/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2019 by Delphix. All rights reserved. * Copyright 2015 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright 2013 Saso Kiselkov. All rights reserved. * Copyright (c) 2017 Datto Inc. * Copyright (c) 2017, Intel Corporation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_prop.h" #include #include /* * SPA locking * * There are three basic locks for managing spa_t structures: * * spa_namespace_lock (global mutex) * * This lock must be acquired to do any of the following: * * - Lookup a spa_t by name * - Add or remove a spa_t from the namespace * - Increase spa_refcount from non-zero * - Check if spa_refcount is zero * - Rename a spa_t * - add/remove/attach/detach devices * - Held for the duration of create/destroy/import/export * * It does not need to handle recursion. A create or destroy may * reference objects (files or zvols) in other pools, but by * definition they must have an existing reference, and will never need * to lookup a spa_t by name. * * spa_refcount (per-spa zfs_refcount_t protected by mutex) * * This reference count keep track of any active users of the spa_t. The * spa_t cannot be destroyed or freed while this is non-zero. Internally, * the refcount is never really 'zero' - opening a pool implicitly keeps * some references in the DMU. Internally we check against spa_minref, but * present the image of a zero/non-zero value to consumers. * * spa_config_lock[] (per-spa array of rwlocks) * * This protects the spa_t from config changes, and must be held in * the following circumstances: * * - RW_READER to perform I/O to the spa * - RW_WRITER to change the vdev config * * The locking order is fairly straightforward: * * spa_namespace_lock -> spa_refcount * * The namespace lock must be acquired to increase the refcount from 0 * or to check if it is zero. * * spa_refcount -> spa_config_lock[] * * There must be at least one valid reference on the spa_t to acquire * the config lock. * * spa_namespace_lock -> spa_config_lock[] * * The namespace lock must always be taken before the config lock. * * * The spa_namespace_lock can be acquired directly and is globally visible. * * The namespace is manipulated using the following functions, all of which * require the spa_namespace_lock to be held. * * spa_lookup() Lookup a spa_t by name. * * spa_add() Create a new spa_t in the namespace. * * spa_remove() Remove a spa_t from the namespace. This also * frees up any memory associated with the spa_t. * * spa_next() Returns the next spa_t in the system, or the * first if NULL is passed. * * spa_evict_all() Shutdown and remove all spa_t structures in * the system. * * spa_guid_exists() Determine whether a pool/device guid exists. * * The spa_refcount is manipulated using the following functions: * * spa_open_ref() Adds a reference to the given spa_t. Must be * called with spa_namespace_lock held if the * refcount is currently zero. * * spa_close() Remove a reference from the spa_t. This will * not free the spa_t or remove it from the * namespace. No locking is required. * * spa_refcount_zero() Returns true if the refcount is currently * zero. Must be called with spa_namespace_lock * held. * * The spa_config_lock[] is an array of rwlocks, ordered as follows: * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). * * To read the configuration, it suffices to hold one of these locks as reader. * To modify the configuration, you must hold all locks as writer. To modify * vdev state without altering the vdev tree's topology (e.g. online/offline), * you must hold SCL_STATE and SCL_ZIO as writer. * * We use these distinct config locks to avoid recursive lock entry. * For example, spa_sync() (which holds SCL_CONFIG as reader) induces * block allocations (SCL_ALLOC), which may require reading space maps * from disk (dmu_read() -> zio_read() -> SCL_ZIO). * * The spa config locks cannot be normal rwlocks because we need the * ability to hand off ownership. For example, SCL_ZIO is acquired * by the issuing thread and later released by an interrupt thread. * They do, however, obey the usual write-wanted semantics to prevent * writer (i.e. system administrator) starvation. * * The lock acquisition rules are as follows: * * SCL_CONFIG * Protects changes to the vdev tree topology, such as vdev * add/remove/attach/detach. Protects the dirty config list * (spa_config_dirty_list) and the set of spares and l2arc devices. * * SCL_STATE * Protects changes to pool state and vdev state, such as vdev * online/offline/fault/degrade/clear. Protects the dirty state list * (spa_state_dirty_list) and global pool state (spa_state). * * SCL_ALLOC * Protects changes to metaslab groups and classes. * Held as reader by metaslab_alloc() and metaslab_claim(). * * SCL_ZIO * Held by bp-level zios (those which have no io_vd upon entry) * to prevent changes to the vdev tree. The bp-level zio implicitly * protects all of its vdev child zios, which do not hold SCL_ZIO. * * SCL_FREE * Protects changes to metaslab groups and classes. * Held as reader by metaslab_free(). SCL_FREE is distinct from * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free * blocks in zio_done() while another i/o that holds either * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. * * SCL_VDEV * Held as reader to prevent changes to the vdev tree during trivial * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the * other locks, and lower than all of them, to ensure that it's safe * to acquire regardless of caller context. * * In addition, the following rules apply: * * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. * The lock ordering is SCL_CONFIG > spa_props_lock. * * (b) I/O operations on leaf vdevs. For any zio operation that takes * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), * or zio_write_phys() -- the caller must ensure that the config cannot * cannot change in the interim, and that the vdev cannot be reopened. * SCL_STATE as reader suffices for both. * * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). * * spa_vdev_enter() Acquire the namespace lock and the config lock * for writing. * * spa_vdev_exit() Release the config lock, wait for all I/O * to complete, sync the updated configs to the * cache, and release the namespace lock. * * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual * locking is, always, based on spa_namespace_lock and spa_config_lock[]. */ static avl_tree_t spa_namespace_avl; kmutex_t spa_namespace_lock; static kcondvar_t spa_namespace_cv; int spa_max_replication_override = SPA_DVAS_PER_BP; static kmutex_t spa_spare_lock; static avl_tree_t spa_spare_avl; static kmutex_t spa_l2cache_lock; static avl_tree_t spa_l2cache_avl; kmem_cache_t *spa_buffer_pool; int spa_mode_global; #ifdef ZFS_DEBUG /* * Everything except dprintf, set_error, spa, and indirect_remap is on * by default in debug builds. */ int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR | ZFS_DEBUG_INDIRECT_REMAP); #else int zfs_flags = 0; #endif /* * zfs_recover can be set to nonzero to attempt to recover from * otherwise-fatal errors, typically caused by on-disk corruption. When * set, calls to zfs_panic_recover() will turn into warning messages. * This should only be used as a last resort, as it typically results * in leaked space, or worse. */ int zfs_recover = B_FALSE; /* * If destroy encounters an EIO while reading metadata (e.g. indirect * blocks), space referenced by the missing metadata can not be freed. * Normally this causes the background destroy to become "stalled", as * it is unable to make forward progress. While in this stalled state, * all remaining space to free from the error-encountering filesystem is * "temporarily leaked". Set this flag to cause it to ignore the EIO, * permanently leak the space from indirect blocks that can not be read, * and continue to free everything else that it can. * * The default, "stalling" behavior is useful if the storage partially * fails (i.e. some but not all i/os fail), and then later recovers. In * this case, we will be able to continue pool operations while it is * partially failed, and when it recovers, we can continue to free the * space, with no leaks. However, note that this case is actually * fairly rare. * * Typically pools either (a) fail completely (but perhaps temporarily, * e.g. a top-level vdev going offline), or (b) have localized, * permanent errors (e.g. disk returns the wrong data due to bit flip or * firmware bug). In case (a), this setting does not matter because the * pool will be suspended and the sync thread will not be able to make * forward