUE; vdev_dtl_reassess(tvd, 0, 0, B_FALSE); required = !vdev_dtl_empty(tvd, DTL_OUTAGE); vd->vdev_cant_read = cant_read; vdev_dtl_reassess(tvd, 0, 0, B_FALSE); return (required); } /* * Determine if resilver is needed, and if so the txg range. */ boolean_t vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) { boolean_t needed = B_FALSE; uint64_t thismin = UINT64_MAX; uint64_t thismax = 0; if (vd->vdev_children == 0) { mutex_enter(&vd->vdev_dtl_lock); if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 && vdev_writeable(vd)) { space_seg_t *ss; ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root); thismin = ss->ss_start - 1; ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root); thismax = ss->ss_end; needed = B_TRUE; } mutex_exit(&vd->vdev_dtl_lock); } else { for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; uint64_t cmin, cmax; if (vdev_resilver_needed(cvd, &cmin, &cmax)) { thismin = MIN(thismin, cmin); thismax = MAX(thismax, cmax); needed = B_TRUE; } } } if (needed && minp) { *minp = thismin; *maxp = thismax; } return (needed); } void vdev_load(vdev_t *vd) { /* * Recursively load all children. */ for (int c = 0; c < vd->vdev_children; c++) vdev_load(vd->vdev_child[c]); /* * If this is a top-level vdev, initialize its metaslabs. */ if (vd == vd->vdev_top && (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || vdev_metaslab_init(vd, 0) != 0)) vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); /* * If this is a leaf vdev, load its DTL. */ if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); } /* * The special vdev case is used for hot spares and l2cache devices. Its * sole purpose it to set the vdev state for the associated vdev. To do this, * we make sure that we can open the underlying device, then try to read the * label, and make sure that the label is sane and that it hasn't been * repurposed to another pool. */ int vdev_validate_aux(vdev_t *vd) { nvlist_t *label; uint64_t guid, version; uint64_t state; if (!vdev_readable(vd)) return (0); if ((label = vdev_label_read_config(vd)) == NULL) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); return (-1); } if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || version > SPA_VERSION || nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || guid != vd->vdev_guid || nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); nvlist_free(label); return (-1); } /* * We don't actually check the pool state here. If it's in fact in * use by another pool, we update this fact on the fly when requested. */ nvlist_free(label); return (0); } void vdev_sync_done(vdev_t *vd, uint64_t txg) { metaslab_t *msp; while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))) metaslab_sync_done(msp, txg); } void vdev_sync(vdev_t *vd, uint64_t txg) { spa_t *spa = vd->vdev_spa; vdev_t *lvd; metaslab_t *msp; dmu_tx_t *tx; if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { ASSERT(vd == vd->vdev_top); tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); ASSERT(vd->vdev_ms_array != 0); vdev_config_dirty(vd); dmu_tx_commit(tx); } while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { metaslab_sync(msp, txg); (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); } while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) vdev_dtl_sync(lvd, txg); (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); } uint64_t vdev_psize_to_asize(vdev_t *vd, uint64_t psize) { return (vd->vdev_ops->vdev_op_asize(vd, psize)); } /* * Mark the given vdev faulted. A faulted vdev behaves as if the device could * not be opened, and no I/O is attempted. */ int vdev_fault(spa_t *spa, uint64_t guid) { vdev_t *vd; spa_vdev_state_enter(spa); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); /* * Faulted state takes precedence over degraded. */ vd->vdev_faulted = 1ULL; vd->vdev_degraded = 0ULL; vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED); /* * If marking the vdev as faulted cause the top-level vdev to become * unavailable, then back off and simply mark the vdev as degraded * instead. */ if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) { vd->vdev_degraded = 1ULL; vd->vdev_faulted = 0ULL; /* * If we reopen the device and it's not dead, only then do we * mark it degraded. */ vdev_reopen(vd); if (vdev_readable(vd)) { vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_ERR_EXCEEDED); } } return (spa_vdev_state_exit(spa, vd, 0)); } /* * Mark the given vdev degraded. A degraded vdev is purely an indication to the * user that something is wrong. The vdev continues to operate as normal as far * as I/O is concerned. */ int vdev_degrade(spa_t *spa, uint64_t guid) { vdev_t *vd; spa_vdev_state_enter(spa); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); /* * If the vdev is already faulted, then don't do anything. */ if (vd->vdev_faulted || vd->vdev_degraded) return (spa_vdev_state_exit(spa, NULL, 0)); vd->vdev_degraded = 1ULL; if (!vdev_is_dead(vd)) vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_ERR_EXCEEDED); return (spa_vdev_state_exit(spa, vd, 0)); } /* * Online the given vdev. If 'unspare' is set, it implies two things. First, * any attached spare device should be detached when the device finishes * resilvering. Second, the online should be treated like a 'test' online case, * so no FMA events are generated if the device fails to open. */ int vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) { vdev_t *vd; spa_vdev_state_enter(spa); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); vd->vdev_offline = B_FALSE; vd->vdev_tmpoffline = B_FALSE; vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); vdev_reopen(vd->vdev_top); vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; if (newstate) *newstate = vd->vdev_state; if ((flags & ZFS_ONLINE_UNSPARE) && !vdev_is_dead(vd) && vd->vdev_parent && vd->vdev_parent->vdev_ops == &vdev_spare_ops && vd->vdev_parent->vdev_child[0] == vd) vd->vdev_unspare = B_TRUE; return (spa_vdev_state_exit(spa, vd, 0)); } int vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) { vdev_t *vd; spa_vdev_state_enter(spa); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); /* * If the device isn't already offline, try to offline it. */ if (!vd->vdev_offline) { /* * If this device has the only valid copy of some data, * don't allow it to be offlined. */ if (vd->vdev_aux == NULL && vdev_dtl_required(vd)) return (spa_vdev_state_exit(spa, NULL, EBUSY)); /* * Offline this device and reopen its top-level vdev. * If this action results in the top-level vdev becoming * unusable, undo it and fail the request. */ vd->vdev_offline = B_TRUE; vdev_reopen(vd->vdev_top); if (vd->vdev_aux == NULL && vdev_is_dead(vd->vdev_top)) { vd->vdev_offline = B_FALSE; vdev_reopen(vd->vdev_top); return (spa_vdev_state_exit(spa, NULL, EBUSY)); } } vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); return (spa_vdev_state_exit(spa, vd, 0)); } /* * Clear the error counts associated with this vdev. Unlike vdev_online() and * vdev_offline(), we assume the spa config is locked. We also clear all * children. If 'vd' is NULL, then the user wants to clear all vdevs. */ void vdev_clear(spa_t *spa, vdev_t *vd) { vdev_t *rvd = spa->spa_root_vdev; ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); if (vd == NULL) vd = rvd; vd->vdev_stat.vs_read_errors = 0; vd->vdev_stat.vs_write_errors = 0; vd->vdev_stat.vs_checksum_errors = 0; for (int c = 0; c < vd->vdev_children; c++) vdev_clear(spa, vd->vdev_child[c]); /* * If we're in the FAULTED state or have experienced failed I/O, then * clear the persistent state and attempt to reopen the device. We * also mark the vdev config dirty, so that the new faulted state is * written out to disk. */ if (vd->vdev_faulted || vd->vdev_degraded || !vdev_readable(vd) || !vdev_writeable(vd)) { vd->vdev_faulted = vd->vdev_degraded = 0; vd->vdev_cant_read = B_FALSE; vd->vdev_cant_write = B_FALSE; vdev_reopen(vd); if (vd != rvd) vdev_state_dirty(vd->vdev_top); if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) spa_async_request(spa, SPA_ASYNC_RESILVER); spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); } } boolean_t