/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2020 by Delphix. All rights reserved. * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. * Copyright 2013 Saso Kiselkov. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2016 Toomas Soome * Copyright (c) 2016 Actifio, Inc. All rights reserved. * Copyright 2018 Joyent, Inc. * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. * Copyright 2017 Joyent, Inc. * Copyright (c) 2017, Intel Corporation. * Copyright (c) 2021, Colm Buckley */ /* * SPA: Storage Pool Allocator * * This file contains all the routines used when modifying on-disk SPA state. * This includes opening, importing, destroying, exporting a pool, and syncing a * pool. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #include #include #include #include #endif /* _KERNEL */ #include "zfs_prop.h" #include "zfs_comutil.h" /* * The interval, in seconds, at which failed configuration cache file writes * should be retried. */ int zfs_ccw_retry_interval = 300; typedef enum zti_modes { ZTI_MODE_FIXED, /* value is # of threads (min 1) */ ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */ ZTI_MODE_NULL, /* don't create a taskq */ ZTI_NMODES } zti_modes_t; #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 } #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 } #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } #define ZTI_N(n) ZTI_P(n, 1) #define ZTI_ONE ZTI_N(1) typedef struct zio_taskq_info { zti_modes_t zti_mode; uint_t zti_value; uint_t zti_count; } zio_taskq_info_t; static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { "iss", "iss_h", "int", "int_h" }; /* * This table defines the taskq settings for each ZFS I/O type. When * initializing a pool, we use this table to create an appropriately sized * taskq. Some operations are low volume and therefore have a small, static * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE * macros. Other operations process a large amount of data; the ZTI_BATCH * macro causes us to create a taskq oriented for throughput. Some operations * are so high frequency and short-lived that the taskq itself can become a * point of lock contention. The ZTI_P(#, #) macro indicates that we need an * additional degree of parallelism specified by the number of threads per- * taskq and the number of taskqs; when dispatching an event in this case, the * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH, * but with number of taskqs also scaling with number of CPUs. * * The different taskq priorities are to handle the different contexts (issue * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that * need to be handled with minimum delay. */ static const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */ { ZTI_BATCH, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */ { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */ }; static void spa_sync_version(void *arg, dmu_tx_t *tx); static void spa_sync_props(void *arg, dmu_tx_t *tx); static boolean_t spa_has_active_shared_spare(spa_t *spa); static int spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport); static void spa_vdev_resilver_done(spa_t *spa); static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */ static uint_t zio_taskq_batch_tpq; /* threads per taskq */ static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ static const uint_t zio_taskq_basedc = 80; /* base duty cycle */ static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */ /* * Report any spa_load_verify errors found, but do not fail spa_load. * This is used by zdb to analyze non-idle pools. */ boolean_t spa_load_verify_dryrun = B_FALSE; /* * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ). * This is used by zdb for spacemaps verification. */ boolean_t spa_mode_readable_spacemaps = B_FALSE; /* * This (illegal) pool name is used when temporarily importing a spa_t in order * to get the vdev stats associated with the imported devices. */ #define TRYIMPORT_NAME "$import" /* * For debugging purposes: print out vdev tree during pool import. */ static int spa_load_print_vdev_tree = B_FALSE; /* * A non-zero value for zfs_max_missing_tvds means that we allow importing * pools with missing top-level vdevs. This is strictly intended for advanced * pool recovery cases since missing data is almost inevitable. Pools with * missing devices can only be imported read-only for safety reasons, and their * fail-mode will be automatically set to "continue". * * With 1 missing vdev we should be able to import the pool and mount all * datasets. User data that was not modified after the missing device has been * added should be recoverable. This means that snapshots created prior to the * addition of that device should be completely intact. * * With 2 missing vdevs, some datasets may fail to mount since there are * dataset statistics that are stored as regular metadata. Some data might be * recoverable if those vdevs were added recently. * * With 3 or more missing vdevs, the pool is severely damaged and MOS entries * may be missing entirely. Chances of data recovery are very low. Note that * there are also risks of performing an inadvertent rewind as we might be * missing all the vdevs with the latest uberblocks. */ uint64_t zfs_max_missing_tvds = 0; /* * The parameters below are similar to zfs_max_missing_tvds but are only * intended for a preliminary open of the pool with an untrusted config which * might be incomplete or out-dated. * * We are more tolerant for pools opened from a cachefile since we could have * an out-dated cachefile where a device removal was not registered. * We could have set the limit arbitrarily high but in the case where devices * are really missing we would want to return the proper error codes; we chose * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available * and we get a chance to retrieve the trusted config. */ uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1; /* * In the case where config was assembled by scanning device paths (/dev/dsks * by default) we are less tolerant since all the existing devices should have * been detected and we want spa_load to return the right error codes. */ uint64_t zfs_max_missing_tvds_scan = 0; /* * Debugging aid that pauses spa_sync() towards the end. */ static const boolean_t zfs_pause_spa_sync = B_FALSE; /* * Variables to indicate the livelist condense zthr func should wait at certain * points for the livelist to be removed - used to test condense/destroy races */ static int zfs_livelist_condense_zthr_pause = 0; static int zfs_livelist_condense_sync_pause = 0; /* * Variables to track whether or not condense cancellation has been * triggered in testing. */ static int zfs_livelist_condense_sync_cancel = 0; static int zfs_livelist_condense_zthr_cancel = 0; /* * Variable to track whether or not extra ALLOC blkptrs were added to a * livelist entry while it was being condensed (caused by the way we track * remapped blkptrs in dbuf_remap_impl) */ static int zfs_livelist_condense_new_alloc = 0; /* * ========================================================================== * SPA properties routines * ========================================================================== */ /* * Add a (source=src, propname=propval) list to an nvlist. */ static void spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval, uint64_t intval, zprop_source_t src) { const char *propname = zpool_prop_to_name(prop); nvlist_t *propval; propval = fnvlist_alloc(); fnvlist_add_uint64(propval, ZPROP_SOURCE, src); if (strval != NULL) fnvlist_add_string(propval, ZPROP_VALUE, strval); else fnvlist_add_uint64(propval, ZPROP_VALUE, intval); fnvlist_add_nvlist(nvl, propname, propval); nvlist_free(propval); } /* * Get property values from the spa configuration. */ static void spa_prop_get_config(spa_t *spa, nvlist_t **nvp) { vdev_t *rvd = spa->spa_root_vdev; dsl_pool_t *pool = spa->spa_dsl_pool; uint64_t size, alloc, cap, version; const zprop_source_t src = ZPROP_SRC_NONE; spa_config_dirent_t *dp; metaslab_class_t *mc = spa_normal_class(spa); ASSERT(MUTEX_HELD(&spa->spa_props_lock)); if (rvd != NULL) { alloc = metaslab_class_get_alloc(mc); alloc += metaslab_class_get_alloc(spa_special_class(spa)); alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa)); size = metaslab_class_get_space(mc); size += metaslab_class_get_space(spa_special_class(spa)); size += metaslab_class_get_space(spa_dedup_class(spa)); size += metaslab_class_get_space(spa_embedded_log_class(spa)); spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, size - alloc, src); spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL, spa->spa_checkpoint_info.sci_dspace, src); spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, metaslab_class_fragmentation(mc), src); spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, metaslab_class_expandable_space(mc), src); spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, (spa_mode(spa) == SPA_MODE_READ), src); cap = (size == 0) ? 0 : (alloc * 100 / size); spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, ddt_get_pool_dedup_ratio(spa), src); spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, rvd->vdev_state, src); version = spa_version(spa); if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) { spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, ZPROP_SRC_DEFAULT); } else { spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, ZPROP_SRC_LOCAL); } spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID, NULL, spa_load_guid(spa), src); } if (pool != NULL) { /* * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, * when opening pools before this version freedir will be NULL. */ if (pool->dp_free_dir != NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, src); } else { spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 0, src); } if (pool->dp_leak_dir != NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, src); } else { spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 0, src); } } spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); if (spa->spa_comment != NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 0, ZPROP_SRC_LOCAL); } if (spa->spa_compatibility != NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY, spa->spa_compatibility, 0, ZPROP_SRC_LOCAL); } if (spa->spa_root != NULL) spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 0, ZPROP_SRC_LOCAL); if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); } else { spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); } if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) { spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, DNODE_MAX_SIZE, ZPROP_SRC_NONE); } else { spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, DNODE_MIN_SIZE, ZPROP_SRC_NONE); } if ((dp = list_head(&spa->spa_config_list)) != NULL) { if (dp->scd_path == NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, "none", 0, ZPROP_SRC_LOCAL); } else if (strcmp(dp->scd_path, spa_config_path) != 0) { spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, dp->scd_path, 0, ZPROP_SRC_LOCAL); } } } /* * Get zpool property values. */ int spa_prop_get(spa_t *spa, nvlist_t **nvp) { objset_t *mos = spa->spa_meta_objset; zap_cursor_t zc; zap_attribute_t za; dsl_pool_t *dp; int err; err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP); if (err) return (err); dp = spa_get_dsl(spa); dsl_pool_config_enter(dp, FTAG); mutex_enter(&spa->spa_props_lock); /* * Get properties from the spa config. */ spa_prop_get_config(spa, nvp); /* If no pool property object, no more prop to get. */ if (mos == NULL || spa->spa_pool_props_object == 0) goto out; /* * Get properties from the MOS pool property object. */ for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); (err = zap_cursor_retrieve(&zc, &za)) == 0; zap_cursor_advance(&zc)) { uint64_t intval = 0; char *strval = NULL; zprop_source_t src = ZPROP_SRC_DEFAULT; zpool_prop_t prop; if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL) continue; switch (za.za_integer_length) { case 8: /* integer property */ if (za.za_first_integer != zpool_prop_default_numeric(prop)) src = ZPROP_SRC_LOCAL; if (prop == ZPOOL_PROP_BOOTFS) { dsl_dataset_t *ds = NULL; err = dsl_dataset_hold_obj(dp, za.za_first_integer, FTAG, &ds); if (err != 0) break; strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); dsl_dataset_name(ds, strval); dsl_dataset_rele(ds, FTAG); } else { strval = NULL; intval = za.za_first_integer; } spa_prop_add_list(*nvp, prop, strval, intval, src); if (strval != NULL) kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); break; case 1: /* string property */ strval = kmem_alloc(za.za_num_integers, KM_SLEEP); err = zap_lookup(mos, spa->spa_pool_props_object, za.za_name, 1, za.za_num_integers, strval); if (err) { kmem_free(strval, za.za_num_integers); break; } spa_prop_add_list(*nvp, prop, strval, 0, src); kmem_free(strval, za.za_num_integers); break; default: break; } } zap_cursor_fini(&zc); out: mutex_exit(&spa->spa_props_lock); dsl_pool_config_exit(dp, FTAG); if (err && err != ENOENT) { nvlist_free(*nvp); *nvp = NULL; return (err); } return (0); } /* * Validate the given pool properties nvlist and modify the list * for the property values to be set. */ static int spa_prop_validate(spa_t *spa, nvlist_t *props) { nvpair_t *elem; int error = 0, reset_bootfs = 0; uint64_t objnum = 0; boolean_t has_feature = B_FALSE; elem = NULL; while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { uint64_t intval; char *strval, *slash, *check, *fname; const char *propname = nvpair_name(elem); zpool_prop_t prop = zpool_name_to_prop(propname); switch (prop) { case ZPOOL_PROP_INVAL: if (!zpool_prop_feature(propname)) { error = SET_ERROR(EINVAL); break; } /* * Sanitize the input. */ if (nvpair_type(elem) != DATA_TYPE_UINT64) { error = SET_ERROR(EINVAL); break; } if (nvpair_value_uint64(elem, &intval) != 0) { error = SET_ERROR(EINVAL); break; } if (intval != 0) { error = SET_ERROR(EINVAL); break; } fname = strchr(propname, '@') + 1; if (zfeature_lookup_name(fname, NULL) != 0) { error = SET_ERROR(EINVAL); break; } has_feature = B_TRUE; break; case ZPOOL_PROP_VERSION: error = nvpair_value_uint64(elem, &intval); if (!error && (intval < spa_version(spa) || intval > SPA_VERSION_BEFORE_FEATURES || has_feature)) error = SET_ERROR(EINVAL); break; case ZPOOL_PROP_DELEGATION: case ZPOOL_PROP_AUTOREPLACE: case ZPOOL_PROP_LISTSNAPS: case ZPOOL_PROP_AUTOEXPAND: case ZPOOL_PROP_AUTOTRIM: error = nvpair_value_uint64(elem, &intval); if (!error && intval > 1) error = SET_ERROR(EINVAL); break; case ZPOOL_PROP_MULTIHOST: error = nvpair_value_uint64(elem, &intval); if (!error && intval > 1) error = SET_ERROR(EINVAL); if (!error) { uint32_t hostid = zone_get_hostid(NULL); if (hostid) spa->spa_hostid = hostid; else error = SET_ERROR(ENOTSUP); } break; case ZPOOL_PROP_BOOTFS: /* * If the pool version is less than SPA_VERSION_BOOTFS, * or the pool is still being created (version == 0), * the bootfs property cannot be set. */ if (spa_version(spa) < SPA_VERSION_BOOTFS) { error = SET_ERROR(ENOTSUP); break; } /* * Make sure the vdev config is bootable */ if (!vdev_is_bootable(spa->spa_root_vdev)) { error = SET_ERROR(ENOTSUP); break; } reset_bootfs = 1; error = nvpair_value_string(elem, &strval); if (!error) { objset_t *os; if (strval == NULL || strval[0] == '\0') { objnum = zpool_prop_default_numeric( ZPOOL_PROP_BOOTFS); break; } error = dmu_objset_hold(strval, FTAG, &os); if (error != 0) break; /* Must be ZPL. */ if (dmu_objset_type(os) != DMU_OST_ZFS) { error = SET_ERROR(ENOTSUP); } else { objnum = dmu_objset_id(os); } dmu_objset_rele(os, FTAG); } break; case ZPOOL_PROP_FAILUREMODE: error = nvpair_value_uint64(elem, &intval); if (!error && intval > ZIO_FAILURE_MODE_PANIC) error = SET_ERROR(EINVAL); /* * This is a special case which only occurs when * the pool has completely failed. This allows * the user to change the in-core failmode property * without syncing it out to disk (I/Os might * currently be blocked). We do this by returning * EIO to the caller (spa_prop_set) to trick it * into thinking we encountered a property validation * error. */ if (!error && spa_suspended(spa)) { spa->spa_failmode = intval; error = SET_ERROR(EIO); } break; case ZPOOL_PROP_CACHEFILE: if ((error = nvpair_value_string(elem, &strval)) != 0) break; if (strval[0] == '\0') break; if (strcmp(strval, "none") == 0) break; if (strval[0] != '/') { error = SET_ERROR(EINVAL); break; } slash = strrchr(strval, '/'); ASSERT(slash != NULL); if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || strcmp(slash, "/..") == 0) error = SET_ERROR(EINVAL); break; case ZPOOL_PROP_COMMENT: if ((error = nvpair_value_string(elem, &strval)) != 0) break; for (check = strval; *check != '\0'; check++) { if (!isprint(*check)) { error = SET_ERROR(EINVAL); break; } } if (strlen(strval) > ZPROP_MAX_COMMENT) error = SET_ERROR(E2BIG); break; default: break; } if (error) break; } (void) nvlist_remove_all(props, zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO)); if (!error && reset_bootfs) { error = nvlist_remove(props, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); if (!error) { error = nvlist_add_uint64(props, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); } } return (error); } void spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) { char *cachefile; spa_config_dirent_t *dp; if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), &cachefile) != 0) return; dp = kmem_alloc(sizeof (spa_config_dirent_t), KM_SLEEP); if (cachefile[0] == '\0') dp->scd_path = spa_strdup(spa_config_path); else if (strcmp(cachefile, "none") == 0) dp->scd_path = NULL; else dp->scd_path = spa_strdup(cachefile); list_insert_head(&spa->spa_config_list, dp); if (need_sync) spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); } int spa_prop_set(spa_t *spa, nvlist_t *nvp) { int error; nvpair_t *elem = NULL; boolean_t need_sync = B_FALSE; if ((error = spa_prop_validate(spa, nvp)) != 0) return (error); while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT || prop == ZPOOL_PROP_READONLY) continue; if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) { uint64_t ver = 0; if (prop == ZPOOL_PROP_VERSION) { VERIFY(nvpair_value_uint64(elem, &ver) == 0); } else { ASSERT(zpool_prop_feature(nvpair_name(elem))); ver = SPA_VERSION_FEATURES; need_sync = B_TRUE; } /* Save time if the version is already set. */ if (ver == spa_version(spa)) continue; /* * In addition to the pool directory object, we might * create the pool properties object, the features for * read object, the features for write object, or the * feature descriptions object. */ error = dsl_sync_task(spa->spa_name, NULL, spa_sync_version, &ver, 6, ZFS_SPACE_CHECK_RESERVED); if (error) return (error); continue; } need_sync = B_TRUE; break; } if (need_sync) { return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, nvp, 6, ZFS_SPACE_CHECK_RESERVED)); } return (0); } /* * If the bootfs property value is dsobj, clear it. */ void spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) { if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { VERIFY(zap_remove(spa->spa_meta_objset, spa->spa_pool_props_object, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); spa->spa_bootfs = 0; } } static int spa_change_guid_check(void *arg, dmu_tx_t *tx) { uint64_t *newguid __maybe_unused = arg; spa_t *spa = dmu_tx_pool(tx)->dp_spa; vdev_t *rvd = spa->spa_root_vdev; uint64_t vdev_state; if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { int error = (spa_has_checkpoint(spa)) ? ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; return (SET_ERROR(error)); } spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); vdev_state = rvd->vdev_state; spa_config_exit(spa, SCL_STATE, FTAG); if (vdev_state != VDEV_STATE_HEALTHY) return (SET_ERROR(ENXIO)); ASSERT3U(spa_guid(spa), !=, *newguid); return (0); } static void spa_change_guid_sync(void *arg, dmu_tx_t *tx) { uint64_t *newguid = arg; spa_t *spa = dmu_tx_pool(tx)->dp_spa; uint64_t oldguid; vdev_t *rvd = spa->spa_root_vdev; oldguid = spa_guid(spa); spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); rvd->vdev_guid = *newguid; rvd->vdev_guid_sum += (*newguid - oldguid); vdev_config_dirty(rvd); spa_config_exit(spa, SCL_STATE, FTAG); spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", (u_longlong_t)oldguid, (u_longlong_t)*newguid); } /* * Change the GUID for the pool. This is done so that we can later * re-import a pool built from a clone of our own vdevs. We will modify * the root vdev's guid, our own pool guid, and then mark all of our * vdevs dirty. Note that we must make sure that all our vdevs are * online when we do this, or else any vdevs that weren't present * would be orphaned from our pool. We are also going to issue a * sysevent to update any watchers. */ int spa_change_guid(spa_t *spa) { int error; uint64_t guid; mutex_enter(&spa->spa_vdev_top_lock); mutex_enter(&spa_namespace_lock); guid = spa_generate_guid(NULL); error = dsl_sync_task(spa->spa_name, spa_change_guid_check, spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); if (error == 0) { /* * Clear the kobj flag from all the vdevs to allow * vdev_cache_process_kobj_evt() to post events to all the * vdevs since GUID is updated. */ vdev_clear_kobj_evt(spa->spa_root_vdev); for (int i = 0; i < spa->spa_l2cache.sav_count; i++) vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]); spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID); } mutex_exit(&spa_namespace_lock); mutex_exit(&spa->spa_vdev_top_lock); return (error); } /* * ========================================================================== * SPA state manipulation (open/create/destroy/import/export) * ========================================================================== */ static int spa_error_entry_compare(const void *a, const void *b) { const spa_error_entry_t *sa = (const spa_error_entry_t *)a; const spa_error_entry_t *sb = (const spa_error_entry_t *)b; int ret; ret = memcmp(&sa->se_bookmark, &sb->se_bookmark, sizeof (zbookmark_phys_t)); return (TREE_ISIGN(ret)); } /* * Utility function which retrieves copies of the current logs and * re-initializes them in the process. */ void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) { ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t)); memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t)); avl_create(&spa->spa_errlist_scrub, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); avl_create(&spa->spa_errlist_last, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); } static void spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) { const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; enum zti_modes mode = ztip->zti_mode; uint_t value = ztip->zti_value; uint_t count = ztip->zti_count; spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; uint_t cpus, flags = TASKQ_DYNAMIC; boolean_t batch = B_FALSE; switch (mode) { case ZTI_MODE_FIXED: ASSERT3U(value, >, 0); break; case ZTI_MODE_BATCH: batch = B_TRUE; flags |= TASKQ_THREADS_CPU_PCT; value = MIN(zio_taskq_batch_pct, 100); break; case ZTI_MODE_SCALE: flags |= TASKQ_THREADS_CPU_PCT; /* * We want more taskqs to reduce lock contention, but we want * less for better request ordering and CPU utilization. */ cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100); if (zio_taskq_batch_tpq > 0) { count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) / zio_taskq_batch_tpq); } else { /* * Prefer 6 threads per taskq, but no more taskqs * than threads in them on large systems. For 80%: * * taskq taskq total * cpus taskqs percent threads threads * ------- ------- ------- ------- ------- * 1 1 80% 1 1 * 2 1 80% 1 1 * 4 1 80% 3 3 * 8 2 40% 3 6 * 16 3 27% 4 12 * 32 5 16% 5 25 * 64 7 11% 7 49 * 128 10 8% 10 100 * 256 14 6% 15 210 */ count = 1 + cpus / 6; while (count * count > cpus) count--; } /* Limit each taskq within 100% to not trigger assertion. */ count = MAX(count, (zio_taskq_batch_pct + 99) / 100); value = (zio_taskq_batch_pct + count / 2) / count; break; case ZTI_MODE_NULL: tqs->stqs_count = 0; tqs->stqs_taskq = NULL; return; default: panic("unrecognized mode for %s_%s taskq (%u:%u) in " "spa_activate()", zio_type_name[t], zio_taskq_types[q], mode, value); break; } ASSERT3U(count, >, 0); tqs->stqs_count = count; tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); for (uint_t i = 0; i < count; i++) { taskq_t *tq; char name[32]; if (count > 1) (void) snprintf(name, sizeof (name), "%s_%s_%u", zio_type_name[t], zio_taskq_types[q], i); else (void) snprintf(name, sizeof (name), "%s_%s", zio_type_name[t], zio_taskq_types[q]); if (zio_taskq_sysdc && spa->spa_proc != &p0) { if (batch) flags |= TASKQ_DC_BATCH; (void) zio_taskq_basedc; tq = taskq_create_sysdc(name, value, 50, INT_MAX, spa->spa_proc, zio_taskq_basedc, flags); } else { pri_t pri = maxclsyspri; /* * The write issue taskq can be extremely CPU * intensive. Run it at slightly less important * priority than the other taskqs. * * Under Linux and FreeBSD this means incrementing * the priority value as opposed to platforms like * illumos where it should be decremented. * * On FreeBSD, if priorities divided by four (RQ_PPQ) * are equal then a difference between them is * insignificant. */ if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) { #if defined(__linux__) pri++; #elif defined(__FreeBSD__) pri += 4; #else #error "unknown OS" #endif } tq = taskq_create_proc(name, value, pri, 50, INT_MAX, spa->spa_proc, flags); } tqs->stqs_taskq[i] = tq; } } static void spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) { spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; if (tqs->stqs_taskq == NULL) { ASSERT3U(tqs->stqs_count, ==, 0); return; } for (uint_t i = 0; i < tqs->stqs_count; i++) { ASSERT3P(tqs->stqs_taskq[i], !=, NULL); taskq_destroy(tqs->stqs_taskq[i]); } kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); tqs->stqs_taskq = NULL; } /* * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. * Note that a type may have multiple discrete taskqs to avoid lock contention * on the taskq itself. In that case we choose which taskq at random by using * the low bits of gethrtime(). */ void spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) { spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; taskq_t *tq; ASSERT3P(tqs->stqs_taskq, !