progress regardless. In case (b), because the error is * permanent, the best we can do is leak the minimum amount of space, * which is what setting this flag will do. Therefore, it is reasonable * for this flag to normally be set, but we chose the more conservative * approach of not setting it, so that there is no possibility of * leaking space in the "partial temporary" failure case. */ int zfs_free_leak_on_eio = B_FALSE; /* * Expiration time in milliseconds. This value has two meanings. First it is * used to determine when the spa_deadman() logic should fire. By default the * spa_deadman() will fire if spa_sync() has not completed in 600 seconds. * Secondly, the value determines if an I/O is considered "hung". Any I/O that * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting * in one of three behaviors controlled by zfs_deadman_failmode. */ unsigned long zfs_deadman_synctime_ms = 600000ULL; /* * This value controls the maximum amount of time zio_wait() will block for an * outstanding IO. By default this is 300 seconds at which point the "hung" * behavior will be applied as described for zfs_deadman_synctime_ms. */ unsigned long zfs_deadman_ziotime_ms = 300000ULL; /* * Check time in milliseconds. This defines the frequency at which we check * for hung I/O. */ unsigned long zfs_deadman_checktime_ms = 60000ULL; /* * By default the deadman is enabled. */ int zfs_deadman_enabled = 1; /* * Controls the behavior of the deadman when it detects a "hung" I/O. * Valid values are zfs_deadman_failmode=. * * wait - Wait for the "hung" I/O (default) * continue - Attempt to recover from a "hung" I/O * panic - Panic the system */ char *zfs_deadman_failmode = "wait"; /* * The worst case is single-sector max-parity RAID-Z blocks, in which * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) * times the size; so just assume that. Add to this the fact that * we can have up to 3 DVAs per bp, and one more factor of 2 because * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, * the worst case is: * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 */ int spa_asize_inflation = 24; /* * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in * the pool to be consumed. This ensures that we don't run the pool * completely out of space, due to unaccounted changes (e.g. to the MOS). * It also limits the worst-case time to allocate space. If we have * less than this amount of free space, most ZPL operations (e.g. write, * create) will return ENOSPC. * * Certain operations (e.g. file removal, most administrative actions) can * use half the slop space. They will only return ENOSPC if less than half * the slop space is free. Typically, once the pool has less than the slop * space free, the user will use these operations to free up space in the pool. * These are the operations that call dsl_pool_adjustedsize() with the netfree * argument set to TRUE. * * Operations that are almost guaranteed to free up space in the absence of * a pool checkpoint can use up to three quarters of the slop space * (e.g zfs destroy). * * A very restricted set of operations are always permitted, regardless of * the amount of free space. These are the operations that call * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net * increase in the amount of space used, it is possible to run the pool * completely out of space, causing it to be permanently read-only. * * Note that on very small pools, the slop space will be larger than * 3.2%, in an effort to have it be at least spa_min_slop (128MB), * but we never allow it to be more than half the pool size. * * See also the comments in zfs_space_check_t. */ int spa_slop_shift = 5; uint64_t spa_min_slop = 128 * 1024 * 1024; int spa_allocators = 4; /*PRINTFLIKE2*/ void spa_load_failed(spa_t *spa, const char *fmt, ...) { va_list adx; char buf[256]; va_start(adx, fmt); (void) vsnprintf(buf, sizeof (buf), fmt, adx); va_end(adx); zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, spa->spa_trust_config ? "trusted" : "untrusted", buf); } /*PRINTFLIKE2*/ void spa_load_note(spa_t *spa, const char *fmt, ...) { va_list adx; char buf[256]; va_start(adx, fmt); (void) vsnprintf(buf, sizeof (buf), fmt, adx); va_end(adx); zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, spa->spa_trust_config ? "trusted" : "untrusted", buf); } /* * By default dedup and user data indirects land in the special class */ int zfs_ddt_data_is_special = B_TRUE; int zfs_user_indirect_is_special = B_TRUE; /* * The percentage of special class final space reserved for metadata only. * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only * let metadata into the class. */ int zfs_special_class_metadata_reserve_pct = 25; /* * ========================================================================== * SPA config locking * ========================================================================== */ static void spa_config_lock_init(spa_t *spa) { for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); zfs_refcount_create_untracked(&scl->scl_count); scl->scl_writer = NULL; scl->scl_write_wanted = 0; } } static void spa_config_lock_destroy(spa_t *spa) { for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; mutex_destroy(&scl->scl_lock); cv_destroy(&scl->scl_cv); zfs_refcount_destroy(&scl->scl_count); ASSERT(scl->scl_writer == NULL); ASSERT(scl->scl_write_wanted == 0); } } int spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) { for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (!(locks & (1 << i))) continue; mutex_enter(&scl->scl_lock); if (rw == RW_READER) { if (scl->scl_writer || scl->scl_write_wanted) { mutex_exit(&scl->scl_lock); spa_config_exit(spa, locks & ((1 << i) - 1), tag); return (0); } } else { ASSERT(scl->scl_writer != curthread); if (!zfs_refcount_is_zero(&scl->scl_count)) { mutex_exit(&scl->scl_lock); spa_config_exit(spa, locks & ((1 << i) - 1), tag); return (0); } scl->scl_writer = curthread; } (void) zfs_refcount_add(&scl->scl_count, tag); mutex_exit(&scl->scl_lock); } return (1); } void spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw) { int wlocks_held = 0; ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (scl->scl_writer == curthread) wlocks_held |= (1 << i); if (!(locks & (1 << i))) continue; mutex_enter(&scl->scl_lock); if (rw == RW_READER) { while (scl->scl_writer || scl->scl_write_wanted) { cv_wait(&scl->scl_cv, &scl->scl_lock); } } else { ASSERT(scl->scl_writer != curthread); while (!zfs_refcount_is_zero(&scl->scl_count)) { scl->scl_write_wanted++; cv_wait(&scl->scl_cv, &scl->scl_lock); scl->scl_write_wanted--; } scl->scl_writer = curthread; } (void) zfs_refcount_add(&scl->scl_count, tag); mutex_exit(&scl->scl_lock); } ASSERT3U(wlocks_held, <=, locks); } void spa_config_exit(spa_t *spa, int locks, const void *tag) { for (int i = SCL_LOCKS - 1; i >= 0; i--) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (!(locks & (1 << i))) continue; mutex_enter(&scl->scl_lock); ASSERT(!zfs_refcount_is_zero(&scl->scl_count)); if (zfs_refcount_remove(&scl->scl_count, tag) == 0) { ASSERT(scl->scl_writer == NULL || scl->scl_writer == curthread); scl->scl_writer = NULL; /* OK in either case */ cv_broadcast(&scl->scl_cv); } mutex_exit(&scl->scl_lock); } } int spa_config_held(spa_t *spa, int locks, krw_t rw) { int locks_held = 0; for (int i = 0; i < SCL_LOCKS; i++) { spa_config_lock_t *scl = &spa->spa_config_lock[i]; if (!