/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Portions Copyright 2011 Martin Matuska * Copyright (c) 2013 by Delphix. All rights reserved. */ #include #include #include #include #include #include #include #include /* * ZFS Transaction Groups * ---------------------- * * ZFS transaction groups are, as the name implies, groups of transactions * that act on persistent state. ZFS asserts consistency at the granularity of * these transaction groups. Each successive transaction group (txg) is * assigned a 64-bit consecutive identifier. There are three active * transaction group states: open, quiescing, or syncing. At any given time, * there may be an active txg associated with each state; each active txg may * either be processing, or blocked waiting to enter the next state. There may * be up to three active txgs, and there is always a txg in the open state * (though it may be blocked waiting to enter the quiescing state). In broad * strokes, transactions -- operations that change in-memory structures -- are * accepted into the txg in the open state, and are completed while the txg is * in the open or quiescing states. The accumulated changes are written to * disk in the syncing state. * * Open * * When a new txg becomes active, it first enters the open state. New * transactions -- updates to in-memory structures -- are assigned to the * currently open txg. There is always a txg in the open state so that ZFS can * accept new changes (though the txg may refuse new changes if it has hit * some limit). ZFS advances the open txg to the next state for a variety of * reasons such as it hitting a time or size threshold, or the execution of an * administrative action that must be completed in the syncing state. * * Quiescing * * After a txg exits the open state, it enters the quiescing state. The * quiescing state is intended to provide a buffer between accepting new * transactions in the open state and writing them out to stable storage in * the syncing state. While quiescing, transactions can continue their * operation without delaying either of the other states. Typically, a txg is * in the quiescing state very briefly since the operations are bounded by * software latencies rather than, say, slower I/O latencies. After all * transactions complete, the txg is ready to enter the next state. * * Syncing * * In the syncing state, the in-memory state built up during the open and (to * a lesser degree) the quiescing states is written to stable storage. The * process of writing out modified data can, in turn modify more data. For * example when we write new blocks, we need to allocate space for them; those * allocations modify metadata (space maps)... which themselves must be * written to stable storage. During the sync state, ZFS iterates, writing out * data until it converges and all in-memory changes have been written out. * The first such pass is the largest as it encompasses all the modified user * data (as opposed to filesystem metadata). Subsequent passes typically have * far less data to write as they consist exclusively of filesystem metadata. * * To ensure convergence, after a certain number of passes ZFS begins * overwriting locations on stable storage that had been allocated earlier in * the syncing state (and subsequently freed). ZFS usually allocates new * blocks to optimize for large, continuous, writes. For the syncing state to * converge however it must complete a pass where no new blocks are allocated * since each allocation requires a modification of persistent metadata. * Further, to hasten convergence, after a prescribed number of passes, ZFS * also defers frees, and stops compressing. * * In addition to writing out user data, we must also execute synctasks during * the syncing context. A synctask is the mechanism by which