=, NULL); ASSERT3U(tqs->stqs_count, !=, 0); if (tqs->stqs_count == 1) { tq = tqs->stqs_taskq[0]; } else { tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count]; } taskq_dispatch_ent(tq, func, arg, flags, ent); } /* * Same as spa_taskq_dispatch_ent() but block on the task until completion. */ void spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q, task_func_t *func, void *arg, uint_t flags) { spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; taskq_t *tq; taskqid_t id; ASSERT3P(tqs->stqs_taskq, !=, NULL); ASSERT3U(tqs->stqs_count, !=, 0); if (tqs->stqs_count == 1) { tq = tqs->stqs_taskq[0]; } else { tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count]; } id = taskq_dispatch(tq, func, arg, flags); if (id) taskq_wait_id(tq, id); } static void spa_create_zio_taskqs(spa_t *spa) { for (int t = 0; t < ZIO_TYPES; t++) { for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { spa_taskqs_init(spa, t, q); } } } /* * Disabled until spa_thread() can be adapted for Linux. */ #undef HAVE_SPA_THREAD #if defined(_KERNEL) && defined(HAVE_SPA_THREAD) static void spa_thread(void *arg) { psetid_t zio_taskq_psrset_bind = PS_NONE; callb_cpr_t cprinfo; spa_t *spa = arg; user_t *pu = PTOU(curproc); CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, spa->spa_name); ASSERT(curproc != &p0); (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), "zpool-%s", spa->spa_name); (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); /* bind this thread to the requested psrset */ if (zio_taskq_psrset_bind != PS_NONE) { pool_lock(); mutex_enter(&cpu_lock); mutex_enter(&pidlock); mutex_enter(&curproc->p_lock); if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 0, NULL, NULL) == 0) { curthread->t_bind_pset = zio_taskq_psrset_bind; } else { cmn_err(CE_WARN, "Couldn't bind process for zfs pool \"%s\" to " "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); } mutex_exit(&curproc->p_lock); mutex_exit(&pidlock); mutex_exit(&cpu_lock); pool_unlock(); } if (zio_taskq_sysdc) { sysdc_thread_enter(curthread, 100, 0); } spa->spa_proc = curproc; spa->spa_did = curthread->t_did; spa_create_zio_taskqs(spa); mutex_enter(&spa->spa_proc_lock); ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); spa->spa_proc_state = SPA_PROC_ACTIVE; cv_broadcast(&spa->spa_proc_cv); CALLB_CPR_SAFE_BEGIN(&cprinfo); while (spa->spa_proc_state == SPA_PROC_ACTIVE) cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); spa->spa_proc_state = SPA_PROC_GONE; spa->spa_proc = &p0; cv_broadcast(&spa->spa_proc_cv); CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ mutex_enter(&curproc->p_lock); lwp_exit(); } #endif /* * Activate an uninitialized pool. */ static void spa_activate(spa_t *spa, spa_mode_t mode) { ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); spa->spa_state = POOL_STATE_ACTIVE; spa->spa_mode = mode; spa->spa_read_spacemaps = spa_mode_readable_spacemaps; spa->spa_normal_class = metaslab_class_create(spa, &zfs_metaslab_ops); spa->spa_log_class = metaslab_class_create(spa, &zfs_metaslab_ops); spa->spa_embedded_log_class = metaslab_class_create(spa, &zfs_metaslab_ops); spa->spa_special_class = metaslab_class_create(spa, &zfs_metaslab_ops); spa->spa_dedup_class = metaslab_class_create(spa, &zfs_metaslab_ops); /* Try to create a covering process */ mutex_enter(&spa->spa_proc_lock); ASSERT(spa->spa_proc_state == SPA_PROC_NONE); ASSERT(spa->spa_proc == &p0); spa->spa_did = 0; (void) spa_create_process; #ifdef HAVE_SPA_THREAD /* Only create a process if we're going to be around a while. */ if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, NULL, 0) == 0) { spa->spa_proc_state = SPA_PROC_CREATED; while (spa->spa_proc_state == SPA_PROC_CREATED) { cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); } ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); ASSERT(spa->spa_proc != &p0); ASSERT(spa->spa_did != 0); } else { #ifdef _KERNEL cmn_err(CE_WARN, "Couldn't create process for zfs pool \"%s\"\n", spa->spa_name); #endif } } #endif /* HAVE_SPA_THREAD */ mutex_exit(&spa->spa_proc_lock); /* If we didn't create a process, we need to create our taskqs. */ if (spa->spa_proc == &p0) { spa_create_zio_taskqs(spa); } for (size_t i = 0; i < TXG_SIZE; i++) { spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); } list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), offsetof(vdev_t, vdev_config_dirty_node)); list_create(&spa->spa_evicting_os_list, sizeof (objset_t), offsetof(objset_t, os_evicting_node)); list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), offsetof(vdev_t, vdev_state_dirty_node)); txg_list_create(&spa->spa_vdev_txg_list, spa, offsetof(struct vdev, vdev_txg_node)); avl_create(&spa->spa_errlist_scrub, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); avl_create(&spa->spa_errlist_last, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); avl_create(&spa->spa_errlist_healed, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); spa_activate_os(spa); spa_keystore_init(&spa->spa_keystore); /* * This taskq is used to perform zvol-minor-related tasks * asynchronously. This has several advantages, including easy * resolution of various deadlocks. * * The taskq must be single threaded to ensure tasks are always * processed in the order in which they were dispatched. * * A taskq per pool allows one to keep the pools independent. * This way if one pool is suspended, it will not impact another. * * The preferred location to dispatch a zvol minor task is a sync * task. In this context, there is easy access to the spa_t and minimal * error handling is required because the sync task must succeed. */ spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri, 1, INT_MAX, 0); /* * Taskq dedicated to prefetcher threads: this is used to prevent the * pool traverse code from monopolizing the global (and limited) * system_taskq by inappropriately scheduling long running tasks on it. */ spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100, defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); /* * The taskq to upgrade datasets in this pool. Currently used by * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA. */ spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100, defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); } /* * Opposite of spa_activate(). */ static void spa_deactivate(spa_t *spa) { ASSERT(spa->spa_sync_on == B_FALSE); ASSERT(spa->spa_dsl_pool == NULL); ASSERT(spa->spa_root_vdev == NULL); ASSERT(spa->spa_async_zio_root == NULL); ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); spa_evicting_os_wait(spa); if (spa->spa_zvol_taskq) { taskq_destroy(spa->spa_zvol_taskq); spa->spa_zvol_taskq = NULL; } if (spa->spa_prefetch_taskq) { taskq_destroy(spa->spa_prefetch_taskq); spa->spa_prefetch_taskq = NULL; } if (spa->spa_upgrade_taskq) { taskq_destroy(spa->spa_upgrade_taskq); spa->spa_upgrade_taskq = NULL; } txg_list_destroy(&spa->spa_vdev_txg_list); list_destroy(&spa->spa_config_dirty_list); list_destroy(&spa->spa_evicting_os_list); list_destroy(&spa->spa_state_dirty_list); taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); for (int t = 0; t < ZIO_TYPES; t++) { for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { spa_taskqs_fini(spa, t, q); } } for (size_t i = 0; i < TXG_SIZE; i++) { ASSERT3P(spa->spa_txg_zio[i], !=, NULL); VERIFY0(zio_wait(spa->spa_txg_zio[i])); spa->spa_txg_zio[i] = NULL; } metaslab_class_destroy(spa->spa_normal_class); spa->spa_normal_class = NULL; metaslab_class_destroy(spa->spa_log_class); spa->spa_log_class = NULL; metaslab_class_destroy(spa->spa_embedded_log_class); spa->spa_embedded_log_class = NULL; metaslab_class_destroy(spa->spa_special_class); spa->spa_special_class = NULL; metaslab_class_destroy(spa->spa_dedup_class); spa->spa_dedup_class = NULL; /* * If this was part of an import or the open otherwise failed, we may * still have errors left in the queues. Empty them just in case. */ spa_errlog_drain(spa); avl_destroy(&spa->spa_errlist_scrub); avl_destroy(&spa->spa_errlist_last); avl_destroy(&spa->spa_errlist_healed); spa_keystore_fini(&spa->spa_keystore); spa->spa_state = POOL_STATE_UNINITIALIZED; mutex_enter(&spa->spa_proc_lock); if (spa->spa_proc_state != SPA_PROC_NONE) { ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); spa->spa_proc_state = SPA_PROC_DEACTIVATE; cv_broadcast(&spa->spa_proc_cv); while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { ASSERT(spa->spa_proc != &p0); cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); } ASSERT(spa->spa_proc_state == SPA_PROC_GONE); spa->spa_proc_state = SPA_PROC_NONE; } ASSERT(spa->spa_proc == &p0); mutex_exit(&spa->spa_proc_lock); /* * We want to make sure spa_thread() has actually exited the ZFS * module, so that the module can't be unloaded out from underneath * it. */ if (spa->spa_did != 0) { thread_join(spa->spa_did); spa->spa_did = 0; } spa_deactivate_os(spa); } /* * Verify a pool configuration, and construct the vdev tree appropriately. This * will create all the necessary vdevs in the appropriate layout, with each vdev * in the CLOSED state. This will prep the pool before open/creation/import. * All vdev validation is done by the vdev_alloc() routine. */ int spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, int atype) { nvlist_t **child; uint_t children; int error; if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) return (error); if ((*vdp)->vdev_ops->vdev_op_leaf) return (0); error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children); if (error == ENOENT) return (0); if (error) { vdev_free(*vdp); *vdp = NULL; return (SET_ERROR(EINVAL)); } for (int c = 0; c < children; c++) { vdev_t *vd; if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, atype)) != 0) { vdev_free(*vdp); *vdp = NULL; return (error); } } ASSERT(*vdp != NULL); return (0); } static boolean_t spa_should_flush_logs_on_unload(spa_t *spa) { if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) return (B_FALSE); if (!spa_writeable(spa)) return (B_FALSE); if (!spa->spa_sync_on) return (B_FALSE); if (spa_state(spa) != POOL_STATE_EXPORTED) return (B_FALSE); if (zfs_keep_log_spacemaps_at_export) return (B_FALSE); return (B_TRUE); } /* * Opens a transaction that will set the flag that will instruct * spa_sync to attempt to flush all the metaslabs for that txg. */ static void spa_unload_log_sm_flush_all(spa_t *spa) { dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); ASSERT3U(spa->spa_log_flushall_txg, ==, 0); spa->spa_log_flushall_txg = dmu_tx_get_txg(tx); dmu_tx_commit(tx); txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg); } static void spa_unload_log_sm_metadata(spa_t *spa) { void *cookie = NULL; spa_log_sm_t *sls; while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg, &cookie)) != NULL) { VERIFY0(sls->sls_mscount); kmem_free(sls, sizeof (spa_log_sm_t)); } for (log_summary_entry_t *e = list_head(&spa->spa_log_summary); e != NULL; e = list_head(&spa->spa_log_summary)) { VERIFY0(e->lse_mscount); list_remove(&spa->spa_log_summary, e); kmem_free(e, sizeof (log_summary_entry_t)); } spa->spa_unflushed_stats.sus_nblocks = 0; spa->spa_unflushed_stats.sus_memused = 0; spa->spa_unflushed_stats.sus_blocklimit = 0; } static void spa_destroy_aux_threads(spa_t *spa) { if (spa->spa_condense_zthr != NULL) { zthr_destroy(spa->spa_condense_zthr); spa->spa_condense_zthr = NULL; } if (spa->spa_checkpoint_discard_zthr != NULL) { zthr_destroy(spa->spa_checkpoint_discard_zthr); spa->spa_checkpoint_discard_zthr = NULL; } if (spa->spa_livelist_delete_zthr != NULL) { zthr_destroy(spa->spa_livelist_delete_zthr); spa->spa_livelist_delete_zthr = NULL; } if (spa->spa_livelist_condense_zthr != NULL) { zthr_destroy(spa->spa_livelist_condense_zthr); spa->spa_livelist_condense_zthr = NULL; } } /* * Opposite of spa_load(). */ static void spa_unload(spa_t *spa) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED); spa_import_progress_remove(spa_guid(spa)); spa_load_note(spa, "UNLOADING"); spa_wake_waiters(spa); /* * If we have set the spa_final_txg, we have already performed the * tasks below in spa_export_common(). We should not redo it here since * we delay the final TXGs beyond what spa_final_txg is set at. */ if (spa->spa_final_txg == UINT64_MAX) { /* * If the log space map feature is enabled and the pool is * getting exported (but not destroyed), we want to spend some * time flushing as many metaslabs as we can in an attempt to * destroy log space maps and save import time. */ if (spa_should_flush_logs_on_unload(spa)) spa_unload_log_sm_flush_all(spa); /* * Stop async tasks. */ spa_async_suspend(spa); if (spa->spa_root_vdev) { vdev_t *root_vdev = spa->spa_root_vdev; vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE); vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE); vdev_autotrim_stop_all(spa); vdev_rebuild_stop_all(spa); } } /* * Stop