(locks & (1 << i))) continue; if ((rw == RW_READER && !zfs_refcount_is_zero(&scl->scl_count)) || (rw == RW_WRITER && scl->scl_writer == curthread)) locks_held |= 1 << i; } return (locks_held); } /* * ========================================================================== * SPA namespace functions * ========================================================================== */ /* * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. * Returns NULL if no matching spa_t is found. */ spa_t * spa_lookup(const char *name) { static spa_t search; /* spa_t is large; don't allocate on stack */ spa_t *spa; avl_index_t where; char *cp; ASSERT(MUTEX_HELD(&spa_namespace_lock)); (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); /* * If it's a full dataset name, figure out the pool name and * just use that. */ cp = strpbrk(search.spa_name, "/@#"); if (cp != NULL) *cp = '\0'; spa = avl_find(&spa_namespace_avl, &search, &where); return (spa); } /* * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. * If the zfs_deadman_enabled flag is set then it inspects all vdev queues * looking for potentially hung I/Os. */ void spa_deadman(void *arg) { spa_t *spa = arg; /* Disable the deadman if the pool is suspended. */ if (spa_suspended(spa)) return; zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", (gethrtime() - spa->spa_sync_starttime) / NANOSEC, ++spa->spa_deadman_calls); if (zfs_deadman_enabled) vdev_deadman(spa->spa_root_vdev, FTAG); spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + MSEC_TO_TICK(zfs_deadman_checktime_ms)); } int spa_log_sm_sort_by_txg(const void *va, const void *vb) { const spa_log_sm_t *a = va; const spa_log_sm_t *b = vb; return (AVL_CMP(a->sls_txg, b->sls_txg)); } /* * Create an uninitialized spa_t with the given name. Requires * spa_namespace_lock. The caller must ensure that the spa_t doesn't already * exist by calling spa_lookup() first. */ spa_t * spa_add(const char *name, nvlist_t *config, const char *altroot) { spa_t *spa; spa_config_dirent_t *dp; ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL); cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL); for (int t = 0; t < TXG_SIZE; t++) bplist_create(&spa->spa_free_bplist[t]); (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); spa->spa_state = POOL_STATE_UNINITIALIZED; spa->spa_freeze_txg = UINT64_MAX; spa->spa_final_txg = UINT64_MAX; spa->spa_load_max_txg = UINT64_MAX; spa->spa_proc = &p0; spa->spa_proc_state = SPA_PROC_NONE; spa->spa_trust_config = B_TRUE; spa->spa_hostid = zone_get_hostid(NULL); spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms); spa_set_deadman_failmode(spa, zfs_deadman_failmode); zfs_refcount_create(&spa->spa_refcount); spa_config_lock_init(spa); spa_stats_init(spa); avl_add(&spa_namespace_avl, spa); /* * Set the alternate root, if there is one. */ if (altroot) spa->spa_root = spa_strdup(altroot); spa->spa_alloc_count = spa_allocators; spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count * sizeof (kmutex_t), KM_SLEEP); spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count * sizeof (avl_tree_t), KM_SLEEP); for (int i = 0; i < spa->spa_alloc_count; i++) { mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL); avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare, sizeof (zio_t), offsetof(zio_t, io_alloc_node)); } avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed, sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node)); avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg, sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node)); list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t), offsetof(log_summary_entry_t, lse_node)); /* * Every pool starts with the default cachefile */ list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), offsetof(spa_config_dirent_t, scd_link)); dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); list_insert_head(&spa->spa_config_list, dp); VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, KM_SLEEP) == 0); if (config != NULL) { nvlist_t *features; if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, &features) == 0) { VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); } VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); } if (spa->spa_label_features == NULL) { VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, KM_SLEEP) == 0); } spa->spa_min_ashift = INT_MAX; spa->spa_max_ashift = 0; /* Reset cached value */ spa->spa_dedup_dspace = ~0ULL; /* * As a pool is being created, treat all features as disabled by * setting SPA_FEATURE_DISABLED for all entries in the feature * refcount cache. */ for (int i = 0; i < SPA_FEATURES; i++) { spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; } list_create(&spa->spa_leaf_list, sizeof (vdev_t), offsetof(vdev_t, vdev_leaf_node)); return (spa); } /* * Removes a spa_t from the namespace, freeing up any memory used. Requires * spa_namespace_lock. This is called only after the spa_t has been closed and * deactivated. */ void spa_remove(spa_t *spa) { spa_config_dirent_t *dp; ASSERT(MUTEX_HELD(&spa_namespace_lock)); ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED); ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0); ASSERT0(spa->spa_waiters); nvlist_free(spa->spa_config_splitting); avl_remove(&spa_namespace_avl, spa); cv_broadcast(&spa_namespace_cv); if (spa->spa_root) spa_strfree(spa->spa_root); while ((dp = list_head(&spa->spa_config_list)) != NULL) { list_remove(&spa->spa_config_list, dp); if (dp->scd_path != NULL) spa_strfree(dp->scd_path); kmem_free(dp, sizeof (spa_config_dirent_t)); } for (int i = 0; i < spa->spa_alloc_count; i++) { avl_destroy(&spa->spa_alloc_trees[i]); mutex_destroy(&spa->spa_alloc_locks[i]); } kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count * sizeof (kmutex_t)); kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count * sizeof (avl_tree_t)); avl_destroy(&spa->spa_metaslabs_by_flushed); avl_destroy(&spa->spa_sm_logs_by_txg); list_destroy(&spa->spa_log_summary); list_destroy(&spa->spa_config_list); list_destroy(&spa->spa_leaf_list); nvlist_free(spa->spa_label_features); nvlist_free(spa->spa_load_info); nvlist_free(spa->spa_feat_stats); spa_config_set(spa, NULL); zfs_refcount_destroy(&spa->spa_refcount); spa_stats_destroy(spa); spa_config_lock_destroy(spa); for (int t = 0; t < TXG_SIZE; t++) bplist_destroy(&spa->spa_free_bplist[t]); zio_checksum_templates_free(spa); cv_destroy(&spa->spa_async_cv); cv_destroy(&spa->spa_evicting_os_cv); cv_destroy(&spa->spa_proc_cv); cv_destroy(&spa->spa_scrub_io_cv); cv_destroy(&spa->spa_suspend_cv); cv_destroy(&spa->spa_activities_cv); cv_destroy(&spa->spa_waiters_cv); mutex_destroy(&spa->spa_flushed_ms_lock); mutex_destroy(&spa->spa_async_lock); mutex_destroy(&spa->spa_errlist_lock); mutex_destroy(&spa->spa_errlog_lock); mutex_destroy(&spa->spa_evicting_os_lock); mutex_destroy(&spa->spa_history_lock); mutex_destroy(&spa->spa_proc_lock); mutex_destroy(&spa->spa_props_lock); mutex_destroy(&spa->spa_cksum_tmpls_lock); mutex_destroy(&spa->spa_scrub_lock); mutex_destroy(&spa->spa_suspend_lock); mutex_destroy(&spa->spa_vdev_top_lock); mutex_destroy(&spa->spa_feat_stats_lock); mutex_destroy(&spa->spa_activities_lock); kmem_free(spa, sizeof (spa_t)); } /* * Given a pool, return the next pool in the namespace, or NULL if there is * none. If 'prev' is NULL, return the first pool. */ spa_t * spa_next(spa_t *prev) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); if (prev) return (AVL_NEXT(&spa_namespace_avl, prev)); else return (avl_first(&spa_namespace_avl)); } /* * ========================================================================== * SPA refcount functions * ========================================================================== */ /* * Add a reference to the given spa_t. Must have at least one reference, or * have the namespace lock held. */ void spa_open_ref(spa_t *spa, void *tag) { ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref || MUTEX_HELD(&spa_namespace_lock)); (void) zfs_refcount_add(&spa->spa_refcount, tag); } /* * Remove a reference to the given spa_t. Must have at least one reference, or * have the namespace lock held. */ void spa_close(spa_t *spa, void *tag) { ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref || MUTEX_HELD(&spa_namespace_lock)); (void) zfs_refcount_remove(&spa->spa_refcount, tag); } /* * Remove a reference to the given spa_t held by a dsl dir that is * being asynchronously released. Async releases occur from a taskq * performing eviction of dsl datasets and dirs. The namespace lock * isn't held and the hold by the object being evicted may contribute to * spa_minref (e.g. dataset or directory released during pool export), * so the asserts in spa_close() do not apply. */ void spa_async_close(spa_t *spa, void *tag) { (void) zfs_refcount_remove(&spa->spa_refcount, tag); } /* * Check to see if the spa refcount is zero. Must be called with * spa_namespace_lock held. We really compare against spa_minref, which is the * number of references acquired when opening a pool */ boolean_t spa_refcount_zero(spa_t *spa) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref); } /* * ========================================================================== * SPA spare and l2cache tracking * ========================================================================== */ /* * Hot spares and cache devices are tracked using the same code below, * for 'auxiliary' devices. */ typedef struct spa_aux { uint64_t aux_guid; uint64_t aux_pool; avl_node_t aux_avl; int aux_count; } spa_aux_t; static inline int spa_aux_compare(const void *a, const void *b) { const spa_aux_t *sa = (const spa_aux_t *)a; const spa_aux_t *sb = (const spa_aux_t *)b; return (AVL_CMP(sa->aux_guid, sb->aux_guid)); } void spa_aux_add(vdev_t *vd, avl_tree_t *avl) { avl_index_t where; spa_aux_t