some * administrative activities work such as creating and destroying snapshots or * datasets. Note that when a synctask is initiated it enters the open txg, * and ZFS then pushes that txg as quickly as possible to completion of the * syncing state in order to reduce the latency of the administrative * activity. To complete the syncing state, ZFS writes out a new uberblock, * the root of the tree of blocks that comprise all state stored on the ZFS * pool. Finally, if there is a quiesced txg waiting, we signal that it can * now transition to the syncing state. */ static void txg_sync_thread(dsl_pool_t *dp); static void txg_quiesce_thread(dsl_pool_t *dp); int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */ /* * Prepare the txg subsystem. */ void txg_init(dsl_pool_t *dp, uint64_t txg) { tx_state_t *tx = &dp->dp_tx; int c; bzero(tx, sizeof (tx_state_t)); tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP); for (c = 0; c < max_ncpus; c++) { int i; mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_DEFAULT, NULL); for (i = 0; i < TXG_SIZE; i++) { cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT, NULL); list_create(&tx->tx_cpu[c].tc_callbacks[i], sizeof (dmu_tx_callback_t), offsetof(dmu_tx_callback_t, dcb_node)); } } mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL); cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL); cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL); cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL); cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL); tx->tx_open_txg = txg; } /* * Close down the txg subsystem. */ void txg_fini(dsl_pool_t *dp) { tx_state_t *tx = &dp->dp_tx; int c; ASSERT(tx->tx_threads == 0); mutex_destroy(&tx->tx_sync_lock); cv_destroy(&tx->tx_sync_more_cv); cv_destroy(&tx->tx_sync_done_cv); cv_destroy(&tx->tx_quiesce_more_cv); cv_destroy(&tx->tx_quiesce_done_cv); cv_destroy(&tx->tx_exit_cv); for (c = 0; c < max_ncpus; c++) { int i; mutex_destroy(&tx->tx_cpu[c].tc_open_lock); mutex_destroy(&tx->tx_cpu[c].tc_lock); for (i = 0; i < TXG_SIZE; i++) { cv_destroy(&tx->tx_cpu[c].tc_cv[i]); list_destroy(&tx->tx_cpu[c].tc_callbacks[i]); } } if (tx->tx_commit_cb_taskq != NULL) taskq_destroy(tx->tx_commit_cb_taskq); vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t)); bzero(tx, sizeof (tx_state_t)); } /* * Start syncing transaction groups. */ void txg_sync_start(dsl_pool_t *dp) { tx_state_t *tx = &dp->dp_tx; mutex_enter(&tx->tx_sync_lock); dprintf("pool %p\n", dp); ASSERT(tx->tx_threads == 0); tx->tx_threads = 2; tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread, dp, 0, &p0, TS_RUN, minclsyspri); /* * The sync thread can need a larger-than-default stack size on * 32-bit x86. This is due in part to nested pools and * scrub_visitbp() recursion. */ tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread, dp, 0, &p0, TS_RUN, minclsyspri); mutex_exit(&tx->tx_sync_lock); } static void txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr) { CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG); mutex_enter(&tx->tx_sync_lock); } static void txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp) { ASSERT(*tpp != NULL); *tpp = NULL; tx->tx_threads--; cv_broadcast(&tx->tx_exit_cv); CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */ thread_exit(); } static void txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time) { CALLB_CPR_SAFE_BEGIN(cpr); if (time) (void) cv_timedwait_interruptible(cv, &tx->tx_sync_lock, ddi_get_lbolt() + time); else cv_wait_interruptible(cv, &tx->tx_sync_lock); CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock); } /* * Stop syncing transaction groups. */ void txg_sync_stop(dsl_pool_t *dp) { tx_state_t *tx = &dp->dp_tx; dprintf("pool %p\n", dp); /* * Finish off any work in progress. */ ASSERT(tx->tx_threads == 