vdev_is_dead(vdev_t *vd) { return (vd->vdev_state < VDEV_STATE_DEGRADED); } boolean_t vdev_readable(vdev_t *vd) { return (!vdev_is_dead(vd) && !vd->vdev_cant_read); } boolean_t vdev_writeable(vdev_t *vd) { return (!vdev_is_dead(vd) && !vd->vdev_cant_write); } boolean_t vdev_allocatable(vdev_t *vd) { uint64_t state = vd->vdev_state; /* * We currently allow allocations from vdevs which may be in the * process of reopening (i.e. VDEV_STATE_CLOSED). If the device * fails to reopen then we'll catch it later when we're holding * the proper locks. Note that we have to get the vdev state * in a local variable because although it changes atomically, * we're asking two separate questions about it. */ return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && !vd->vdev_cant_write); } boolean_t vdev_accessible(vdev_t *vd, zio_t *zio) { ASSERT(zio->io_vd == vd); if (vdev_is_dead(vd) || vd->vdev_remove_wanted) return (B_FALSE); if (zio->io_type == ZIO_TYPE_READ) return (!vd->vdev_cant_read); if (zio->io_type == ZIO_TYPE_WRITE) return (!vd->vdev_cant_write); return (B_TRUE); } /* * Get statistics for the given vdev. */ void vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) { vdev_t *rvd = vd->vdev_spa->spa_root_vdev; mutex_enter(&vd->vdev_stat_lock); bcopy(&vd->vdev_stat, vs, sizeof (*vs)); vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors; vs->vs_timestamp = gethrtime() - vs->vs_timestamp; vs->vs_state = vd->vdev_state; vs->vs_rsize = vdev_get_rsize(vd); mutex_exit(&vd->vdev_stat_lock); /* * If we're getting stats on the root vdev, aggregate the I/O counts * over all top-level vdevs (i.e. the direct children of the root). */ if (vd == rvd) { for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *cvd = rvd->vdev_child[c]; vdev_stat_t *cvs = &cvd->vdev_stat; mutex_enter(&vd->vdev_stat_lock); for (int t = 0; t < ZIO_TYPES; t++) { vs->vs_ops[t] += cvs->vs_ops[t]; vs->vs_bytes[t] += cvs->vs_bytes[t]; } vs->vs_scrub_examined += cvs->vs_scrub_examined; mutex_exit(&vd->vdev_stat_lock); } } } void vdev_clear_stats(vdev_t *vd) { mutex_enter(&vd->vdev_stat_lock); vd->vdev_stat.vs_space = 0; vd->vdev_stat.vs_dspace = 0; vd->vdev_stat.vs_alloc = 0; mutex_exit(&vd->vdev_stat_lock); } void vdev_stat_update(zio_t *zio, uint64_t psize) { spa_t *spa = zio->io_spa; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; vdev_t *pvd; uint64_t txg = zio->io_txg; vdev_stat_t *vs = &vd->vdev_stat; zio_type_t type = zio->io_type; int flags = zio->io_flags; /* * If this i/o is a gang leader, it didn't do any actual work. */ if (zio->io_gang_tree) return; if (zio->io_error == 0) { /* * If this is a root i/o, don't count it -- we've already * counted the top-level vdevs, and vdev_get_stats() will * aggregate them when asked. This reduces contention on * the root vdev_stat_lock and implicitly handles blocks * that compress away to holes, for which there is no i/o. * (Holes never create vdev children, so all the counters * remain zero, which is what we want.) * * Note: this only applies to successful i/o (io_error == 0) * because unlike i/o counts, errors are not additive. * When reading a ditto block, for example, failure of * one top-level vdev does not imply a root-level error. */ if (vd == rvd) return; ASSERT(vd == zio->io_vd); if (flags & ZIO_FLAG_IO_BYPASS) return; mutex_enter(&vd->vdev_stat_lock); if (flags & ZIO_FLAG_IO_REPAIR) { if (flags & ZIO_FLAG_SCRUB_THREAD) vs->vs_scrub_repaired += psize; if (flags & ZIO_FLAG_SELF_HEAL) vs->vs_self_healed += psize; } vs->vs_ops[type]++; vs->vs_bytes[type] += psize; mutex_exit(&vd->vdev_stat_lock); return; } if (flags & ZIO_FLAG_SPECULATIVE) return; mutex_enter(&vd->vdev_stat_lock); if (type == ZIO_TYPE_READ) { if (zio->io_error == ECKSUM) vs->vs_checksum_errors++; else vs->vs_read_errors++; } if (type == ZIO_TYPE_WRITE) vs->vs_write_errors++; mutex_exit(&vd->vdev_stat_lock); if (type == ZIO_TYPE_WRITE && txg != 0 && (!