search; spa_aux_t *aux; search.aux_guid = vd->vdev_guid; if ((aux = avl_find(avl, &search, &where)) != NULL) { aux->aux_count++; } else { aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); aux->aux_guid = vd->vdev_guid; aux->aux_count = 1; avl_insert(avl, aux, where); } } void spa_aux_remove(vdev_t *vd, avl_tree_t *avl) { spa_aux_t search; spa_aux_t *aux; avl_index_t where; search.aux_guid = vd->vdev_guid; aux = avl_find(avl, &search, &where); ASSERT(aux != NULL); if (--aux->aux_count == 0) { avl_remove(avl, aux); kmem_free(aux, sizeof (spa_aux_t)); } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { aux->aux_pool = 0ULL; } } boolean_t spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) { spa_aux_t search, *found; search.aux_guid = guid; found = avl_find(avl, &search, NULL); if (pool) { if (found) *pool = found->aux_pool; else *pool = 0ULL; } if (refcnt) { if (found) *refcnt = found->aux_count; else *refcnt = 0; } return (found != NULL); } void spa_aux_activate(vdev_t *vd, avl_tree_t *avl) { spa_aux_t search, *found; avl_index_t where; search.aux_guid = vd->vdev_guid; found = avl_find(avl, &search, &where); ASSERT(found != NULL); ASSERT(found->aux_pool == 0ULL); found->aux_pool = spa_guid(vd->vdev_spa); } /* * Spares are tracked globally due to the following constraints: * * - A spare may be part of multiple pools. * - A spare may be added to a pool even if it's actively in use within * another pool. * - A spare in use in any pool can only be the source of a replacement if * the target is a spare in the same pool. * * We keep track of all spares on the system through the use of a reference * counted AVL tree. When a vdev is added as a spare, or used as a replacement * spare, then we bump the reference count in the AVL tree. In addition, we set * the 'vdev_isspare' member to indicate that the device is a spare (active or * inactive). When a spare is made active (used to replace a device in the * pool), we also keep track of which pool its been made a part of. * * The 'spa_spare_lock' protects the AVL tree. These functions are normally * called under the spa_namespace lock as part of vdev reconfiguration. The * separate spare lock exists for the status query path, which does not need to * be completely consistent with respect to other vdev configuration changes. */ static int spa_spare_compare(const void *a, const void *b) { return (spa_aux_compare(a, b)); } void spa_spare_add(vdev_t *vd) { mutex_enter(&spa_spare_lock); ASSERT(!vd->vdev_isspare); spa_aux_add(vd, &spa_spare_avl); vd->vdev_isspare = B_TRUE; mutex_exit(&spa_spare_lock); } void spa_spare_remove(vdev_t *vd) { mutex_enter(&spa_spare_lock); ASSERT(vd->vdev_isspare); spa_aux_remove(vd, &spa_spare_avl); vd->vdev_isspare = B_FALSE; mutex_exit(&spa_spare_lock); } boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) { boolean_t found; mutex_enter(&spa_spare_lock); found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); mutex_exit(&spa_spare_lock); return (found); } void spa_spare_activate(vdev_t *vd) { mutex_enter(&spa_spare_lock); ASSERT(vd->vdev_isspare); spa_aux_activate(vd, &spa_spare_avl); mutex_exit(&spa_spare_lock); } /* * Level 2 ARC devices are tracked globally for the same reasons as spares. * Cache devices currently only support one pool per cache device, and so * for these devices the aux reference count is currently unused beyond 1. */ static int spa_l2cache_compare(const void *a, const void *b) { return (spa_aux_compare(a, b)); } void spa_l2cache_add(vdev_t *vd) { mutex_enter(&spa_l2cache_lock); ASSERT(!vd->vdev_isl2cache); spa_aux_add(vd, &spa_l2cache_avl); vd->vdev_isl2cache = B_TRUE; mutex_exit(&spa_l2cache_lock); } void spa_l2cache_remove(vdev_t *vd) { mutex_enter(&spa_l2cache_lock); ASSERT(vd->vdev_isl2cache); spa_aux_remove(vd, &spa_l2cache_avl); vd->vdev_isl2cache = B_FALSE; mutex_exit(&spa_l2cache_lock); } boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool) { boolean_t found; mutex_enter(&spa_l2cache_lock); found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); mutex_exit(&spa_l2cache_lock); return (found); } void spa_l2cache_activate(vdev_t *vd) { mutex_enter(&spa_l2cache_lock); ASSERT(vd->vdev_isl2cache); spa_aux_activate(vd, &spa_l2cache_avl); mutex_exit(&spa_l2cache_lock); } /* * ========================================================================== * SPA vdev locking * ========================================================================== */ /* * Lock the given spa_t for the purpose of adding or removing a vdev. * Grabs the global spa_namespace_lock plus the spa config lock for writing. * It returns the next transaction group for the spa_t. */ uint64_t spa_vdev_enter(spa_t *spa) { mutex_enter(&spa->spa_vdev_top_lock); mutex_enter(&spa_namespace_lock); vdev_autotrim_stop_all(spa); return (spa_vdev_config_enter(spa)); } /* * Internal implementation for spa_vdev_enter(). Used when a vdev * operation requires multiple syncs (i.e. removing a device) while * keeping the spa_namespace_lock held. */ uint64_t spa_vdev_config_enter(spa_t *spa) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); return (spa_last_synced_txg(spa) + 1); } /* * Used in combination with spa_vdev_config_enter() to allow the syncing * of multiple transactions without releasing the spa_namespace_lock. */ void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); int config_changed = B_FALSE; ASSERT(txg > spa_last_synced_txg(spa)); spa->spa_pending_vdev = NULL; /* * Reassess the DTLs. */ vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { config_changed = B_TRUE; spa->spa_config_generation++; } /* * Verify the metaslab classes. */ ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0); ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0); spa_config_exit(spa, SCL_ALL, spa); /* * Panic the system if the specified tag requires it. This * is useful for ensuring that configurations are updated * transactionally. */ if (zio_injection_enabled) zio_handle_panic_injection(spa, tag, 0); /* * Note: this txg_wait_synced() is important because it ensures * that there won't be more than one config change per txg. * This allows us to use the txg as the generation number. */ if (error == 0) txg_wait_synced(spa->spa_dsl_pool, txg); if (vd != NULL) { ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); if (vd->vdev_ops->vdev_op_leaf) { mutex_enter(&vd->vdev_initialize_lock); vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, NULL); mutex_exit(&vd->vdev_initialize_lock); mutex_enter(&vd->vdev_trim_lock); vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); mutex_exit(&vd->vdev_trim_lock); } /* * The vdev may be both a leaf and top-level device. */ vdev_autotrim_stop_wait(vd); spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); vdev_free(vd); spa_config_exit(spa, SCL_ALL, spa); } /* * If the config changed, update the config cache. */ if (config_changed) spa_write_cachefile(spa, B_FALSE, B_TRUE); } /* * Unlock the spa_t after adding or removing a vdev. Besides undoing the * locking of spa_vdev_enter(), we also want make sure the transactions have * synced to disk, and then update the global configuration cache with the new * information. */ int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) { vdev_autotrim_restart(spa); spa_vdev_config_exit(spa, vd, txg, error, FTAG); mutex_exit(&spa_namespace_lock); mutex_exit(&spa->spa_vdev_top_lock); return (error); } /* * Lock the given spa_t for the purpose of changing vdev state. */ void spa_vdev_state_enter(spa_t *spa, int oplocks) { int locks = SCL_STATE_ALL | oplocks; /* * Root pools may need to read of the underlying devfs filesystem * when opening up a vdev. Unfortunately if we're holding the * SCL_ZIO lock it will result in a deadlock when we try to issue * the read from the root filesystem. Instead we "prefetch" * the associated vnodes that we need prior to opening the * underlying devices and cache them so that we can prevent * any I/O when we are doing the actual open. */ if (spa_is_root(spa)) { int low = locks & ~(SCL_ZIO - 1); int high = locks & ~low; spa_config_enter(spa, high, spa, RW_WRITER); vdev_hold(spa->spa_root_vdev); spa_config_enter(spa, low, spa, RW_WRITER); } else { spa_config_enter(spa, locks, spa, RW_WRITER); } spa->spa_vdev_locks = locks; } int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) { boolean_t config_changed = B_FALSE; vdev_t *vdev_top; if (vd == NULL || vd == spa->spa_root_vdev) { vdev_top = spa->spa_root_vdev; } else { vdev_top = vd->vdev_top; } if (vd != NULL || error == 0) vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE); if (vd != NULL) { if (vd != spa->spa_root_vdev) vdev_state_dirty(vdev_top); config_changed = B_TRUE; spa->spa_config_generation++; } if (spa_is_root(spa)) vdev_rele(spa->spa_root_vdev); ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); spa_config_exit(spa, spa->spa_vdev_locks, spa); /* * If anything changed, wait for it to sync. This ensures that, * from the system administrator's perspective, zpool(1M) commands * are synchronous. This is important for things like zpool offline: * when the command completes, you expect no further I/O from ZFS. */ if (vd != NULL) txg_wait_synced(spa->spa_dsl_pool, 0); /* * If the config changed, update the config cache. */ if (config_changed) { mutex_enter(&spa_namespace_lock); spa_write_cachefile(spa, B_FALSE, B_TRUE); mutex_exit(&spa_namespace_lock); } return (error); } /* * ========================================================================== * Miscellaneous functions * ========================================================================== */ void spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) { if (!nvlist_exists(spa->spa_label_features, feature)) { fnvlist_add_boolean(spa->spa_label_features, feature); /* * When we are creating the pool (tx_txg==TXG_INITIAL), we can't * dirty the vdev config because lock SCL_CONFIG is not held. * Thankfully, in this case we don't need to dirty the config * because it will be written out anyway when we finish * creating the pool. */ if (tx->tx_txg != TXG_INITIAL) vdev_config_dirty(spa->spa_root_vdev); } } void spa_deactivate_mos_feature(spa_t *spa, const char *feature) { if (nvlist_remove_all(spa->spa_label_features, feature) == 0) vdev_config_dirty(spa->spa_root_vdev); } /* * Return the spa_t associated with given pool_guid, if it exists. If * device_guid is non-zero, determine whether the pool exists *and* contains * a device with the specified device_guid. */ spa_t * spa_by_guid(uint64_t pool_guid, uint64_t device_guid) { spa_t *spa; avl_tree_t *t = &spa_namespace_avl; ASSERT(MUTEX_HELD(&spa_namespace_lock)); for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { if (spa->spa_state == POOL_STATE_UNINITIALIZED) continue; if (spa->spa_root_vdev == NULL) continue; if (spa_guid(spa) == pool_guid) { if (device_guid == 0) break; if (vdev_lookup_by_guid(spa->spa_root_vdev, device_guid) != NULL) break; /* * Check any devices we may be in the process of adding. */ if (spa->spa_pending_vdev) { if (vdev_lookup_by_guid(spa->spa_pending_vdev, device_guid) != NULL) break; } } } return (spa); } /* * Determine whether a pool with the given pool_guid exists. */ boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) { return (spa_by_guid(pool_guid, device_guid) != NULL); } char * spa_strdup(const char *s) { size_t len; char *new; len = strlen(s); new = kmem_alloc(len + 1, KM_SLEEP); bcopy(s, new, len); new[len] = '\0'; return (new); } void spa_strfree(char *s) { kmem_free(s, strlen(s) + 1); } uint64_t spa_get_random(uint64_t range) { uint64_t r; ASSERT(range != 0); if (range == 1) return (0); (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); return (r % range); } uint64_t spa_generate_guid(spa_t *spa) { uint64_t guid = spa_get_random(-1ULL); if (spa != NULL) { while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) guid = spa_get_random(-1ULL); } else { while (guid == 0 || spa_guid_exists(guid, 0)) guid = spa_get_random(-1ULL); } return (guid); } void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) { char type[256]; char *checksum = NULL; char *compress = NULL; if (bp != NULL) { if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { dmu_object_byteswap_t bswap = DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); (void) snprintf(type, sizeof (type), "bswap %s %s", DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? "metadata" : "data", dmu_ot_byteswap[bswap].ob_name); } else { (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, sizeof (type)); } if (!BP_IS_EMBEDDED(bp)) { checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; } compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; } SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum, compress); } void spa_freeze(spa_t *spa) { uint64_t freeze_txg = 0; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); if (spa->spa_freeze_txg == UINT64_MAX) { freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; spa->spa_freeze_txg = freeze_txg; } spa_config_exit(spa, SCL_ALL, FTAG); if (freeze_txg != 0) txg_wait_synced(spa_get_dsl(spa), freeze_txg); } void zfs_panic_recover(const char *fmt, ...) { va_list adx; va_start(adx, fmt); vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); va_end(adx); } /* * This is a stripped-down version of strtoull, suitable only for converting * lowercase hexadecimal numbers that don't overflow. */ uint64_t zfs_strtonum(const char *str, char **nptr) { uint64_t val = 0; char c; int digit; while ((c = *str) != '\0') { if (c >= '0' && c <= '9') digit = c - '0'; else if (c >= 'a' && c <= 'f') digit = 10 + c - 'a'; else break; val *= 16; val += digit; str++; } if (nptr) *nptr = (char *)str; return (val); } void spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx) { /* * We bump the feature refcount for each special vdev added to the pool */ ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)); spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx); } /* * ========================================================================== * Accessor functions * ========================================================================== */ boolean_t spa_shutting_down(spa_t *spa) { return (spa->spa_async_suspended); } dsl_pool_t * spa_get_dsl(spa_t *spa) { return (spa->spa_dsl_pool); } boolean_t spa_is_initializing(spa_t *spa) { return (spa->spa_is_initializing); } boolean_t spa_indirect_vdevs_loaded(spa_t *spa) { return (spa->spa_indirect_vdevs_loaded); } blkptr_t * spa_get_rootblkptr(spa_t *spa) { return (&spa->spa_ubsync.ub_rootbp); } void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) { spa->spa_uberblock.ub_rootbp = *bp; } void spa_altroot(spa_t *spa, char *buf, size_t buflen) { if (spa->spa_root == NULL) buf[0] = '\0'; else (void) strncpy(buf, spa->spa_root, buflen); } int spa_sync_pass(spa_t *spa) { return (spa->spa_sync_pass); } char * spa_name(spa_t *spa) { return (spa->spa_name); } uint64_t spa_guid(spa_t *spa) { dsl_pool_t *dp = spa_get_dsl(spa); uint64_t guid; /* * If we fail to parse the config during spa_load(), we can go through * the error path (which posts an ereport) and end up here with no root * vdev. We stash the original pool guid in 'spa_config_guid' to handle * this case. */ if (spa->spa_root_vdev == NULL) return (spa->spa_config_guid); guid = spa->spa_last_synced_guid != 0 ? spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; /* * Return the most recently synced out guid unless we're * in syncing context. */ if (dp && dsl_pool_sync_context(dp)) return (spa->spa_root_vdev->vdev_guid); else return (guid); } uint64_t spa_load_guid(spa_t *spa) { /* * This is a GUID that exists solely as a reference for the * purposes of the arc. It is generated at load time, and * is never written to persistent storage. */ return (spa->spa_load_guid); } uint64_t spa_last_synced_txg(spa_t *spa) { return (spa->spa_ubsync.ub_txg); } uint64_t spa_first_txg(spa_t *spa) { return (spa->spa_first_txg); } uint64_t spa_syncing_txg(spa_t *spa) { return (spa->spa_syncing_txg); } /* * Return the last txg where data can be dirtied. The final txgs * will be used to just clear out any deferred frees that remain. */ uint64_t spa_final_dirty_txg(spa_t *spa) { return (spa->spa_final_txg - TXG_DEFER_SIZE); } pool_state_t spa_state(spa_t *spa) { return (spa->spa_state); } spa_load_state_t spa_load_state(spa_t *spa) { return (spa->spa_load_state); } uint64_t spa_freeze_txg(spa_t *spa) { return (spa->spa_freeze_txg); } /* * Return the inflated asize for a logical write in bytes. This is used by the * DMU to calculate the space a logical write will require on disk. * If lsize is smaller than the largest physical block size allocatable on this * pool we use its value instead, since the write will end up using the whole * block anyway. */ uint64_t spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) { if (lsize == 0) return (0); /* No inflation needed */ return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation); } /* * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%), * or at least 128MB, unless that would cause it to be more than half the * pool size. * * See the comment above spa_slop_shift for details. */ uint64_t spa_get_slop_space(spa_t *spa) { uint64_t