syncing. */ if (spa->spa_sync_on) { txg_sync_stop(spa->spa_dsl_pool); spa->spa_sync_on = B_FALSE; } /* * This ensures that there is no async metaslab prefetching * while we attempt to unload the spa. */ if (spa->spa_root_vdev != NULL) { for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) { vdev_t *vc = spa->spa_root_vdev->vdev_child[c]; if (vc->vdev_mg != NULL) taskq_wait(vc->vdev_mg->mg_taskq); } } if (spa->spa_mmp.mmp_thread) mmp_thread_stop(spa); /* * Wait for any outstanding async I/O to complete. */ if (spa->spa_async_zio_root != NULL) { for (int i = 0; i < max_ncpus; i++) (void) zio_wait(spa->spa_async_zio_root[i]); kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); spa->spa_async_zio_root = NULL; } if (spa->spa_vdev_removal != NULL) { spa_vdev_removal_destroy(spa->spa_vdev_removal); spa->spa_vdev_removal = NULL; } spa_destroy_aux_threads(spa); spa_condense_fini(spa); bpobj_close(&spa->spa_deferred_bpobj); spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); /* * Close all vdevs. */ if (spa->spa_root_vdev) vdev_free(spa->spa_root_vdev); ASSERT(spa->spa_root_vdev == NULL); /* * Close the dsl pool. */ if (spa->spa_dsl_pool) { dsl_pool_close(spa->spa_dsl_pool); spa->spa_dsl_pool = NULL; spa->spa_meta_objset = NULL; } ddt_unload(spa); spa_unload_log_sm_metadata(spa); /* * Drop and purge level 2 cache */ spa_l2cache_drop(spa); for (int i = 0; i < spa->spa_spares.sav_count; i++) vdev_free(spa->spa_spares.sav_vdevs[i]); if (spa->spa_spares.sav_vdevs) { kmem_free(spa->spa_spares.sav_vdevs, spa->spa_spares.sav_count * sizeof (void *)); spa->spa_spares.sav_vdevs = NULL; } if (spa->spa_spares.sav_config) { nvlist_free(spa->spa_spares.sav_config); spa->spa_spares.sav_config = NULL; } spa->spa_spares.sav_count = 0; for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); vdev_free(spa->spa_l2cache.sav_vdevs[i]); } if (spa->spa_l2cache.sav_vdevs) { kmem_free(spa->spa_l2cache.sav_vdevs, spa->spa_l2cache.sav_count * sizeof (void *)); spa->spa_l2cache.sav_vdevs = NULL; } if (spa->spa_l2cache.sav_config) { nvlist_free(spa->spa_l2cache.sav_config); spa->spa_l2cache.sav_config = NULL; } spa->spa_l2cache.sav_count = 0; spa->spa_async_suspended = 0; spa->spa_indirect_vdevs_loaded = B_FALSE; if (spa->spa_comment != NULL) { spa_strfree(spa->spa_comment); spa->spa_comment = NULL; } if (spa->spa_compatibility != NULL) { spa_strfree(spa->spa_compatibility); spa->spa_compatibility = NULL; } spa_config_exit(spa, SCL_ALL, spa); } /* * Load (or re-load) the current list of vdevs describing the active spares for * this pool. When this is called, we have some form of basic information in * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and * then re-generate a more complete list including status information. */ void spa_load_spares(spa_t *spa) { nvlist_t **spares; uint_t nspares; int i; vdev_t *vd, *tvd; #ifndef _KERNEL /* * zdb opens both the current state of the pool and the * checkpointed state (if present), with a different spa_t. * * As spare vdevs are shared among open pools, we skip loading * them when we load the checkpointed state of the pool. */ if (!spa_writeable(spa)) return; #endif ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); /* * First, close and free any existing spare vdevs. */ for (i = 0; i < spa->spa_spares.sav_count; i++) { vd = spa->spa_spares.sav_vdevs[i]; /* Undo the call to spa_activate() below */ if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, B_FALSE)) != NULL && tvd->vdev_isspare) spa_spare_remove(tvd); vdev_close(vd); vdev_free(vd); } if (spa->spa_spares.sav_vdevs) kmem_free(spa->spa_spares.sav_vdevs, spa->spa_spares.sav_count * sizeof (void *)); if (spa->spa_spares.sav_config == NULL) nspares = 0; else VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, &spares, &nspares)); spa->spa_spares.sav_count = (int)nspares; spa->spa_spares.sav_vdevs = NULL; if (nspares == 0) return; /* * Construct the array of vdevs, opening them to get status in the * process. For each spare, there is potentially two different vdev_t * structures associated with it: one in the list of spares (used only * for basic validation purposes) and one in the active vdev * configuration (if it's spared in). During this phase we open and * validate each vdev on the spare list. If the vdev also exists in the * active configuration, then we also mark this vdev as an active spare. */ spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *), KM_SLEEP); for (i = 0; i < spa->spa_spares.sav_count; i++) { VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, VDEV_ALLOC_SPARE) == 0); ASSERT(vd != NULL); spa->spa_spares.sav_vdevs[i] = vd; if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, B_FALSE)) != NULL) { if (!tvd->vdev_isspare) spa_spare_add(tvd); /* * We only mark the spare active if we were successfully * able to load the vdev. Otherwise, importing a pool * with a bad active spare would result in strange * behavior, because multiple pool would think the spare * is actively in use. * * There is a vulnerability here to an equally bizarre * circumstance, where a dead active spare is later * brought back to life (onlined or otherwise). Given * the rarity of this scenario, and the extra complexity * it adds, we ignore the possibility. */ if (!vdev_is_dead(tvd)) spa_spare_activate(tvd); } vd->vdev_top = vd; vd->vdev_aux = &spa->spa_spares; if (vdev_open(vd) != 0) continue; if (vdev_validate_aux(vd) == 0) spa_spare_add(vd); } /* * Recompute the stashed list of spares, with status information * this time. */ fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES); spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), KM_SLEEP); for (i = 0; i < spa->spa_spares.sav_count; i++) spares[i] = vdev_config_generate(spa, spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); fnvlist_add_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, spa->spa_spares.sav_count); for (i = 0; i < spa->spa_spares.sav_count; i++) nvlist_free(spares[i]); kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); } /* * Load (or re-load) the current list of vdevs describing the active l2cache for * this pool. When this is called, we have some form of basic information in * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and * then re-generate a more complete list including status information. * Devices which are already active have their details maintained, and are * not re-opened. */ void spa_load_l2cache(spa_t *spa) { nvlist_t **l2cache = NULL; uint_t nl2cache; int i, j, oldnvdevs; uint64_t guid; vdev_t *vd, **oldvdevs, **newvdevs; spa_aux_vdev_t *sav = &spa->spa_l2cache; #ifndef _KERNEL /* * zdb opens both the current state of the pool and the * checkpointed state (if present), with a different spa_t. * * As L2 caches are part of the ARC which is shared among open * pools, we skip loading them when we load the checkpointed * state of the pool. */ if (!spa_writeable(spa)) return; #endif ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); oldvdevs = sav->sav_vdevs; oldnvdevs = sav->sav_count; sav->sav_vdevs = NULL; sav->sav_count = 0; if (sav->sav_config == NULL) { nl2cache = 0; newvdevs = NULL; goto out; } VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache)); newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); /* * Process new nvlist of vdevs. */ for (i = 0; i < nl2cache; i++) { guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID); newvdevs[i] = NULL; for (j = 0; j < oldnvdevs; j++) { vd = oldvdevs[j]; if (vd != NULL && guid == vd->vdev_guid) { /* * Retain previous vdev for add/remove ops. */ newvdevs[i] = vd; oldvdevs[j] = NULL; break; } } if (newvdevs[i] == NULL) { /* * Create new vdev */ VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, VDEV_ALLOC_L2CACHE) == 0); ASSERT(vd != NULL); newvdevs[i] = vd; /* * Commit this vdev as an l2cache device, * even if it fails to open. */ spa_l2cache_add(vd); vd->vdev_top = vd; vd->vdev_aux = sav; spa_l2cache_activate(vd); if (vdev_open(vd) != 0) continue; (void) vdev_validate_aux(vd); if (!vdev_is_dead(vd)) l2arc_add_vdev(spa, vd); /* * Upon cache device addition to a pool or pool * creation with a cache device or if the header * of the device is invalid we issue an async * TRIM command for the whole device which will * execute if l2arc_trim_ahead > 0. */ spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); } } sav->sav_vdevs = newvdevs; sav->sav_count = (int)nl2cache; /* * Recompute the stashed list of l2cache devices, with status * information this time. */ fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE); if (sav->sav_count > 0) l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); for (i = 0; i < sav->sav_count; i++) l2cache[i] = vdev_config_generate(spa, sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, sav->sav_count); out: /* * Purge vdevs that were dropped */ for (i = 0; i < oldnvdevs; i++) { uint64_t pool; vd = oldvdevs[i]; if (vd != NULL) { ASSERT(vd->vdev_isl2cache); if (spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL && l2arc_vdev_present(vd)) l2arc_remove_vdev(vd); vdev_clear_stats(vd); vdev_free(vd); } } if (oldvdevs) kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); for (i = 0; i < sav->sav_count; i++) nvlist_free(l2cache[i]); if (sav->sav_count) kmem_free(l2cache, sav->sav_count * sizeof (void *)); } static int load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) { dmu_buf_t *db; char *packed = NULL; size_t nvsize = 0; int error; *value = NULL; error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); if (error) return (error); nvsize = *(uint64_t *)db->db_data; dmu_buf_rele(db, FTAG); packed = vmem_alloc(nvsize, KM_SLEEP); error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, DMU_READ_PREFETCH); if (error == 0) error = nvlist_unpack(packed, nvsize, value, 0); vmem_free(packed, nvsize); return (error); } /* * Concrete top-level vdevs that are not missing and are not logs. At every * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds. */ static uint64_t spa_healthy_core_tvds(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; uint64_t tvds = 0; for (uint64_t i = 0; i < rvd->vdev_children; i++) { vdev_t *vd = rvd->vdev_child[i]; if (vd->vdev_islog) continue; if (vdev_is_concrete(vd) && !vdev_is_dead(vd)) tvds++; } return (tvds); } /* * Checks to see if the given vdev could not be opened, in which case we post a * sysevent to notify the autoreplace code that the device has been removed. */ static void spa_check_removed(vdev_t *vd) { for (uint64_t c = 0; c < vd->vdev_children; c++) spa_check_removed(vd->vdev_child[c]); if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && vdev_is_concrete(vd)) { zfs_post_autoreplace(vd->vdev_spa, vd); spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK); } } static int spa_check_for_missing_logs(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; /* * If we're doing a normal import, then build up any additional * diagnostic information about missing log devices. * We'll pass this up to the user for further processing. */ if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { nvlist_t **child, *nv; uint64_t idx = 0; child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *), KM_SLEEP); nv = fnvlist_alloc(); for (uint64_t c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; /* * We consider a device as missing only if it failed * to open (i.e. offline or faulted is not considered * as missing). */ if (tvd->vdev_islog && tvd->vdev_state == VDEV_STATE_CANT_OPEN) { child[idx++] = vdev_config_generate(spa, tvd, B_FALSE, VDEV_CONFIG_MISSING); } } if (idx > 0) { fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, (const nvlist_t * const *)child, idx); fnvlist_add_nvlist(spa->spa_load_info, ZPOOL_CONFIG_MISSING_DEVICES, nv); for (uint64_t i = 0; i < idx; i++) nvlist_free(child[i]); } nvlist_free(nv); kmem_free(child, rvd->vdev_children * sizeof (char **)); if (idx > 0) { spa_load_failed(spa, "some log devices are missing"); vdev_dbgmsg_print_tree(rvd, 2); return (SET_ERROR(ENXIO)); } } else { for (uint64_t c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; if (tvd->vdev_islog && tvd->vdev_state == VDEV_STATE_CANT_OPEN) { spa_set_log_state(spa, SPA_LOG_CLEAR); spa_load_note(spa, "some log devices are " "missing, ZIL is dropped."); vdev_dbgmsg_print_tree(rvd, 2); break; } } } return (0); } /* * Check for missing log devices */ static boolean_t spa_check_logs(spa_t *spa) { boolean_t rv = B_FALSE; dsl_pool_t *dp = spa_get_dsl(spa); switch (spa->spa_log_state) { default: break; case SPA_LOG_MISSING: /* need to recheck in case slog has been restored */ case SPA_LOG_UNKNOWN: rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); if (rv) spa_set_log_state(spa, SPA_LOG_MISSING); break; } return (rv); } /* * Passivate any log vdevs (note, does not apply to embedded log metaslabs). */ static boolean_t spa_passivate_log(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; boolean_t slog_found = B_FALSE; ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; if (tvd->vdev_islog) { ASSERT3P(tvd->vdev_log_mg, ==, NULL); metaslab_group_passivate(tvd->vdev_mg); slog_found = B_TRUE; } } return (slog_found); } /* * Activate any log vdevs (note, does not apply to embedded log metaslabs). */ static void spa_activate_log(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; if (tvd->vdev_islog) { ASSERT3P(tvd->vdev_log_mg, ==, NULL); metaslab_group_activate(tvd->vdev_mg); } } } int spa_reset_logs(spa_t *spa) { int error; error = dmu_objset_find(spa_name(spa), zil_reset, NULL, DS_FIND_CHILDREN); if (error == 0) { /* * We successfully offlined the log device, sync out the * current txg so that the "stubby" block can be removed * by zil_sync(). */ txg_wait_synced(spa->spa_dsl_pool, 0); } return (error); } static void spa_aux_check_removed(spa_aux_vdev_t *sav) { for (int i = 0; i < sav->sav_count; i++) spa_check_removed(sav->sav_vdevs[i]); } void spa_claim_notify(zio_t *zio) { spa_t *spa = zio->io_spa; if (zio->io_error) return; mutex_enter(&spa->spa_props_lock); /* any mutex will do */ if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) spa->spa_claim_max_txg = zio->io_bp->blk_birth; mutex_exit(&spa->spa_props_lock); } typedef struct spa_load_error { boolean_t sle_verify_data; uint64_t sle_meta_count; uint64_t sle_data_count; } spa_load_error_t; static void spa_load_verify_done(zio_t *zio) { blkptr_t *bp = zio->io_bp; spa_load_error_t *sle = zio->io_private; dmu_object_type_t type = BP_GET_TYPE(bp); int error = zio->io_error; spa_t *spa = zio->io_spa; abd_free(zio->io_abd); if (error) { if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && type != DMU_OT_INTENT_LOG) atomic_inc_64(&sle->sle_meta_count); else atomic_inc_64(&sle->sle_data_count); } mutex_enter(&spa->spa_scrub_lock); spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); cv_broadcast(&spa->spa_scrub_io_cv); mutex_exit(&spa->spa_scrub_lock); } /* * Maximum number of inflight bytes is the log2 fraction of the arc size. * By default, we set it to 1/16th of the arc. */ static uint_t spa_load_verify_shift = 4; static int spa_load_verify_metadata = B_TRUE; static int spa_load_verify_data = B_TRUE; static int spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) { zio_t *rio = arg; spa_load_error_t *sle = rio->io_private; (void) zilog, (void) dnp; /* * Note: normally this routine will not be called if * spa_load_verify_metadata is not set. However, it may be useful * to manually set the flag after the traversal has begun. */ if (!spa_load_verify_metadata) return (0); /* * Sanity check the block pointer in order to detect obvious damage * before using the contents in subsequent checks or in zio_read(). * When damaged consider it to be a metadata error since we cannot * trust the BP_GET_TYPE and BP_GET_LEVEL values. */ if (!zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_LOG)) { atomic_inc_64(&sle->sle_meta_count); return (0); } if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) return (0); if (!BP_IS_METADATA(bp) && (!spa_load_verify_data || !sle->sle_verify_data)) return (0); uint64_t maxinflight_bytes = arc_target_bytes() >> spa_load_verify_shift; size_t size = BP_GET_PSIZE(bp); mutex_enter(&spa->spa_scrub_lock); while (spa->spa_load_verify_bytes >= maxinflight_bytes) cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); spa->spa_load_verify_bytes += size; mutex_exit(&spa->spa_scrub_lock); zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); return (0); } static int verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) { (void) dp, (void) arg; if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) return (SET_ERROR(ENAMETOOLONG)); return (0); } static int spa_load_verify(spa_t *spa) { zio_t *rio; spa_load_error_t sle = { 0 }; zpool_load_policy_t policy; boolean_t verify_ok = B_FALSE; int error = 0; zpool_get_load_policy(spa->spa_config, &policy); if (policy.zlp_rewind & ZPOOL_NEVER_REWIND || policy.zlp_maxmeta == UINT64_MAX) return (0); dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); error = dmu_objset_find_dp(spa->spa_dsl_pool, spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, DS_FIND_CHILDREN); dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); if (error != 0) return (error); /* * Verify data only if we are rewinding or error limit was set. * Otherwise nothing except dbgmsg care about it to waste time. */ sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) || (policy.zlp_maxdata < UINT64_MAX); rio = zio_root(spa, NULL, &sle, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); if (spa_load_verify_metadata) { if (spa->spa_extreme_rewind) { spa_load_note(spa, "performing a complete scan of the " "pool since extreme rewind is on. This may take " "a very long time.\n (spa_load_verify_data=%u, " "spa_load_verify_metadata=%u)", spa_load_verify_data, spa_load_verify_metadata); } error = traverse_pool(spa, spa->spa_verify_min_txg, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio); } (void) zio_wait(rio); ASSERT0(spa->spa_load_verify_bytes); spa->spa_load_meta_errors = sle.sle_meta_count; spa->spa_load_data_errors = sle.sle_data_count; if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) { spa_load_note(spa, "spa_load_verify found %llu metadata errors " "and %llu data errors", (u_longlong_t)sle.sle_meta_count, (u_longlong_t)sle.sle_data_count); } if (spa_load_verify_dryrun || (!error && sle.sle_meta_count <= policy.zlp_maxmeta && sle.sle_data_count <= policy.zlp_maxdata)) { int64_t loss = 0; verify_ok = B_TRUE; spa->spa_load_txg = spa->spa_uberblock.ub_txg; spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts); fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME, loss); fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count); fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count); } else { spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; } if (spa_load_verify_dryrun) return (0); if (error) { if (error != ENXIO && error != EIO) error = SET_ERROR(EIO); return (error); } return (verify_ok ? 0 : EIO); } /* * Find a value in the pool props object. */ static void spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) { (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); } /* * Find a value in the pool directory object. */ static int spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent) { int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1, val); if (error != 0 && (error != ENOENT || log_enoent)) { spa_load_failed(spa, "couldn't get '%s' value in MOS directory " "[error=%d]", name, error); } return (error); } static int spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) { vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); return (SET_ERROR(err)); } boolean_t spa_livelist_delete_check(spa_t *spa) { return (spa->spa_livelists_to_delete != 0); } static boolean_t spa_livelist_delete_cb_check(void *arg, zthr_t *z) { (void) z; spa_t *spa = arg; return (spa_livelist_delete_check(spa)); } static int delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { spa_t *spa = arg; zio_free(spa, tx->tx_txg, bp); dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, -bp_get_dsize_sync(spa, bp), -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); return (0); } static int dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp) { int err; zap_cursor_t zc; zap_attribute_t za; zap_cursor_init(&zc, os, zap_obj); err = zap_cursor_retrieve(&zc, &za); zap_cursor_fini(&zc); if (err == 0) *llp = za.za_first_integer; return (err); } /* * Components of livelist deletion that must be performed in syncing * context: freeing block pointers and updating the pool-wide data * structures to indicate how much work is left to do */ typedef struct sublist_delete_arg { spa_t *spa; dsl_deadlist_t *ll; uint64_t key; bplist_t *to_free; } sublist_delete_arg_t; static void sublist_delete_sync(void *arg, dmu_tx_t *tx) { sublist_delete_arg_t *sda = arg; spa_t *spa = sda->spa; dsl_deadlist_t *ll = sda->ll; uint64_t key = sda->key; bplist_t *to_free = sda->to_free; bplist_iterate(to_free, delete_blkptr_cb, spa, tx); dsl_deadlist_remove_entry(ll, key, tx); } typedef struct livelist_delete_arg { spa_t *spa; uint64_t ll_obj; uint64_t zap_obj; } livelist_delete_arg_t; static void livelist_delete_sync(void *arg, dmu_tx_t *tx) { livelist_delete_arg_t *lda = arg; spa_t *spa = lda->spa; uint64_t ll_obj = lda->ll_obj; uint64_t zap_obj = lda->zap_obj; objset_t *mos = spa->spa_meta_objset; uint64_t count; /* free the livelist and decrement the feature count */ VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx)); dsl_deadlist_free(mos, ll_obj, tx); spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx); VERIFY0(zap_count(mos, zap_obj, &count)); if (count == 0) { /* no more livelists to delete */ VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DELETED_CLONES, tx)); VERIFY0(zap_destroy(mos, zap_obj, tx)); spa->spa_livelists_to_delete = 0; spa_notify_waiters(spa); } } /* * Load in the value for the livelist to be removed and open it. Then, * load its first sublist and determine which block pointers should actually * be freed. Then, call a synctask which performs the actual frees and updates * the pool-wide livelist data. */ static void spa_livelist_delete_cb(void *arg, zthr_t *z) { spa_t *spa = arg; uint64_t ll_obj = 0, count; objset_t *mos = spa->spa_meta_objset; uint64_t zap_obj = spa->spa_livelists_to_delete; /* * Determine the next livelist to delete. This function should only * be called if there is at least one deleted clone. */ VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj)); VERIFY0(zap_count(mos, ll_obj, &count)); if (count > 0) { dsl_deadlist_t *ll; dsl_deadlist_entry_t *dle; bplist_t to_free; ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP); dsl_deadlist_open(ll, mos, ll_obj); dle = dsl_deadlist_first(ll); ASSERT3P(dle, !=, NULL); bplist_create(&to_free); int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free, z, NULL); if (err == 0) { sublist_delete_arg_t sync_arg = { .spa = spa, .ll = ll, .key = dle->dle_mintxg, .to_free = &to_free }; zfs_dbgmsg("deleting sublist (id %llu) from" " livelist %llu, %lld remaining", (u_longlong_t)dle->dle_bpobj.bpo_object, (u_longlong_t)ll_obj, (longlong_t)count - 1); VERIFY0(dsl_sync_task(spa_name(spa), NULL, sublist_delete_sync, &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY)); } else { VERIFY3U(err, ==, EINTR); } bplist_clear(&to_free); bplist_destroy(&to_free); dsl_deadlist_close(ll); kmem_free(ll, sizeof (dsl_deadlist_t)); } else { livelist_delete_arg_t sync_arg = { .spa = spa, .ll_obj = ll_obj, .zap_obj = zap_obj }; zfs_dbgmsg("deletion of livelist %llu completed", (u_longlong_t)ll_obj); VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync, &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY)); } } static void spa_start_livelist_destroy_thread(spa_t *spa) { ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL); spa->spa_livelist_delete_zthr = zthr_create("z_livelist_destroy", spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa, minclsyspri); } typedef struct livelist_new_arg { bplist_t *allocs; bplist_t *frees; } livelist_new_arg_t; static int livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) { ASSERT(tx == NULL); livelist_new_arg_t *lna = arg; if (bp_freed) { bplist_append(lna->frees, bp); } else { bplist_append(lna->allocs, bp); zfs_livelist_condense_new_alloc++; } return (0); } typedef struct livelist_condense_arg { spa_t *spa; bplist_t to_keep; uint64_t first_size; uint64_t next_size; } livelist_condense_arg_t; static void spa_livelist_condense_sync(void *arg, dmu_tx_t *tx) { livelist_condense_arg_t *lca = arg; spa_t *spa = lca->spa; bplist_t new_frees; dsl_dataset_t *ds = spa->spa_to_condense.ds; /* Have we been cancelled? */ if (spa->spa_to_condense.cancelled) { zfs_livelist_condense_sync_cancel++; goto out; } dsl_deadlist_entry_t *first = spa->spa_to_condense.first; dsl_deadlist_entry_t *next = spa->spa_to_condense.next; dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist; /* * It's possible that the livelist was changed while the zthr was * running. Therefore, we need to check for new blkptrs in the two * entries being condensed and continue to track them in the livelist. * Because of the way we handle remapped blkptrs (see dbuf_remap_impl), * it's possible that the newly added blkptrs are FREEs or ALLOCs so * we need to sort them into two different bplists. */ uint64_t first_obj = first->dle_bpobj.bpo_object; uint64_t next_obj = next->dle_bpobj.bpo_object; uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs; uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs; bplist_create(&new_frees); livelist_new_arg_t new_bps = { .allocs = &lca->to_keep, .frees = &new_frees, }; if (cur_first_size > lca->first_size) { VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj, livelist_track_new_cb, &new_bps, lca->first_size)); } if (cur_next_size > lca->next_size) { VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj, livelist_track_new_cb, &new_bps, lca->next_size)); } dsl_deadlist_clear_entry(first, ll, tx); ASSERT(bpobj_is_empty(&first->dle_bpobj)); dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx); bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx); bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx); bplist_destroy(&new_frees); char dsname[ZFS_MAX_DATASET_NAME_LEN]; dsl_dataset_name(ds, dsname); zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu " "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu " "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname, (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj, (u_longlong_t)cur_first_size, (u_longlong_t)next_obj, (u_longlong_t)cur_next_size, (u_longlong_t)first->dle_bpobj.bpo_object, (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs); out: dmu_buf_rele(ds->ds_dbuf, spa); spa->spa_to_condense.ds = NULL; bplist_clear(&lca->to_keep); bplist_destroy(&lca->to_keep); kmem_free(lca, sizeof (livelist_condense_arg_t)); spa->spa_to_condense.syncing = B_FALSE; } static void spa_livelist_condense_cb(void *arg, zthr_t *t) { while (zfs_livelist_condense_zthr_pause && !