2); /* * We need to ensure that we've vacated the deferred space_maps. */ txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE); /* * Wake all sync threads and wait for them to die. */ mutex_enter(&tx->tx_sync_lock); ASSERT(tx->tx_threads == 2); tx->tx_exiting = 1; cv_broadcast(&tx->tx_quiesce_more_cv); cv_broadcast(&tx->tx_quiesce_done_cv); cv_broadcast(&tx->tx_sync_more_cv); while (tx->tx_threads != 0) cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock); tx->tx_exiting = 0; mutex_exit(&tx->tx_sync_lock); } uint64_t txg_hold_open(dsl_pool_t *dp, txg_handle_t *th) { tx_state_t *tx = &dp->dp_tx; tx_cpu_t *tc; uint64_t txg; /* * It appears the processor id is simply used as a "random" * number to index into the array, and there isn't any other * significance to the chosen tx_cpu. Because.. Why not use * the current cpu to index into the array? */ kpreempt_disable(); tc = &tx->tx_cpu[CPU_SEQID]; kpreempt_enable(); mutex_enter(&tc->tc_open_lock); txg = tx->tx_open_txg; mutex_enter(&tc->tc_lock); tc->tc_count[txg & TXG_MASK]++; mutex_exit(&tc->tc_lock); th->th_cpu = tc; th->th_txg = txg; return (txg); } void txg_rele_to_quiesce(txg_handle_t *th) { tx_cpu_t *tc = th->th_cpu; ASSERT(!MUTEX_HELD(&tc->tc_lock)); mutex_exit(&tc->tc_open_lock); } void txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks) { tx_cpu_t *tc = th->th_cpu; int g = th->th_txg & TXG_MASK; mutex_enter(&tc->tc_lock); list_move_tail(&tc->tc_callbacks[g], tx_callbacks); mutex_exit(&tc->tc_lock); } void txg_rele_to_sync(txg_handle_t *th) { tx_cpu_t *tc = th->th_cpu; int g = th->th_txg & TXG_MASK; mutex_enter(&tc->tc_lock); ASSERT(tc->tc_count[g] != 0); if (--tc->tc_count[g] == 0) cv_broadcast(&tc->tc_cv[g]); mutex_exit(&tc->tc_lock); th->th_cpu = NULL; /* defensive */ } /* * Blocks until all transactions in the group are committed. * * On return, the transaction group has reached a stable state in which it can * then be passed off to the syncing context. */ static void txg_quiesce(dsl_pool_t *dp, uint64_t txg) { tx_state_t *tx = &dp->dp_tx; int g = txg & TXG_MASK; int c; /* * Grab all tc_open_locks so nobody else can get into this txg. */ for (c = 0; c < max_ncpus; c++) mutex_enter(&tx->tx_cpu[c].tc_open_lock); ASSERT(txg == tx->tx_open_txg); tx->tx_open_txg++; tx->tx_open_time = gethrtime(); spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_OPEN, gethrtime()); spa_txg_history_add(dp->dp_spa, tx->tx_open_txg); DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg); DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg); /* * Now that we've incremented tx_open_txg, we can let threads * enter the next transaction group. */ for (c = 0; c < max_ncpus; c++) mutex_exit(&tx->tx_cpu[c].tc_open_lock); /* * Quiesce the transaction group by waiting for everyone to txg_exit(). */ for (c = 0; c < max_ncpus; c++) { tx_cpu_t *tc = &tx->tx_cpu[c]; mutex_enter(&tc->tc_lock); while (tc->tc_count[g] != 0) cv_wait(&tc->tc_cv[g], &tc->tc_lock); mutex_exit(&tc->tc_lock); } spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_QUIESCED, gethrtime()); } static void txg_do_callbacks(list_t *cb_list) { dmu_tx_do_callbacks(cb_list, 0); list_destroy(cb_list); kmem_free(cb_list, sizeof (list_t)); } /* * Dispatch the commit callbacks registered on this txg to worker threads. * * If no callbacks are registered for a given TXG, nothing happens. * This function creates a taskq for the associated pool, if needed. */ static void txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg) { int c; tx_state_t *tx = &dp->dp_tx; list_t *cb_list; for (c = 0; c < max_ncpus; c++) { tx_cpu_t *tc = &tx->tx_cpu[c]; /* * No need to lock tx_cpu_t at this point, since this can * only be called once a txg has been synced. */ int g = txg & TXG_MASK; if (list_is_empty(&tc->tc_callbacks[g])) continue; if (tx->tx_commit_cb_taskq == NULL) { /* * Commit callback taskq hasn't been created yet. */ tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb", 100, minclsyspri, max_ncpus, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_PREPOPULATE); } cb_list = kmem_alloc(sizeof (list_t), KM_PUSHPAGE); list_create(cb_list, sizeof (dmu_tx_callback_t), offsetof(dmu_tx_callback_t, dcb_node)); list_move_tail(cb_list, &tc->tc_callbacks[g]); (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *) txg_do_callbacks, cb_list, TQ_SLEEP); } } /* * Wait for pending commit callbacks of already-synced transactions to finish * processing. * Calling this function from within a commit callback will deadlock. */ void txg_wait_callbacks(dsl_pool_t *dp) { tx_state_t *tx = &dp->dp_tx; if (tx->tx_commit_cb_taskq != NULL) taskq_wait(tx->tx_commit_cb_taskq); } static void txg_sync_thread(dsl_pool_t *dp) { spa_t *spa = dp->dp_spa; tx_state_t *tx = &dp->dp_tx; callb_cpr_t cpr; vdev_stat_t *vs1, *vs2; uint64_t start, delta; #ifdef _KERNEL /* * Annotate this process with a flag that indicates that it is * unsafe to use KM_SLEEP during memory allocations due to the * potential for a deadlock. KM_PUSHPAGE should be used instead. */ current->flags |= PF_NOFS; #endif /* _KERNEL */ txg_thread_enter(tx, &cpr); vs1 = kmem_alloc(sizeof(vdev_stat_t), KM_PUSHPAGE); vs2 = kmem_alloc(sizeof(vdev_stat_t), KM_PUSHPAGE); start = delta = 0; for (;;) { uint64_t timer, timeout; uint64_t txg; timeout = zfs_txg_timeout * hz; /* * We sync when we're scanning, there's someone waiting * on us, or the quiesce thread has handed off a txg to * us, or we have reached our timeout. */ timer = (delta >= timeout ? 0 : timeout - delta); while (!dsl_scan_active(dp->dp_scan) && !tx->tx_exiting && timer > 0 && tx->tx_synced_txg >= tx->tx_sync_txg_waiting && tx->tx_quiesced_txg == 0 && dp->dp_dirty_total < zfs_dirty_data_sync) { dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n", tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer); delta = ddi_get_lbolt() - start; timer = (delta > timeout ? 0 : timeout - delta); } /* * Wait until the quiesce thread hands off a txg to us, * prompting it to do so if necessary. */ while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) { if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1) tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1; cv_broadcast(&tx->tx_quiesce_more_cv); txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0); } if (tx->tx_exiting) { kmem_free(vs2, sizeof(vdev_stat_t)); kmem_free(vs1, sizeof(vdev_stat_t)); txg_thread_exit(tx, &cpr, &tx->tx_sync_thread); } vdev_get_stats(spa->spa_root_vdev, vs1); /* * Consume the quiesced txg which has been handed off to * us. This may cause the quiescing thread to now be * able to quiesce another txg, so we must signal it. */ txg = tx->tx_quiesced_txg; tx->tx_quiesced_txg = 0; tx->tx_syncing_txg = txg; DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg); cv_broadcast(&tx->tx_quiesce_more_cv); dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); mutex_exit(&tx->tx_sync_lock); start = ddi_get_lbolt(); spa_sync(spa, txg); delta = ddi_get_lbolt() - start; mutex_enter(&tx->tx_sync_lock); tx->tx_synced_txg = txg; tx->tx_syncing_txg = 0; DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg); cv_broadcast(&tx->tx_sync_done_cv); /* * Dispatch commit callbacks to worker threads. */ txg_dispatch_callbacks(dp, txg); vdev_get_stats(spa->spa_root_vdev, vs2); spa_txg_history_set_io(spa, txg, vs2->vs_bytes[ZIO_TYPE_READ]-vs1->vs_bytes[ZIO_TYPE_READ], vs2->vs_bytes[ZIO_TYPE_WRITE]-vs1->vs_bytes[ZIO_TYPE_WRITE], vs2->vs_ops[ZIO_TYPE_READ]-vs1->vs_ops[ZIO_TYPE_READ], vs2->vs_ops[ZIO_TYPE_WRITE]-vs1->vs_ops[ZIO_TYPE_WRITE], dp->dp_dirty_pertxg[txg & TXG_MASK]); spa_txg_history_set(spa, txg, TXG_STATE_SYNCED, gethrtime()); } } static