space = spa_get_dspace(spa); return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop))); } uint64_t spa_get_dspace(spa_t *spa) { return (spa->spa_dspace); } uint64_t spa_get_checkpoint_space(spa_t *spa) { return (spa->spa_checkpoint_info.sci_dspace); } void spa_update_dspace(spa_t *spa) { spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + ddt_get_dedup_dspace(spa); if (spa->spa_vdev_removal != NULL) { /* * We can't allocate from the removing device, so * subtract its size. This prevents the DMU/DSL from * filling up the (now smaller) pool while we are in the * middle of removing the device. * * Note that the DMU/DSL doesn't actually know or care * how much space is allocated (it does its own tracking * of how much space has been logically used). So it * doesn't matter that the data we are moving may be * allocated twice (on the old device and the new * device). */ spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id); spa->spa_dspace -= spa_deflate(spa) ? vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; spa_config_exit(spa, SCL_VDEV, FTAG); } } /* * Return the failure mode that has been set to this pool. The default * behavior will be to block all I/Os when a complete failure occurs. */ uint64_t spa_get_failmode(spa_t *spa) { return (spa->spa_failmode); } boolean_t spa_suspended(spa_t *spa) { return (spa->spa_suspended != ZIO_SUSPEND_NONE); } uint64_t spa_version(spa_t *spa) { return (spa->spa_ubsync.ub_version); } boolean_t spa_deflate(spa_t *spa) { return (spa->spa_deflate); } metaslab_class_t * spa_normal_class(spa_t *spa) { return (spa->spa_normal_class); } metaslab_class_t * spa_log_class(spa_t *spa) { return (spa->spa_log_class); } metaslab_class_t * spa_special_class(spa_t *spa) { return (spa->spa_special_class); } metaslab_class_t * spa_dedup_class(spa_t *spa) { return (spa->spa_dedup_class); } /* * Locate an appropriate allocation class */ metaslab_class_t * spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype, uint_t level, uint_t special_smallblk) { if (DMU_OT_IS_ZIL(objtype)) { if (spa->spa_log_class->mc_groups != 0) return (spa_log_class(spa)); else return (spa_normal_class(spa)); } boolean_t has_special_class = spa->spa_special_class->mc_groups != 0; if (DMU_OT_IS_DDT(objtype)) { if (spa->spa_dedup_class->mc_groups != 0) return (spa_dedup_class(spa)); else if (has_special_class && zfs_ddt_data_is_special) return (spa_special_class(spa)); else return (spa_normal_class(spa)); } /* Indirect blocks for user data can land in special if allowed */ if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) { if (has_special_class && zfs_user_indirect_is_special) return (spa_special_class(spa)); else return (spa_normal_class(spa)); } if (DMU_OT_IS_METADATA(objtype) || level > 0) { if (has_special_class) return (spa_special_class(spa)); else return (spa_normal_class(spa)); } /* * Allow small file blocks in special class in some cases (like * for the dRAID vdev feature). But always leave a reserve of * zfs_special_class_metadata_reserve_pct exclusively for metadata. */ if (DMU_OT_IS_FILE(objtype) && has_special_class && size <= special_smallblk) { metaslab_class_t *special = spa_special_class(spa); uint64_t alloc = metaslab_class_get_alloc(special); uint64_t space = metaslab_class_get_space(special); uint64_t limit = (space * (100 - zfs_special_class_metadata_reserve_pct)) / 100; if (alloc < limit) return (special); } return (spa_normal_class(spa)); } void spa_evicting_os_register(spa_t *spa, objset_t *os) { mutex_enter(&spa->spa_evicting_os_lock); list_insert_head(&spa->spa_evicting_os_list, os); mutex_exit(&spa->spa_evicting_os_lock); } void spa_evicting_os_deregister(spa_t *spa, objset_t *os) { mutex_enter(&spa->spa_evicting_os_lock); list_remove(&spa->spa_evicting_os_list, os); cv_broadcast(&spa->spa_evicting_os_cv); mutex_exit(&spa->spa_evicting_os_lock); } void spa_evicting_os_wait(spa_t *spa) { mutex_enter(&spa->spa_evicting_os_lock); while (!list_is_empty(&spa->spa_evicting_os_list)) cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); mutex_exit(&spa->spa_evicting_os_lock); dmu_buf_user_evict_wait(); } int spa_max_replication(spa_t *spa) { /* * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to * handle BPs with more than one DVA allocated. Set our max * replication level accordingly. */ if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) return (1); return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); } int spa_prev_software_version(spa_t *spa) { return (spa->spa_prev_software_version); } uint64_t spa_deadman_synctime(spa_t *spa) { return (spa->spa_deadman_synctime); } spa_autotrim_t spa_get_autotrim(spa_t *spa) { return (spa->spa_autotrim); } uint64_t spa_deadman_ziotime(spa_t *spa) { return (spa->spa_deadman_ziotime); } uint64_t spa_get_deadman_failmode(spa_t *spa) { return (spa->spa_deadman_failmode); } void spa_set_deadman_failmode(spa_t *spa, const char *failmode) { if (strcmp(failmode, "wait") == 0) spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; else if (strcmp(failmode, "continue") == 0) spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE; else if (strcmp(failmode, "panic") == 0) spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC; else spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; } uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva) { uint64_t asize = DVA_GET_ASIZE(dva); uint64_t dsize = asize; ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); if (asize != 0 && spa->spa_deflate) { vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); if (vd != NULL) dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; } return (dsize); } uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) { uint64_t dsize = 0; for (int d = 0; d < BP_GET_NDVAS(bp); d++) dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); return (dsize); } uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp) { uint64_t dsize = 0; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); for (int d = 0; d < BP_GET_NDVAS(bp); d++) dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); spa_config_exit(spa, SCL_VDEV, FTAG); return (dsize); } uint64_t spa_dirty_data(spa_t *spa) { return (spa->spa_dsl_pool->dp_dirty_total); } /* * ========================================================================== * SPA Import Progress Routines * ========================================================================== */ typedef struct spa_import_progress { uint64_t pool_guid; /* unique id for updates */ char *pool_name; spa_load_state_t spa_load_state; uint64_t mmp_sec_remaining; /* MMP activity check */ uint64_t spa_load_max_txg; /* rewind txg */ procfs_list_node_t smh_node; } spa_import_progress_t; spa_history_list_t *spa_import_progress_list = NULL; static int spa_import_progress_show_header(struct seq_file *f) { seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid", "load_state", "multihost_secs", "max_txg", "pool_name"); return (0); } static int spa_import_progress_show(struct seq_file *f, void *data) { spa_import_progress_t *sip = (spa_import_progress_t *)data; seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n", (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state, (u_longlong_t)sip->mmp_sec_remaining, (u_longlong_t)sip->spa_load_max_txg, (sip->pool_name ? sip->pool_name : "-")); return (0); } /* Remove oldest elements from list until there are no more than 'size' left */ static void spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size) { spa_import_progress_t *sip; while (shl->size > size) { sip = list_remove_head(&shl->procfs_list.pl_list); if (sip->pool_name) spa_strfree(sip->pool_name); kmem_free(sip, sizeof (spa_import_progress_t)); shl->size--; } IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list)); } static void spa_import_progress_init(void) { spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t), KM_SLEEP); spa_import_progress_list->size = 0; spa_import_progress_list->procfs_list.pl_private = spa_import_progress_list; procfs_list_install("zfs", "import_progress", 0644, &spa_import_progress_list->procfs_list, spa_import_progress_show, spa_import_progress_show_header, NULL, offsetof(spa_import_progress_t, smh_node)); } static void spa_import_progress_destroy(void) { spa_history_list_t *shl = spa_import_progress_list; procfs_list_uninstall(&shl->procfs_list); spa_import_progress_truncate(shl, 0); procfs_list_destroy(&shl->procfs_list); kmem_free(shl, sizeof (spa_history_list_t)); } int spa_import_progress_set_state(uint64_t pool_guid, spa_load_state_t load_state) { spa_history_list_t *shl = spa_import_progress_list; spa_import_progress_t *sip; int error = ENOENT; if (shl->size == 0) return (0); mutex_enter(&shl->procfs_list.pl_lock); for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; sip = list_prev(&shl->procfs_list.pl_list, sip)) { if (sip->pool_guid == pool_guid) { sip->spa_load_state = load_state; error = 0; break; } } mutex_exit(&shl->procfs_list.pl_lock); return (error); } int spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg) { spa_history_list_t *shl = spa_import_progress_list; spa_import_progress_t *sip; int error = ENOENT; if (shl->size == 0) return (0); mutex_enter(&shl->procfs_list.pl_lock); for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; sip = list_prev(&shl->procfs_list.pl_list, sip)) { if (sip->pool_guid == pool_guid) { sip->spa_load_max_txg = load_max_txg; error = 0; break; } } mutex_exit(&shl->procfs_list.pl_lock); return (error); } int spa_import_progress_set_mmp_check(uint64_t pool_guid, uint64_t mmp_sec_remaining) { spa_history_list_t *shl = spa_import_progress_list; spa_import_progress_t *sip; int error = ENOENT; if (shl->size == 0) return (0); mutex_enter(&shl->procfs_list.pl_lock); for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; sip = list_prev(&shl->procfs_list.pl_list, sip)) { if (sip->pool_guid == pool_guid) { sip->mmp_sec_remaining = mmp_sec_remaining; error = 0; break; } } mutex_exit(&shl->procfs_list.pl_lock); return (error); } /* * A new import is in progress, add an entry. */ void spa_import_progress_add(spa_t *spa) { spa_history_list_t *shl = spa_import_progress_list; spa_import_progress_t *sip; char *poolname = NULL; sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP); sip->pool_guid = spa_guid(spa); (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME, &poolname); if (poolname == NULL) poolname = spa_name(spa); sip->pool_name = spa_strdup(poolname); sip->spa_load_state = spa_load_state(spa); mutex_enter(&shl->procfs_list.pl_lock); procfs_list_add(&shl->procfs_list, sip); shl->size++; mutex_exit(&shl->procfs_list.pl_lock); } void spa_import_progress_remove(uint64_t pool_guid) { spa_history_list_t *shl = spa_import_progress_list; spa_import_progress_t *sip; mutex_enter(&shl->procfs_list.pl_lock); for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; sip = list_prev(&shl->procfs_list.pl_list, sip)) { if (sip->pool_guid == pool_guid) { if (sip->pool_name) spa_strfree(sip->pool_name); list_remove(&shl->procfs_list.pl_list, sip); shl->size--; kmem_free(sip, sizeof (spa_import_progress_t)); break; } } mutex_exit(&shl->procfs_list.pl_lock); } /* * ========================================================================== * Initialization and Termination * ========================================================================== */ static int spa_name_compare(const void *a1, const void *a2) { const spa_t *s1 = a1; const spa_t *s2 = a2; int s; s = strcmp(s1->spa_name, s2->spa_name); return (AVL_ISIGN(s)); } void spa_boot_init(void) { spa_config_load(); } void spa_init(int mode) { mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), offsetof(spa_t, spa_avl)); avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), offsetof(spa_aux_t, aux_avl)); avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), offsetof(spa_aux_t, aux_avl)); spa_mode_global = mode; #ifndef _KERNEL if (spa_mode_global != FREAD && dprintf_find_string("watch")) { struct sigaction sa; sa.sa_flags = SA_SIGINFO; sigemptyset(&sa.sa_mask); sa.sa_sigaction = arc_buf_sigsegv; if (sigaction(SIGSEGV, &sa, NULL) == -1) { perror("could not enable watchpoints: " "sigaction(SIGSEGV, ...) = "); } else { arc_watch = B_TRUE; } } #endif fm_init(); zfs_refcount_init(); unique_init(); range_tree_init(); metaslab_alloc_trace_init(); ddt_init(); zio_init(); dmu_init(); zil_init(); vdev_cache_stat_init(); vdev_mirror_stat_init(); vdev_raidz_math_init(); vdev_file_init(); zfs_prop_init(); zpool_prop_init(); zpool_feature_init(); spa_config_load(); l2arc_start(); scan_init(); qat_init(); spa_import_progress_init(); } void spa_fini(void) { l2arc_stop(); spa_evict_all(); vdev_file_fini(); vdev_cache_stat_fini(); vdev_mirror_stat_fini(); vdev_raidz_math_fini(); zil_fini(); dmu_fini(); zio_fini(); ddt_fini(); metaslab_alloc_trace_fini(); range_tree_fini(); unique_fini(); zfs_refcount_fini(); fm_fini(); scan_fini(); qat_fini(); spa_import_progress_destroy(); avl_destroy(&spa_namespace_avl); avl_destroy(&spa_spare_avl); avl_destroy(&spa_l2cache_avl); cv_destroy(&spa_namespace_cv); mutex_destroy(&spa_namespace_lock); mutex_destroy(&spa_spare_lock); mutex_destroy(&spa_l2cache_lock); } /* * Return whether this pool has slogs. No locking needed. * It's not a problem if the wrong answer is returned as it's only for * performance and not correctness */ boolean_t spa_has_slogs(spa_t *spa) { return (spa->spa_log_class->mc_rotor != NULL); } spa_log_state_t spa_get_log_state(spa_t *spa) { return (spa->spa_log_state); } void spa_set_log_state(spa_t *spa, spa_log_state_t state) { spa->spa_log_state = state; } boolean_t spa_is_root(spa_t *spa) { return (spa->spa_is_root); } boolean_t spa_writeable(spa_t *spa) { return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config); } /* * Returns true if there is a pending sync task in any of the current * syncing txg, the current quiescing txg, or the current open txg. */ boolean_t spa_has_pending_synctask(spa_t *spa) { return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) || !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks)); } int spa_mode(spa_t *spa) { return (spa->spa_mode); } uint64_t spa_bootfs(spa_t *spa) { return (spa->spa_bootfs); } uint64_t spa_delegation(spa_t *spa) { return (spa->spa_delegation); } objset_t * spa_meta_objset(spa_t *spa) { return (spa->spa_meta_objset); } enum zio_checksum spa_dedup_checksum(spa_t *spa) { return (spa->spa_dedup_checksum); } /* * Reset pool scan stat per scan pass (or reboot). */ void spa_scan_stat_init(spa_t *spa) { /* data not stored on disk */ spa->spa_scan_pass_start = gethrestime_sec(); if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; else spa->spa_scan_pass_scrub_pause = 0; spa->spa_scan_pass_scrub_spent_paused = 0; spa->spa_scan_pass_exam = 0; spa->spa_scan_pass_issued = 0; vdev_scan_stat_init(spa->spa_root_vdev); } /* * Get scan stats for zpool status reports */ int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) { dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) return (SET_ERROR(ENOENT)); bzero(ps, sizeof (pool_scan_stat_t)); /* data stored on disk */ ps->pss_func = scn->scn_phys.scn_func; ps->pss_state = scn->scn_phys.scn_state; ps->pss_start_time = scn->scn_phys.scn_start_time; ps->pss_end_time = scn->scn_phys.scn_end_time; ps->pss_to_examine = scn->scn_phys.scn_to_examine; ps->pss_examined = scn->scn_phys.scn_examined; ps->pss_to_process = scn->scn_phys.scn_to_process; ps->pss_processed = scn->scn_phys.scn_processed; ps->pss_errors = scn->scn_phys.scn_errors; /* data not stored on disk */ ps->pss_pass_exam = spa->spa_scan_pass_exam; ps->pss_pass_start = spa->spa_scan_pass_start; ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; ps->pss_pass_issued = spa->spa_scan_pass_issued; ps->pss_issued = scn->scn_issued_before_pass + spa->spa_scan_pass_issued; return (0); } int spa_maxblocksize(spa_t *spa) { if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) return (SPA_MAXBLOCKSIZE); else return (SPA_OLD_MAXBLOCKSIZE); } /* * Returns the txg that the last device removal completed. No indirect mappings * have been added since this txg. */ uint64_t spa_get_last_removal_txg(spa_t *spa) { uint64_t vdevid; uint64_t ret = -1ULL; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); /* * sr_prev_indirect_vdev is only modified while holding all the * config locks, so it is sufficient to hold SCL_VDEV as reader when * examining it. */ vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; while (vdevid != -1ULL) { vdev_t *vd = vdev_lookup_top(spa, vdevid); vdev_indirect_births_t *vib = vd->vdev_indirect_births; ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); /* * If the removal did not remap any data, we don't care. */ if (vdev_indirect_births_count(vib) != 0) { ret = vdev_indirect_births_last_entry_txg(vib); break; } vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; } spa_config_exit(spa, SCL_VDEV, FTAG); IMPLY(ret != -1ULL, spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); return (ret); } int spa_maxdnodesize(spa_t *spa) { if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) return (DNODE_MAX_SIZE); else return (DNODE_MIN_SIZE); } boolean_t spa_multihost(spa_t *spa) { return (spa->spa_multihost ? B_TRUE : B_FALSE); } uint32_t spa_get_hostid(spa_t *spa) { return (spa->spa_hostid); } boolean_t spa_trust_config(spa_t *spa) { return (spa->spa_trust_config); } uint64_t spa_missing_tvds_allowed(spa_t *spa) { return (spa->spa_missing_tvds_allowed); } space_map_t * spa_syncing_log_sm(spa_t *spa) { return (spa->spa_syncing_log_sm); } void spa_set_missing_tvds(spa_t *spa, uint64_t missing) { spa->spa_missing_tvds = missing; } /* * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc). */ const char * spa_state_to_name(spa_t *spa) { ASSERT3P(spa, !