(zthr_has_waiters(t) || zthr_iscancelled(t))) delay(1); spa_t *spa = arg; dsl_deadlist_entry_t *first = spa->spa_to_condense.first; dsl_deadlist_entry_t *next = spa->spa_to_condense.next; uint64_t first_size, next_size; livelist_condense_arg_t *lca = kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP); bplist_create(&lca->to_keep); /* * Process the livelists (matching FREEs and ALLOCs) in open context * so we have minimal work in syncing context to condense. * * We save bpobj sizes (first_size and next_size) to use later in * syncing context to determine if entries were added to these sublists * while in open context. This is possible because the clone is still * active and open for normal writes and we want to make sure the new, * unprocessed blockpointers are inserted into the livelist normally. * * Note that dsl_process_sub_livelist() both stores the size number of * blockpointers and iterates over them while the bpobj's lock held, so * the sizes returned to us are consistent which what was actually * processed. */ int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t, &first_size); if (err == 0) err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep, t, &next_size); if (err == 0) { while (zfs_livelist_condense_sync_pause && !(zthr_has_waiters(t) || zthr_iscancelled(t))) delay(1); dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); dmu_tx_mark_netfree(tx); dmu_tx_hold_space(tx, 1); err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE); if (err == 0) { /* * Prevent the condense zthr restarting before * the synctask completes. */ spa->spa_to_condense.syncing = B_TRUE; lca->spa = spa; lca->first_size = first_size; lca->next_size = next_size; dsl_sync_task_nowait(spa_get_dsl(spa), spa_livelist_condense_sync, lca, tx); dmu_tx_commit(tx); return; } } /* * Condensing can not continue: either it was externally stopped or * we were unable to assign to a tx because the pool has run out of * space. In the second case, we'll just end up trying to condense * again in a later txg. */ ASSERT(err != 0); bplist_clear(&lca->to_keep); bplist_destroy(&lca->to_keep); kmem_free(lca, sizeof (livelist_condense_arg_t)); dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa); spa->spa_to_condense.ds = NULL; if (err == EINTR) zfs_livelist_condense_zthr_cancel++; } /* * Check that there is something to condense but that a condense is not * already in progress and that condensing has not been cancelled. */ static boolean_t spa_livelist_condense_cb_check(void *arg, zthr_t *z) { (void) z; spa_t *spa = arg; if ((spa->spa_to_condense.ds != NULL) && (spa->spa_to_condense.syncing == B_FALSE) && (spa->spa_to_condense.cancelled == B_FALSE)) { return (B_TRUE); } return (B_FALSE); } static void spa_start_livelist_condensing_thread(spa_t *spa) { spa->spa_to_condense.ds = NULL; spa->spa_to_condense.first = NULL; spa->spa_to_condense.next = NULL; spa->spa_to_condense.syncing = B_FALSE; spa->spa_to_condense.cancelled = B_FALSE; ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL); spa->spa_livelist_condense_zthr = zthr_create("z_livelist_condense", spa_livelist_condense_cb_check, spa_livelist_condense_cb, spa, minclsyspri); } static void spa_spawn_aux_threads(spa_t *spa) { ASSERT(spa_writeable(spa)); ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa_start_indirect_condensing_thread(spa); spa_start_livelist_destroy_thread(spa); spa_start_livelist_condensing_thread(spa); ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL); spa->spa_checkpoint_discard_zthr = zthr_create("z_checkpoint_discard", spa_checkpoint_discard_thread_check, spa_checkpoint_discard_thread, spa, minclsyspri); } /* * Fix up config after a partly-completed split. This is done with the * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off * pool have that entry in their config, but only the splitting one contains * a list of all the guids of the vdevs that are being split off. * * This function determines what to do with that list: either rejoin * all the disks to the pool, or complete the splitting process. To attempt * the rejoin, each disk that is offlined is marked online again, and * we do a reopen() call. If the vdev label for every disk that was * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) * then we call vdev_split() on each disk, and complete the split. * * Otherwise we leave the config alone, with all the vdevs in place in * the original pool. */ static void spa_try_repair(spa_t *spa, nvlist_t *config) { uint_t extracted; uint64_t *glist; uint_t i, gcount; nvlist_t *nvl; vdev_t **vd; boolean_t attempt_reopen; if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) return; /* check that the config is complete */ if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, &glist, &gcount) != 0) return; vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); /* attempt to online all the vdevs & validate */ attempt_reopen = B_TRUE; for (i = 0; i < gcount; i++) { if (glist[i] == 0) /* vdev is hole */ continue; vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); if (vd[i] == NULL) { /* * Don't bother attempting to reopen the disks; * just do the split. */ attempt_reopen = B_FALSE; } else { /* attempt to re-online it */ vd[i]->vdev_offline = B_FALSE; } } if (attempt_reopen) { vdev_reopen(spa->spa_root_vdev); /* check each device to see what state it's in */ for (extracted = 0, i = 0; i < gcount; i++) { if (vd[i] != NULL && vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) break; ++extracted; } } /* * If every disk has been moved to the new pool, or if we never * even attempted to look at them, then we split them off for * good. */ if (!attempt_reopen || gcount == extracted) { for (i = 0; i < gcount; i++) if (vd[i] != NULL) vdev_split(vd[i]); vdev_reopen(spa->spa_root_vdev); } kmem_free(vd, gcount * sizeof (vdev_t *)); } static int spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type) { const char *ereport = FM_EREPORT_ZFS_POOL; int error; spa->spa_load_state = state; (void) spa_import_progress_set_state(spa_guid(spa), spa_load_state(spa)); gethrestime(&spa->spa_loaded_ts); error = spa_load_impl(spa, type, &ereport); /* * Don't count references from objsets that are already closed * and are making their way through the eviction process. */ spa_evicting_os_wait(spa); spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); if (error) { if (error != EEXIST) { spa->spa_loaded_ts.tv_sec = 0; spa->spa_loaded_ts.tv_nsec = 0; } if (error != EBADF) { (void) zfs_ereport_post(ereport, spa, NULL, NULL, NULL, 0); } } spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; spa->spa_ena = 0; (void) spa_import_progress_set_state(spa_guid(spa), spa_load_state(spa)); return (error); } #ifdef ZFS_DEBUG /* * Count the number of per-vdev ZAPs associated with all of the vdevs in the * vdev tree rooted in the given vd, and ensure that each ZAP is present in the * spa's per-vdev ZAP list. */ static uint64_t vdev_count_verify_zaps(vdev_t *vd) { spa_t *spa = vd->vdev_spa; uint64_t total = 0; if (vd->vdev_top_zap != 0) { total++; ASSERT0(zap_lookup_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, vd->vdev_top_zap)); } if (vd->vdev_leaf_zap != 0) { total++; ASSERT0(zap_lookup_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); } for (uint64_t i = 0; i < vd->vdev_children; i++) { total += vdev_count_verify_zaps(vd->vdev_child[i]); } return (total); } #else #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0) #endif /* * Determine whether the activity check is required. */ static boolean_t spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label, nvlist_t *config) { uint64_t state = 0; uint64_t hostid = 0; uint64_t tryconfig_txg = 0; uint64_t tryconfig_timestamp = 0; uint16_t tryconfig_mmp_seq = 0; nvlist_t *nvinfo; if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO); (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG, &tryconfig_txg); (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP, &tryconfig_timestamp); (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ, &tryconfig_mmp_seq); } (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state); /* * Disable the MMP activity check - This is used by zdb which * is intended to be used on potentially active pools. */ if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) return (B_FALSE); /* * Skip the activity check when the MMP feature is disabled. */ if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0) return (B_FALSE); /* * If the tryconfig_ values are nonzero, they are the results of an * earlier tryimport. If they all match the uberblock we just found, * then the pool has not changed and we return false so we do not test * a second time. */ if (tryconfig_txg && tryconfig_txg == ub->ub_txg && tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp && tryconfig_mmp_seq && tryconfig_mmp_seq == (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) return (B_FALSE); /* * Allow the activity check to be skipped when importing the pool * on the same host which last imported it. Since the hostid from * configuration may be stale use the one read from the label. */ if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID)) hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID); if (hostid == spa_get_hostid(spa)) return (B_FALSE); /* * Skip the activity test when the pool was cleanly exported. */ if (state != POOL_STATE_ACTIVE) return (B_FALSE); return (B_TRUE); } /* * Nanoseconds the activity check must watch for changes on-disk. */ static uint64_t spa_activity_check_duration(spa_t *spa, uberblock_t *ub) { uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1); uint64_t multihost_interval = MSEC2NSEC( MMP_INTERVAL_OK(zfs_multihost_interval)); uint64_t import_delay = MAX(NANOSEC, import_intervals * multihost_interval); /* * Local tunables determine a minimum duration except for the case * where we know when the remote host will suspend the pool if MMP * writes do not land. * * See Big Theory comment at the top of mmp.c for the reasoning behind * these cases and times. */ ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100); if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && MMP_FAIL_INT(ub) > 0) { /* MMP on remote host will suspend pool after failed writes */ import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) * MMP_IMPORT_SAFETY_FACTOR / 100; zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp " "mmp_fails=%llu ub_mmp mmp_interval=%llu " "import_intervals=%llu", (u_longlong_t)import_delay, (u_longlong_t)MMP_FAIL_INT(ub), (u_longlong_t)MMP_INTERVAL(ub), (u_longlong_t)import_intervals); } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && MMP_FAIL_INT(ub) == 0) { /* MMP on remote host will never suspend pool */ import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) + ub->ub_mmp_delay) * import_intervals); zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp " "mmp_interval=%llu ub_mmp_delay=%llu " "import_intervals=%llu", (u_longlong_t)import_delay, (u_longlong_t)MMP_INTERVAL(ub), (u_longlong_t)ub->ub_mmp_delay, (u_longlong_t)import_intervals); } else if (MMP_VALID(ub)) { /* * zfs-0.7 compatibility case */ import_delay = MAX(import_delay, (multihost_interval + ub->ub_mmp_delay) * import_intervals); zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu " "import_intervals=%llu leaves=%u", (u_longlong_t)import_delay, (u_longlong_t)ub->ub_mmp_delay, (u_longlong_t)import_intervals, vdev_count_leaves(spa)); } else { /* Using local tunings is the only reasonable option */ zfs_dbgmsg("pool last imported on non-MMP aware " "host using import_delay=%llu multihost_interval=%llu " "import_intervals=%llu", (u_longlong_t)import_delay, (u_longlong_t)multihost_interval, (u_longlong_t)import_intervals); } return (import_delay); } /* * Perform the import activity check. If the user canceled the import or * we detected activity then fail. */ static int spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config) { uint64_t txg = ub->ub_txg; uint64_t timestamp = ub->ub_timestamp; uint64_t mmp_config = ub->ub_mmp_config; uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0; uint64_t import_delay; hrtime_t import_expire; nvlist_t *mmp_label = NULL; vdev_t *rvd = spa->spa_root_vdev; kcondvar_t cv; kmutex_t mtx; int error = 0; cv_init(&cv, NULL, CV_DEFAULT, NULL); mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL); mutex_enter(&mtx); /* * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed * during the earlier tryimport. If the txg recorded there is 0 then * the pool is known to be active on another host. * * Otherwise, the pool might be in use on another host. Check for * changes in the uberblocks on disk if necessary. */ if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { nvlist_t *nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO); if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) && fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) { vdev_uberblock_load(rvd, ub, &mmp_label); error = SET_ERROR(EREMOTEIO); goto out; } } import_delay = spa_activity_check_duration(spa, ub); /* Add a small random factor in case of simultaneous imports (0-25%) */ import_delay += import_delay * random_in_range(250) / 1000; import_expire = gethrtime() + import_delay; while (gethrtime() < import_expire) { (void) spa_import_progress_set_mmp_check(spa_guid(spa), NSEC2SEC(import_expire - gethrtime())); vdev_uberblock_load(rvd, ub, &mmp_label); if (txg != ub->ub_txg || timestamp != ub->ub_timestamp || mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) { zfs_dbgmsg("multihost activity detected " "txg %llu ub_txg %llu " "timestamp %llu ub_timestamp %llu " "mmp_config %#llx ub_mmp_config %#llx", (u_longlong_t)txg, (u_longlong_t)ub->ub_txg, (u_longlong_t)timestamp, (u_longlong_t)ub->ub_timestamp, (u_longlong_t)mmp_config, (u_longlong_t)ub->ub_mmp_config); error = SET_ERROR(EREMOTEIO); break; } if (mmp_label) { nvlist_free(mmp_label); mmp_label = NULL; } error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz); if (error != -1) { error = SET_ERROR(EINTR); break; } error = 0; } out: mutex_exit(&mtx); mutex_destroy(&mtx); cv_destroy(&cv); /* * If the pool is determined to be active store the status in the * spa->spa_load_info nvlist. If the remote hostname or hostid are * available from configuration read from disk store them as well. * This allows 'zpool import' to generate a more useful message. * * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory) * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool */ if (error == EREMOTEIO) { const char *hostname = ""; uint64_t hostid = 0; if (mmp_label) { if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) { hostname = fnvlist_lookup_string(mmp_label, ZPOOL_CONFIG_HOSTNAME); fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_MMP_HOSTNAME, hostname); } if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) { hostid = fnvlist_lookup_uint64(mmp_label, ZPOOL_CONFIG_HOSTID); fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_MMP_HOSTID, hostid); } } fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE); fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_MMP_TXG, 0); error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO); } if (mmp_label) nvlist_free(mmp_label); return (error); } static int spa_verify_host(spa_t *spa, nvlist_t *mos_config) { uint64_t hostid; char *hostname; uint64_t myhostid = 0; if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID, &hostid) == 0) { hostname = fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME); myhostid = zone_get_hostid(NULL); if (hostid != 0 && myhostid != 0 && hostid != myhostid) { cmn_err(CE_WARN, "pool '%s' could not be " "loaded as it was last accessed by " "another system (host: %s hostid: 0x%llx). " "See: https://openzfs.github.io/openzfs-docs/msg/" "ZFS-8000-EY", spa_name(spa), hostname, (u_longlong_t)hostid); spa_load_failed(spa, "hostid verification failed: pool " "last accessed by host: %s (hostid: 0x%llx)", hostname, (u_longlong_t)hostid); return (SET_ERROR(EBADF)); } } return (0); } static int spa_ld_parse_config(spa_t *spa, spa_import_type_t type) { int error = 0; nvlist_t *nvtree, *nvl, *config = spa->spa_config; int parse; vdev_t *rvd; uint64_t pool_guid; char *comment; char *compatibility; /* * Versioning wasn't explicitly added to the label until later, so if * it's not present treat it as the initial version. */ if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &spa->spa_ubsync.ub_version) != 0) spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { spa_load_failed(spa, "invalid config provided: '%s' missing", ZPOOL_CONFIG_POOL_GUID); return (SET_ERROR(EINVAL)); } /* * If we are doing an import, ensure that the pool is not already * imported by checking if its pool guid already exists in the * spa namespace. * * The only case that we allow an already imported pool to be * imported again, is when the pool is checkpointed and we want to * look at its checkpointed state from userland tools like zdb. */ #ifdef _KERNEL if ((spa->spa_load_state == SPA_LOAD_IMPORT || spa->spa_load_state == SPA_LOAD_TRYIMPORT) && spa_guid_exists(pool_guid, 0)) { #else if ((spa->spa_load_state == SPA_LOAD_IMPORT || spa->spa_load_state == SPA_LOAD_TRYIMPORT) && spa_guid_exists(pool_guid, 0) && !spa_importing_readonly_checkpoint(spa)) { #endif spa_load_failed(spa, "a pool with guid %llu is already open", (u_longlong_t)pool_guid); return (SET_ERROR(EEXIST)); } spa->spa_config_guid = pool_guid; nvlist_free(spa->spa_load_info); spa->spa_load_info = fnvlist_alloc(); ASSERT(spa->spa_comment == NULL); if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) spa->spa_comment = spa_strdup(comment); ASSERT(spa->spa_compatibility == NULL); if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY, &compatibility) == 0) spa->spa_compatibility = spa_strdup(compatibility); (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &spa->spa_config_txg); if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0) spa->spa_config_splitting = fnvlist_dup(nvl); if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) { spa_load_failed(spa, "invalid config provided: '%s' missing", ZPOOL_CONFIG_VDEV_TREE); return (SET_ERROR(EINVAL)); } /* * Create "The Godfather" zio to hold all async IOs */ spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), KM_SLEEP); for (int i = 0; i < max_ncpus; i++) { spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); } /* * Parse the configuration into a vdev tree. We explicitly set the * value that will be returned by spa_version() since parsing the * configuration requires knowing the version number. */ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); parse = (type == SPA_IMPORT_EXISTING ? VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse); spa_config_exit(spa, SCL_ALL, FTAG); if (error != 0) { spa_load_failed(spa, "unable to parse config [error=%d]", error); return (error); } ASSERT(spa->spa_root_vdev == rvd); ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); if (type != SPA_IMPORT_ASSEMBLE) { ASSERT(spa_guid(spa) == pool_guid); } return (0); } /* * Recursively open all vdevs in the vdev tree. This function is called twice: * first with the untrusted config, then with the trusted config. */ static int spa_ld_open_vdevs(spa_t *spa) { int error = 0; /* * spa_missing_tvds_allowed defines how many top-level vdevs can be * missing/unopenable for the root vdev to be still considered openable. */ if (spa->spa_trust_config) { spa->spa_missing_tvds_allowed = zfs_max_missing_tvds; } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) { spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile; } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) { spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan; } else { spa->spa_missing_tvds_allowed = 0; } spa->spa_missing_tvds_allowed = MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); error = vdev_open(spa->spa_root_vdev); spa_config_exit(spa, SCL_ALL, FTAG); if (spa->spa_missing_tvds != 0) { spa_load_note(spa, "vdev tree has %lld missing top-level " "vdevs.", (u_longlong_t)spa->spa_missing_tvds); if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) { /* * Although theoretically we could allow users to open * incomplete pools in RW mode, we'd need to add a lot * of extra logic (e.g. adjust pool space to account * for missing vdevs). * This limitation also prevents users from accidentally * opening the pool in RW mode during data recovery and * damaging it further. */ spa_load_note(spa, "pools with missing top-level " "vdevs can only be opened in read-only mode."); error = SET_ERROR(ENXIO); } else { spa_load_note(spa, "current settings allow for maximum " "%lld missing top-level vdevs at this stage.", (u_longlong_t)spa->spa_missing_tvds_allowed); } } if (error != 0) { spa_load_failed(spa, "unable to open vdev tree [error=%d]", error); } if (spa->spa_missing_tvds != 0 || error != 0) vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2); return (error); } /* * We need to validate the vdev labels against the configuration that * we have in hand. This function is called twice: first with an untrusted * config, then with a trusted config. The validation is more strict when the * config is trusted. */ static int spa_ld_validate_vdevs(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); error = vdev_validate(rvd); spa_config_exit(spa, SCL_ALL, FTAG); if (error != 0) { spa_load_failed(spa, "vdev_validate failed [error=%d]", error); return (error); } if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { spa_load_failed(spa, "cannot open vdev tree after invalidating " "some vdevs"); vdev_dbgmsg_print_tree(rvd, 2); return (SET_ERROR(ENXIO)); } return (0); } static void spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub) { spa->spa_state = POOL_STATE_ACTIVE; spa->spa_ubsync = spa->spa_uberblock; spa->spa_verify_min_txg = spa->spa_extreme_rewind ? TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; spa->spa_first_txg = spa->spa_last_ubsync_txg ? spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; spa->spa_claim_max_txg = spa->spa_first_txg; spa->spa_prev_software_version = ub->ub_software_version; } static int spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type) { vdev_t *rvd = spa->spa_root_vdev; nvlist_t *label; uberblock_t *ub = &spa->spa_uberblock; boolean_t activity_check = B_FALSE; /* * If we are opening the checkpointed state of the pool by * rewinding to it, at this point we will have written the * checkpointed uberblock to the vdev labels, so searching * the labels will find the right uberblock. However, if * we are opening the checkpointed state read-only, we have * not modified the labels. Therefore, we must ignore the * labels and continue using the spa_uberblock that was set * by spa_ld_checkpoint_rewind. * * Note that it would be fine to ignore the labels when * rewinding (opening writeable) as well. However, if we * crash just after writing the labels, we will end up * searching the labels. Doing so in the common case means * that this code path gets exercised normally, rather than * just in the edge case. */ if (ub->ub_checkpoint_txg != 0 && spa_importing_readonly_checkpoint(spa)) { spa_ld_select_uberblock_done(spa, ub); return (0); } /* * Find the best uberblock. */ vdev_uberblock_load(rvd, ub, &label); /* * If we weren't able to find a single valid uberblock, return failure. */ if (ub->ub_txg == 0) { nvlist_free(label); spa_load_failed(spa, "no valid uberblock found"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); } if (spa->spa_load_max_txg != UINT64_MAX) { (void) spa_import_progress_set_max_txg(spa_guid(spa), (u_longlong_t)spa->spa_load_max_txg); } spa_load_note(spa, "using uberblock with txg=%llu", (u_longlong_t)ub->ub_txg); /* * For pools which have the multihost property on determine if the * pool is truly inactive and can be safely imported. Prevent * hosts which don't have a hostid set from importing the pool. */ activity_check = spa_activity_check_required(spa, ub, label, spa->spa_config); if (activity_check) { if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay && spa_get_hostid(spa) == 0) { nvlist_free(label); fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); } int error = spa_activity_check(spa, ub, spa->spa_config); if (error) { nvlist_free(label); return (error); } fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE); fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_MMP_TXG, ub->ub_txg); fnvlist_add_uint16(spa->spa_load_info, ZPOOL_CONFIG_MMP_SEQ, (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)); } /* * If the pool has an unsupported version we can't open it. */ if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { nvlist_free(label); spa_load_failed(spa, "version %llu is not supported", (u_longlong_t)ub->ub_version); return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); } if (ub->ub_version >= SPA_VERSION_FEATURES) { nvlist_t *features; /* * If we weren't able to find what's necessary for reading the * MOS in the label, return failure. */ if (label == NULL) { spa_load_failed(spa, "label