(flags & ZIO_FLAG_IO_REPAIR) || (flags & ZIO_FLAG_SCRUB_THREAD))) { /* * This is either a normal write (not a repair), or it's a * repair induced by the scrub thread. In the normal case, * we commit the DTL change in the same txg as the block * was born. In the scrub-induced repair case, we know that * scrubs run in first-pass syncing context, so we commit * the DTL change in spa->spa_syncing_txg. * * We currently do not make DTL entries for failed spontaneous * self-healing writes triggered by normal (non-scrubbing) * reads, because we have no transactional context in which to * do so -- and it's not clear that it'd be desirable anyway. */ if (vd->vdev_ops->vdev_op_leaf) { uint64_t commit_txg = txg; if (flags & ZIO_FLAG_SCRUB_THREAD) { ASSERT(flags & ZIO_FLAG_IO_REPAIR); ASSERT(spa_sync_pass(spa) == 1); vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); commit_txg = spa->spa_syncing_txg; } ASSERT(commit_txg >= spa->spa_syncing_txg); if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) return; for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); } if (vd != rvd) vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); } } void vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) { int c; vdev_stat_t *vs = &vd->vdev_stat; for (c = 0; c < vd->vdev_children; c++) vdev_scrub_stat_update(vd->vdev_child[c], type, complete); mutex_enter(&vd->vdev_stat_lock); if (type == POOL_SCRUB_NONE) { /* * Update completion and end time. Leave everything else alone * so we can report what happened during the previous scrub. */ vs->vs_scrub_complete = complete; vs->vs_scrub_end = gethrestime_sec(); } else { vs->vs_scrub_type = type; vs->vs_scrub_complete = 0; vs->vs_scrub_examined = 0; vs->vs_scrub_repaired = 0; vs->vs_scrub_start = gethrestime_sec(); vs->vs_scrub_end = 0; } mutex_exit(&vd->vdev_stat_lock); } /* * Update the in-core space usage stats for this vdev and the root vdev. */ void vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta, boolean_t update_root) { int64_t dspace_delta = space_delta; spa_t *spa = vd->vdev_spa; vdev_t *rvd = spa->spa_root_vdev; ASSERT(vd == vd->vdev_top); /* * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion * factor. We must calculate this here and not at the root vdev * because the root vdev's psize-to-asize is simply the max of its * childrens', thus not accurate enough for us. */ ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; mutex_enter(&vd->vdev_stat_lock); vd->vdev_stat.vs_space += space_delta; vd->vdev_stat.vs_alloc += alloc_delta; vd->vdev_stat.vs_dspace += dspace_delta; mutex_exit(&vd->vdev_stat_lock); if (update_root) { ASSERT(rvd == vd->vdev_parent); ASSERT(vd->vdev_ms_count != 0); /* * Don't count non-normal (e.g. intent log) space as part of * the pool's capacity. */ if (vd->vdev_mg->mg_class != spa->spa_normal_class) return; mutex_enter(&rvd->vdev_stat_lock); rvd->vdev_stat.vs_space += space_delta; rvd->vdev_stat.vs_alloc += alloc_delta; rvd->vdev_stat.vs_dspace += dspace_delta; mutex_exit(&rvd->vdev_stat_lock); } } /* * Mark a top-level vdev's config as dirty, placing it on the dirty list * so that it will be written out next time the vdev configuration is synced. * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. */ void vdev_config_dirty(vdev_t *vd) { spa_t *spa = vd->vdev_spa; vdev_t *rvd = spa->spa_root_vdev; int c; /* * If this is an aux vdev (as with l2cache devices), then we update the * vdev config manually and set the sync flag. */ if (vd->vdev_aux != NULL) { spa_aux_vdev_t *sav = vd->vdev_aux; nvlist_t **aux; uint_t naux; for (c = 0; c < sav->sav_count; c++) { if (sav->sav_vdevs[c] == vd) break; } if (c == sav->sav_count) { /* * We're being removed. There's nothing more to do. */ ASSERT(sav->sav_sync == B_TRUE); return; } sav->sav_sync = B_TRUE; VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, &aux, &naux) == 0); ASSERT(c < naux); /* * Setting the nvlist in the middle if the array is a little * sketchy, but it will work. */ nvlist_free(aux[c]); aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE); return; } /* * The