=, NULL); /* * it is possible for the spa to exist, without root vdev * as the spa transitions during import/export */ vdev_t *rvd = spa->spa_root_vdev; if (rvd == NULL) { return ("TRANSITIONING"); } vdev_state_t state = rvd->vdev_state; vdev_aux_t aux = rvd->vdev_stat.vs_aux; if (spa_suspended(spa) && (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)) return ("SUSPENDED"); switch (state) { case VDEV_STATE_CLOSED: case VDEV_STATE_OFFLINE: return ("OFFLINE"); case VDEV_STATE_REMOVED: return ("REMOVED"); case VDEV_STATE_CANT_OPEN: if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG) return ("FAULTED"); else if (aux == VDEV_AUX_SPLIT_POOL) return ("SPLIT"); else return ("UNAVAIL"); case VDEV_STATE_FAULTED: return ("FAULTED"); case VDEV_STATE_DEGRADED: return ("DEGRADED"); case VDEV_STATE_HEALTHY: return ("ONLINE"); default: break; } return ("UNKNOWN"); } boolean_t spa_top_vdevs_spacemap_addressable(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; for (uint64_t c = 0; c < rvd->vdev_children; c++) { if (!vdev_is_spacemap_addressable(rvd->vdev_child[c])) return (B_FALSE); } return (B_TRUE); } boolean_t spa_has_checkpoint(spa_t *spa) { return (spa->spa_checkpoint_txg != 0); } boolean_t spa_importing_readonly_checkpoint(spa_t *spa) { return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) && spa->spa_mode == FREAD); } uint64_t spa_min_claim_txg(spa_t *spa) { uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg; if (checkpoint_txg != 0) return (checkpoint_txg + 1); return (spa->spa_first_txg); } /* * If there is a checkpoint, async destroys may consume more space from * the pool instead of freeing it. In an attempt to save the pool from * getting suspended when it is about to run out of space, we stop * processing async destroys. */ boolean_t spa_suspend_async_destroy(spa_t *spa) { dsl_pool_t *dp = spa_get_dsl(spa); uint64_t unreserved = dsl_pool_unreserved_space(dp, ZFS_SPACE_CHECK_EXTRA_RESERVED); uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes; uint64_t avail = (unreserved > used) ? (unreserved - used) : 0; if (spa_has_checkpoint(spa) && avail == 0) return (B_TRUE); return (B_FALSE); } #if defined(_KERNEL) static int param_set_deadman_failmode(const char *val, zfs_kernel_param_t *kp) { spa_t *spa = NULL; char *p; if (val == NULL) return (SET_ERROR(-EINVAL)); if ((p = strchr(val, '\n')) != NULL) *p = '\0'; if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 && strcmp(val, "panic")) return (SET_ERROR(-EINVAL)); if (spa_mode_global != 0) { mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) spa_set_deadman_failmode(spa, val); mutex_exit(&spa_namespace_lock); } return (param_set_charp(val, kp)); } static int param_set_deadman_ziotime(const char *val, zfs_kernel_param_t *kp) { spa_t *spa = NULL; int error; error = param_set_ulong(val, kp); if (error < 0) return (SET_ERROR(error)); if (spa_mode_global != 0) { mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms); mutex_exit(&spa_namespace_lock); } return (0); } static int param_set_deadman_synctime(const char *val, zfs_kernel_param_t *kp) { spa_t *spa = NULL; int error; error = param_set_ulong(val, kp); if (error < 0) return (SET_ERROR(error)); if (spa_mode_global != 0) { mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); mutex_exit(&spa_namespace_lock); } return (0); } static int param_set_slop_shift(const char *buf, zfs_kernel_param_t *kp) { unsigned long val; int error; error = kstrtoul(buf, 0, &val); if (error) return (SET_ERROR(error)); if (val < 1 || val > 31) return (SET_ERROR(-EINVAL)); error = param_set_int(buf, kp); if (error < 0) return (SET_ERROR(error)); return (0); } #endif /* Namespace manipulation */ EXPORT_SYMBOL(spa_lookup); EXPORT_SYMBOL(spa_add); EXPORT_SYMBOL(spa_remove); EXPORT_SYMBOL(spa_next); /* Refcount functions */ EXPORT_SYMBOL(spa_open_ref); EXPORT_SYMBOL(spa_close); EXPORT_SYMBOL(spa_refcount_zero); /* Pool configuration lock */ EXPORT_SYMBOL(spa_config_tryenter); EXPORT_SYMBOL(spa_config_enter); EXPORT_SYMBOL(spa_config_exit); EXPORT_SYMBOL(spa_config_held); /* Pool vdev add/remove lock */ EXPORT_SYMBOL(spa_vdev_enter); EXPORT_SYMBOL(spa_vdev_exit); /* Pool vdev state change lock */ EXPORT_SYMBOL(spa_vdev_state_enter); EXPORT_SYMBOL(spa_vdev_state_exit); /* Accessor functions */ EXPORT_SYMBOL(spa_shutting_down); EXPORT_SYMBOL(spa_get_dsl); EXPORT_SYMBOL(spa_get_rootblkptr); EXPORT_SYMBOL(spa_set_rootblkptr); EXPORT_SYMBOL(spa_altroot); EXPORT_SYMBOL(spa_sync_pass); EXPORT_SYMBOL(spa_name); EXPORT_SYMBOL(spa_guid); EXPORT_SYMBOL(spa_last_synced_txg); EXPORT_SYMBOL(spa_first_txg); EXPORT_SYMBOL(spa_syncing_txg); EXPORT_SYMBOL(spa_version); EXPORT_SYMBOL(spa_state); EXPORT_SYMBOL(spa_load_state); EXPORT_SYMBOL(spa_freeze_txg); EXPORT_SYMBOL(spa_get_dspace); EXPORT_SYMBOL(spa_update_dspace); EXPORT_SYMBOL(spa_deflate); EXPORT_SYMBOL(spa_normal_class); EXPORT_SYMBOL(spa_log_class); EXPORT_SYMBOL(spa_special_class); EXPORT_SYMBOL(spa_preferred_class); EXPORT_SYMBOL(spa_max_replication); EXPORT_SYMBOL(spa_prev_software_version); EXPORT_SYMBOL(spa_get_failmode); EXPORT_SYMBOL(spa_suspended); EXPORT_SYMBOL(spa_bootfs); EXPORT_SYMBOL(spa_delegation); EXPORT_SYMBOL(spa_meta_objset); EXPORT_SYMBOL(spa_maxblocksize); EXPORT_SYMBOL(spa_maxdnodesize); /* Miscellaneous support routines */ EXPORT_SYMBOL(spa_guid_exists); EXPORT_SYMBOL(spa_strdup); EXPORT_SYMBOL(spa_strfree); EXPORT_SYMBOL(spa_get_random); EXPORT_SYMBOL(spa_generate_guid); EXPORT_SYMBOL(snprintf_blkptr); EXPORT_SYMBOL(spa_freeze); EXPORT_SYMBOL(spa_upgrade); EXPORT_SYMBOL(spa_evict_all); EXPORT_SYMBOL(spa_lookup_by_guid); EXPORT_SYMBOL(spa_has_spare); EXPORT_SYMBOL(dva_get_dsize_sync); EXPORT_SYMBOL(bp_get_dsize_sync); EXPORT_SYMBOL(bp_get_dsize); EXPORT_SYMBOL(spa_has_slogs); EXPORT_SYMBOL(spa_is_root); EXPORT_SYMBOL(spa_writeable); EXPORT_SYMBOL(spa_mode); EXPORT_SYMBOL(spa_namespace_lock); EXPORT_SYMBOL(spa_trust_config); EXPORT_SYMBOL(spa_missing_tvds_allowed); EXPORT_SYMBOL(spa_set_missing_tvds); EXPORT_SYMBOL(spa_state_to_name); EXPORT_SYMBOL(spa_importing_readonly_checkpoint); EXPORT_SYMBOL(spa_min_claim_txg); EXPORT_SYMBOL(spa_suspend_async_destroy); EXPORT_SYMBOL(spa_has_checkpoint); EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable); ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW, "Set additional debugging flags"); ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW, "Set to attempt to recover from fatal errors"); ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW, "Set to ignore IO errors during free and permanently leak the space"); ZFS_MODULE_PARAM(zfs, zfs_, deadman_checktime_ms, ULONG, ZMOD_RW, "Dead I/O check interval in milliseconds"); ZFS_MODULE_PARAM(zfs, zfs_, deadman_enabled, INT, ZMOD_RW, "Enable deadman timer"); ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, INT, ZMOD_RW, "SPA size estimate multiplication factor"); ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW, "Place DDT data into the special class"); ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW, "Place user data indirect blocks into the special class"); #ifdef _KERNEL module_param_call(zfs_deadman_synctime_ms, param_set_deadman_synctime, param_get_ulong, &zfs_deadman_synctime_ms, 0644); MODULE_PARM_DESC(zfs_deadman_synctime_ms, "Pool sync expiration time in milliseconds"); module_param_call(zfs_deadman_ziotime_ms, param_set_deadman_ziotime, param_get_ulong, &zfs_deadman_ziotime_ms, 0644); MODULE_PARM_DESC(zfs_deadman_ziotime_ms, "IO expiration time in milliseconds"); module_param_call(spa_slop_shift, param_set_slop_shift, param_get_int, &spa_slop_shift, 0644); MODULE_PARM_DESC(spa_slop_shift, "Reserved free space in pool"); module_param_call(zfs_deadman_failmode, param_set_deadman_failmode, param_get_charp, &zfs_deadman_failmode, 0644); MODULE_PARM_DESC(zfs_deadman_failmode, "Failmode for deadman timer"); #endif /* BEGIN CSTYLED */ ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, INT, ZMOD_RW, "Small file blocks in special vdevs depends on this much " "free space available"); /* END CSTYLED */