void txg_quiesce_thread(dsl_pool_t *dp) { tx_state_t *tx = &dp->dp_tx; callb_cpr_t cpr; txg_thread_enter(tx, &cpr); for (;;) { uint64_t txg; /* * We quiesce when there's someone waiting on us. * However, we can only have one txg in "quiescing" or * "quiesced, waiting to sync" state. So we wait until * the "quiesced, waiting to sync" txg has been consumed * by the sync thread. */ while (!tx->tx_exiting && (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting || tx->tx_quiesced_txg != 0)) txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0); if (tx->tx_exiting) txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread); txg = tx->tx_open_txg; dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); mutex_exit(&tx->tx_sync_lock); txg_quiesce(dp, txg); mutex_enter(&tx->tx_sync_lock); /* * Hand this txg off to the sync thread. */ dprintf("quiesce done, handing off txg %llu\n", txg); tx->tx_quiesced_txg = txg; DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg); cv_broadcast(&tx->tx_sync_more_cv); cv_broadcast(&tx->tx_quiesce_done_cv); } } /* * Delay this thread by delay nanoseconds if we are still in the open * transaction group and there is already a waiting txg quiesing or quiesced. * Abort the delay if this txg stalls or enters the quiesing state. */ void txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution) { tx_state_t *tx = &dp->dp_tx; hrtime_t start = gethrtime(); /* don't delay if this txg could transition to quiescing immediately */ if (tx->tx_open_txg > txg || tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1) return; mutex_enter(&tx->tx_sync_lock); if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) { mutex_exit(&tx->tx_sync_lock); return; } while (gethrtime() - start < delay && tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) { (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv, &tx->tx_sync_lock, delay, resolution, 0); } DMU_TX_STAT_BUMP(dmu_tx_delay); mutex_exit(&tx->tx_sync_lock); } void txg_wait_synced(dsl_pool_t *dp, uint64_t txg) { tx_state_t *tx = &dp->dp_tx; ASSERT(!dsl_pool_config_held(dp)); mutex_enter(&tx->tx_sync_lock); ASSERT(tx->tx_threads == 2); if (txg == 0) txg = tx->tx_open_txg + TXG_DEFER_SIZE; if (tx->tx_sync_txg_waiting < txg) tx->tx_sync_txg_waiting = txg; dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); while (tx->tx_synced_txg < txg) { dprintf("broadcasting sync more " "tx_synced=%llu waiting=%llu dp=%p\n", tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); cv_broadcast(&tx->tx_sync_more_cv); cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock); } mutex_exit(&tx->tx_sync_lock); } void txg_wait_open(dsl_pool_t *dp, uint64_t txg) { tx_state_t *tx = &dp->dp_tx; ASSERT(!dsl_pool_config_held(dp)); mutex_enter(&tx->tx_sync_lock); ASSERT(tx->tx_threads == 2); if (txg == 0) txg = tx->tx_open_txg + 1; if (tx->tx_quiesce_txg_waiting < txg) tx->tx_quiesce_txg_waiting = txg; dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); while (tx->tx_open_txg < txg) { cv_broadcast(&tx->tx_quiesce_more_cv); cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock); } mutex_exit(&tx->tx_sync_lock); } /* * If there isn't a txg syncing or in the pipeline, push another txg through * the pipeline by queiscing the open txg. */ void txg_kick(dsl_pool_t *dp) { tx_state_t *tx = &dp->dp_tx; ASSERT(!dsl_pool_config_held(dp)); mutex_enter(&tx->tx_sync_lock); if (tx->tx_syncing_txg == 0 && tx->tx_quiesce_txg_waiting <= tx->tx_open_txg && tx->tx_sync_txg_waiting <= tx->tx_synced_txg && tx->tx_quiesced_txg <= tx->tx_synced_txg) { tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1; cv_broadcast(&tx->tx_quiesce_more_cv); } mutex_exit(&tx->tx_sync_lock); } boolean_t txg_stalled(dsl_pool_t *dp) { tx_state_t *tx = &dp->dp_tx; return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg); } boolean_t txg_sync_waiting(dsl_pool_t *dp) { tx_state_t *tx = &dp->dp_tx; return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting || tx->tx_quiesced_txg != 0); } /* * Per-txg object lists. */ void txg_list_create(txg_list_t *tl, size_t offset) { int t; mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL); tl->tl_offset = offset; for (t = 0; t < TXG_SIZE; t++) tl->tl_head[t] = NULL; } void txg_list_destroy(txg_list_t *tl) { int t; for (t = 0; t < TXG_SIZE; t++) ASSERT(txg_list_empty(tl, t)); mutex_destroy(&tl->tl_lock); } boolean_t txg_list_empty(txg_list_t *tl, uint64_t txg) { return (tl->tl_head[txg & TXG_MASK] == NULL); } /* * Add an entry to the list (unless it's already on the list). * Returns B_TRUE if it was actually added. */ boolean_t txg_list_add(txg_list_t *tl, void *p, uint64_t txg) { int t = txg & TXG_MASK; txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); boolean_t add; mutex_enter(&tl->tl_lock); add = (tn->tn_member[t] == 0); if (add) { tn->tn_member[t] = 1; tn->tn_next[t] = tl->tl_head[t]; tl->tl_head[t] = tn; } mutex_exit(&tl->tl_lock); return (add); } /* * Add an entry to the end of the list, unless it's already on the list. * (walks list to find end) * Returns B_TRUE if it was actually added. */ boolean_t txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg) { int t = txg & TXG_MASK; txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); boolean_t add; mutex_enter(&tl->tl_lock); add = (tn->tn_member[t] == 0); if (add) { txg_node_t **tp; for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t]) continue; tn->tn_member[t] = 1; tn->tn_next[t] = NULL; *tp = tn; } mutex_exit(&tl->tl_lock); return (add); } /* * Remove the head of the list and return it. */ void * txg_list_remove(txg_list_t *tl, uint64_t txg) { int t = txg & TXG_MASK; txg_node_t *tn; void *p = NULL; mutex_enter(&tl->tl_lock); if ((tn = tl->tl_head[t]) != NULL) { p = (char *)tn - tl->tl_offset; tl->tl_head[t] = tn->tn_next[t]; tn->tn_next[t] = NULL; tn->tn_member[t] = 0; } mutex_exit(&tl->tl_lock); return (p); } /* * Remove a specific item from the list and return it. */ void * txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg) { int t = txg & TXG_MASK; txg_node_t *tn, **tp; mutex_enter(&tl->tl_lock); for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) { if ((char *)tn - tl->tl_offset == p) { *tp = tn->tn_next[t]; tn->tn_next[t] = NULL; tn->tn_member[t] = 0; mutex_exit(&tl->tl_lock); return (p); } } mutex_exit(&tl->tl_lock); return (NULL); } boolean_t txg_list_member(txg_list_t *tl, void *p, uint64_t txg) { int t = txg & TXG_MASK; txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); return (tn->tn_member[t] != 0); } /* * Walk a txg list -- only safe if you know it's not changing. */ void * txg_list_head(txg_list_t *tl, uint64_t txg) { int t = txg & TXG_MASK; txg_node_t *tn = tl->tl_head[t]; return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); } void * txg_list_next(txg_list_t *tl, void *p, uint64_t txg) { int t = txg & TXG_MASK; txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); tn = tn->tn_next[t]; return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); } #if defined(_KERNEL) && defined(HAVE_SPL) EXPORT_SYMBOL(txg_init); EXPORT_SYMBOL(txg_fini); EXPORT_SYMBOL(txg_sync_start); EXPORT_SYMBOL(txg_sync_stop); EXPORT_SYMBOL(txg_hold_open); EXPORT_SYMBOL(txg_rele_to_quiesce); EXPORT_SYMBOL(txg_rele_to_sync); EXPORT_SYMBOL(txg_register_callbacks); EXPORT_SYMBOL(txg_delay); EXPORT_SYMBOL(txg_wait_synced); EXPORT_SYMBOL(txg_wait_open); EXPORT_SYMBOL(txg_wait_callbacks); EXPORT_SYMBOL(txg_stalled); EXPORT_SYMBOL(txg_sync_waiting); module_param(zfs_txg_timeout, int, 0644); MODULE_PARM_DESC(zfs_txg_timeout, "Max seconds worth of delta per txg"); #endif