dirty list is protected by the SCL_CONFIG lock. The caller * must either hold SCL_CONFIG as writer, or must be the sync thread * (which holds SCL_CONFIG as reader). There's only one sync thread, * so this is sufficient to ensure mutual exclusion. */ ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || (dsl_pool_sync_context(spa_get_dsl(spa)) && spa_config_held(spa, SCL_CONFIG, RW_READER))); if (vd == rvd) { for (c = 0; c < rvd->vdev_children; c++) vdev_config_dirty(rvd->vdev_child[c]); } else { ASSERT(vd == vd->vdev_top); if (!list_link_active(&vd->vdev_config_dirty_node)) list_insert_head(&spa->spa_config_dirty_list, vd); } } void vdev_config_clean(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || (dsl_pool_sync_context(spa_get_dsl(spa)) && spa_config_held(spa, SCL_CONFIG, RW_READER))); ASSERT(list_link_active(&vd->vdev_config_dirty_node)); list_remove(&spa->spa_config_dirty_list, vd); } /* * Mark a top-level vdev's state as dirty, so that the next pass of * spa_sync() can convert this into vdev_config_dirty(). We distinguish * the state changes from larger config changes because they require * much less locking, and are often needed for administrative actions. */ void vdev_state_dirty(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(vd == vd->vdev_top); /* * The state list is protected by the SCL_STATE lock. The caller * must either hold SCL_STATE as writer, or must be the sync thread * (which holds SCL_STATE as reader). There's only one sync thread, * so this is sufficient to ensure mutual exclusion. */ ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || (dsl_pool_sync_context(spa_get_dsl(spa)) && spa_config_held(spa, SCL_STATE, RW_READER))); if (!list_link_active(&vd->vdev_state_dirty_node)) list_insert_head(&spa->spa_state_dirty_list, vd); } void vdev_state_clean(vdev_t *vd) { spa_t *spa = vd->vdev_spa; ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || (dsl_pool_sync_context(spa_get_dsl(spa)) && spa_config_held(spa, SCL_STATE, RW_READER))); ASSERT(list_link_active(&vd->vdev_state_dirty_node)); list_remove(&spa->spa_state_dirty_list, vd); } /* * Propagate vdev state up from children to parent. */ void vdev_propagate_state(vdev_t *vd) { spa_t *spa = vd->vdev_spa; vdev_t *rvd = spa->spa_root_vdev; int degraded = 0, faulted = 0; int corrupted = 0; int c; vdev_t *child; if (vd->vdev_children > 0) { for (c = 0; c < vd->vdev_children; c++) { child = vd->vdev_child[c]; if (!vdev_readable(child) || (!vdev_writeable(child) && spa_writeable(spa))) { /* * Root special: if there is a top-level log * device, treat the root vdev as if it were * degraded. */ if (child->vdev_islog && vd == rvd) degraded++; else faulted++; } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { degraded++; } if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) corrupted++; } vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); /* * Root special: if there is a top-level vdev that cannot be * opened due to corrupted metadata, then propagate the root * vdev's aux state as 'corrupt' rather than 'insufficient * replicas'. */ if (corrupted && vd == rvd && rvd->vdev_state == VDEV_STATE_CANT_OPEN) vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); } if (vd->vdev_parent) vdev_propagate_state(vd->vdev_parent); } /* * Set a vdev's state. If this is during an open, we don't update the parent * state, because we're in the process of opening children depth-first. * Otherwise, we propagate the change to the parent. * * If this routine places a device in a faulted state, an appropriate ereport is * generated. */ void vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) { uint64_t save_state; spa_t *spa = vd->vdev_spa; if (state == vd->vdev_state) { vd->vdev_stat.vs_aux = aux; return; } save_state = vd->vdev_state; vd->vdev_state = state; vd->vdev_stat.vs_aux = aux; /* * If we are setting the vdev state to anything but an open state, then * always close the underlying device. Otherwise, we keep accessible * but invalid devices open forever. We don't call vdev_close() itself, * because that implies some extra checks (offline, etc) that we don't * want here. This is limited to leaf devices, because otherwise * closing the device will affect other children. */ if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf) vd->vdev_ops->vdev_op_close(vd); if (vd->vdev_removed && state == VDEV_STATE_CANT_OPEN && (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { /* * If the previous state is set to VDEV_STATE_REMOVED, then this * device was previously marked removed and someone attempted to * reopen it. If this failed due to a nonexistent device, then * keep the device in the REMOVED state. We also let this be if * it is one of our special test online cases, which is only * attempting to online the device and shouldn't generate an FMA * fault. */ vd->vdev_state = VDEV_STATE_REMOVED; vd->vdev_stat.vs_aux = VDEV_AUX_NONE; } else if (state == VDEV_STATE_REMOVED) { /* * Indicate to the ZFS DE that this device has been removed, and * any recent errors should be ignored. */ zfs_post_remove(spa, vd); vd->vdev_removed = B_TRUE; } else if (state == VDEV_STATE_CANT_OPEN) { /* * If we fail to open a vdev during an import, we mark it as * "not available", which signifies that it was never there to * begin with. Failure to open such a device is not considered * an error. */ if (spa->spa_load_state == SPA_LOAD_IMPORT && !spa->spa_import_faulted && vd->vdev_ops->vdev_op_leaf) vd->vdev_not_present = 1; /* * Post the appropriate ereport. If the 'prevstate' field is * set to something other than VDEV_STATE_UNKNOWN, it indicates * that this is part of a vdev_reopen(). In this case, we don't * want to post the ereport if the device was already in the * CANT_OPEN state beforehand. * * If the 'checkremove' flag is set, then this is an attempt to * online the device in response to an insertion event. If we * hit this case, then we have detected an insertion event for a * faulted or offline device that wasn't in the removed state. * In this scenario, we don't post an ereport because we are * about to replace the device, or attempt an online with * vdev_forcefault, which will generate the fault for us. */ if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && !vd->vdev_not_present && !vd->vdev_checkremove && vd != spa->spa_root_vdev) { const char *class; switch (aux) { case VDEV_AUX_OPEN_FAILED: class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; break; case VDEV_AUX_CORRUPT_DATA: class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; break; case VDEV_AUX_NO_REPLICAS: class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; break; case VDEV_AUX_BAD_GUID_SUM: class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; break; case VDEV_AUX_TOO_SMALL: class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; break; case VDEV_AUX_BAD_LABEL: class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; break; case VDEV_AUX_IO_FAILURE: class = FM_EREPORT_ZFS_IO_FAILURE; break; default: class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; } zfs_ereport_post(class, spa, vd, NULL, save_state, 0); } /* Erase any notion of persistent removed state */ vd->vdev_removed = B_FALSE; } else { vd->vdev_removed = B_FALSE; } if (!isopen) vdev_propagate_state(vd); } /* * Check the vdev configuration to ensure that it's capable of supporting * a root pool. Currently, we do not support RAID-Z or partial configuration. * In addition, only a single top-level vdev is allowed and none of the leaves * can be wholedisks. */ boolean_t vdev_is_bootable(vdev_t *vd) { int c; if (!vd->vdev_ops->vdev_op_leaf) { char *vdev_type = vd->vdev_ops->vdev_op_type; if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && vd->vdev_children > 1) { return (B_FALSE); } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { return (B_FALSE); } } else if (vd->vdev_wholedisk == 1) { return (B_FALSE); } for (c = 0; c < vd->vdev_children; c++) { if (!vdev_is_bootable(vd->vdev_child[c])) return (B_FALSE); } return (B_TRUE); }