config unavailable"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); } if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { nvlist_free(label); spa_load_failed(spa, "invalid label: '%s' missing", ZPOOL_CONFIG_FEATURES_FOR_READ); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); } /* * Update our in-core representation with the definitive values * from the label. */ nvlist_free(spa->spa_label_features); spa->spa_label_features = fnvlist_dup(features); } nvlist_free(label); /* * Look through entries in the label nvlist's features_for_read. If * there is a feature listed there which we don't understand then we * cannot open a pool. */ if (ub->ub_version >= SPA_VERSION_FEATURES) { nvlist_t *unsup_feat; unsup_feat = fnvlist_alloc(); for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, NULL); nvp != NULL; nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { if (!zfeature_is_supported(nvpair_name(nvp))) { fnvlist_add_string(unsup_feat, nvpair_name(nvp), ""); } } if (!nvlist_empty(unsup_feat)) { fnvlist_add_nvlist(spa->spa_load_info, ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); nvlist_free(unsup_feat); spa_load_failed(spa, "some features are unsupported"); return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); } nvlist_free(unsup_feat); } if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_try_repair(spa, spa->spa_config); spa_config_exit(spa, SCL_ALL, FTAG); nvlist_free(spa->spa_config_splitting); spa->spa_config_splitting = NULL; } /* * Initialize internal SPA structures. */ spa_ld_select_uberblock_done(spa, ub); return (0); } static int spa_ld_open_rootbp(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); if (error != 0) { spa_load_failed(spa, "unable to open rootbp in dsl_pool_init " "[error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; return (0); } static int spa_ld_trusted_config(spa_t *spa, spa_import_type_t type, boolean_t reloading) { vdev_t *mrvd, *rvd = spa->spa_root_vdev; nvlist_t *nv, *mos_config, *policy; int error = 0, copy_error; uint64_t healthy_tvds, healthy_tvds_mos; uint64_t mos_config_txg; if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE) != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * If we're assembling a pool from a split, the config provided is * already trusted so there is nothing to do. */ if (type == SPA_IMPORT_ASSEMBLE) return (0); healthy_tvds = spa_healthy_core_tvds(spa); if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { spa_load_failed(spa, "unable to retrieve MOS config"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } /* * If we are doing an open, pool owner wasn't verified yet, thus do * the verification here. */ if (spa->spa_load_state == SPA_LOAD_OPEN) { error = spa_verify_host(spa, mos_config); if (error != 0) { nvlist_free(mos_config); return (error); } } nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); /* * Build a new vdev tree from the trusted config */ error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD); if (error != 0) { nvlist_free(mos_config); spa_config_exit(spa, SCL_ALL, FTAG); spa_load_failed(spa, "spa_config_parse failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); } /* * Vdev paths in the MOS may be obsolete. If the untrusted config was * obtained by scanning /dev/dsk, then it will have the right vdev * paths. We update the trusted MOS config with this information. * We first try to copy the paths with vdev_copy_path_strict, which * succeeds only when both configs have exactly the same vdev tree. * If that fails, we fall back to a more flexible method that has a * best effort policy. */ copy_error = vdev_copy_path_strict(rvd, mrvd); if (copy_error != 0 || spa_load_print_vdev_tree) { spa_load_note(spa, "provided vdev tree:"); vdev_dbgmsg_print_tree(rvd, 2); spa_load_note(spa, "MOS vdev tree:"); vdev_dbgmsg_print_tree(mrvd, 2); } if (copy_error != 0) { spa_load_note(spa, "vdev_copy_path_strict failed, falling " "back to vdev_copy_path_relaxed"); vdev_copy_path_relaxed(rvd, mrvd); } vdev_close(rvd); vdev_free(rvd); spa->spa_root_vdev = mrvd; rvd = mrvd; spa_config_exit(spa, SCL_ALL, FTAG); /* * We will use spa_config if we decide to reload the spa or if spa_load * fails and we rewind. We must thus regenerate the config using the * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to * pass settings on how to load the pool and is not stored in the MOS. * We copy it over to our new, trusted config. */ mos_config_txg = fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_POOL_TXG); nvlist_free(mos_config); mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE); if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY, &policy) == 0) fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy); spa_config_set(spa, mos_config); spa->spa_config_source = SPA_CONFIG_SRC_MOS; /* * Now that we got the config from the MOS, we should be more strict * in checking blkptrs and can make assumptions about the consistency * of the vdev tree. spa_trust_config must be set to true before opening * vdevs in order for them to be writeable. */ spa->spa_trust_config = B_TRUE; /* * Open and validate the new vdev tree */ error = spa_ld_open_vdevs(spa); if (error != 0) return (error); error = spa_ld_validate_vdevs(spa); if (error != 0) return (error); if (copy_error != 0 || spa_load_print_vdev_tree) { spa_load_note(spa, "final vdev tree:"); vdev_dbgmsg_print_tree(rvd, 2); } if (spa->spa_load_state != SPA_LOAD_TRYIMPORT && !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) { /* * Sanity check to make sure that we are indeed loading the * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds * in the config provided and they happened to be the only ones * to have the latest uberblock, we could involuntarily perform * an extreme rewind. */ healthy_tvds_mos = spa_healthy_core_tvds(spa); if (healthy_tvds_mos - healthy_tvds >= SPA_SYNC_MIN_VDEVS) { spa_load_note(spa, "config provided misses too many " "top-level vdevs compared to MOS (%lld vs %lld). ", (u_longlong_t)healthy_tvds, (u_longlong_t)healthy_tvds_mos); spa_load_note(spa, "vdev tree:"); vdev_dbgmsg_print_tree(rvd, 2); if (reloading) { spa_load_failed(spa, "config was already " "provided from MOS. Aborting."); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } spa_load_note(spa, "spa must be reloaded using MOS " "config"); return (SET_ERROR(EAGAIN)); } } error = spa_check_for_missing_logs(spa); if (error != 0) return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) { spa_load_failed(spa, "uberblock guid sum doesn't match MOS " "guid sum (%llu != %llu)", (u_longlong_t)spa->spa_uberblock.ub_guid_sum, (u_longlong_t)rvd->vdev_guid_sum); return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); } return (0); } static int spa_ld_open_indirect_vdev_metadata(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; /* * Everything that we read before spa_remove_init() must be stored * on concreted vdevs. Therefore we do this as early as possible. */ error = spa_remove_init(spa); if (error != 0) { spa_load_failed(spa, "spa_remove_init failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } /* * Retrieve information needed to condense indirect vdev mappings. */ error = spa_condense_init(spa); if (error != 0) { spa_load_failed(spa, "spa_condense_init failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); } return (0); } static int spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; if (spa_version(spa) >= SPA_VERSION_FEATURES) { boolean_t missing_feat_read = B_FALSE; nvlist_t *unsup_feat, *enabled_feat; if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, &spa->spa_feat_for_read_obj, B_TRUE) != 0) { return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, &spa->spa_feat_for_write_obj, B_TRUE) != 0) { return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, &spa->spa_feat_desc_obj, B_TRUE) != 0) { return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } enabled_feat = fnvlist_alloc(); unsup_feat = fnvlist_alloc(); if (!spa_features_check(spa, B_FALSE, unsup_feat, enabled_feat)) missing_feat_read = B_TRUE; if (spa_writeable(spa) || spa->spa_load_state == SPA_LOAD_TRYIMPORT) { if (!spa_features_check(spa, B_TRUE, unsup_feat, enabled_feat)) { *missing_feat_writep = B_TRUE; } } fnvlist_add_nvlist(spa->spa_load_info, ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); if (!nvlist_empty(unsup_feat)) { fnvlist_add_nvlist(spa->spa_load_info, ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); } fnvlist_free(enabled_feat); fnvlist_free(unsup_feat); if (!missing_feat_read) { fnvlist_add_boolean(spa->spa_load_info, ZPOOL_CONFIG_CAN_RDONLY); } /* * If the state is SPA_LOAD_TRYIMPORT, our objective is * twofold: to determine whether the pool is available for * import in read-write mode and (if it is not) whether the * pool is available for import in read-only mode. If the pool * is available for import in read-write mode, it is displayed * as available in userland; if it is not available for import * in read-only mode, it is displayed as unavailable in * userland. If the pool is available for import in read-only * mode but not read-write mode, it is displayed as unavailable * in userland with a special note that the pool is actually * available for open in read-only mode. * * As a result, if the state is SPA_LOAD_TRYIMPORT and we are * missing a feature for write, we must first determine whether * the pool can be opened read-only before returning to * userland in order to know whether to display the * abovementioned note. */ if (missing_feat_read || (*missing_feat_writep && spa_writeable(spa))) { spa_load_failed(spa, "pool uses unsupported features"); return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); } /* * Load refcounts for ZFS features from disk into an in-memory * cache during SPA initialization. */ for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { uint64_t refcount; error = feature_get_refcount_from_disk(spa, &spa_feature_table[i], &refcount); if (error == 0) { spa->spa_feat_refcount_cache[i] = refcount; } else if (error == ENOTSUP) { spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; } else { spa_load_failed(spa, "error getting refcount " "for feature %s [error=%d]", spa_feature_table[i].fi_guid, error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } } } if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } /* * Encryption was added before bookmark_v2, even though bookmark_v2 * is now a dependency. If this pool has encryption enabled without * bookmark_v2, trigger an errata message. */ if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) && !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) { spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION; } return (0); } static int spa_ld_load_special_directories(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; spa->spa_is_initializing = B_TRUE; error = dsl_pool_open(spa->spa_dsl_pool); spa->spa_is_initializing = B_FALSE; if (error != 0) { spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } return (0); } static int spa_ld_get_props(spa_t *spa) { int error = 0; uint64_t obj; vdev_t *rvd = spa->spa_root_vdev; /* Grab the checksum salt from the MOS. */ error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, sizeof (spa->spa_cksum_salt.zcs_bytes), spa->spa_cksum_salt.zcs_bytes); if (error == ENOENT) { /* Generate a new salt for subsequent use */ (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, sizeof (spa->spa_cksum_salt.zcs_bytes)); } else if (error != 0) { spa_load_failed(spa, "unable to retrieve checksum salt from " "MOS [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); if (error != 0) { spa_load_failed(spa, "error opening deferred-frees bpobj " "[error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } /* * Load the bit that tells us to use the new accounting function * (raid-z deflation). If we have an older pool, this will not * be present. */ error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, &spa->spa_creation_version, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * Load the persistent error log. If we have an older pool, this will * not be present. */ error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, &spa->spa_errlog_scrub, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * Load the livelist deletion field. If a livelist is queued for * deletion, indicate that in the spa */ error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES, &spa->spa_livelists_to_delete, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * Load the history object. If we have an older pool, this * will not be present. */ error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); /* * Load the per-vdev ZAP map. If we have an older pool, this will not * be present; in this case, defer its creation to a later time to * avoid dirtying the MOS this early / out of sync context. See * spa_sync_config_object. */ /* The sentinel is only available in the MOS config. */ nvlist_t *mos_config; if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { spa_load_failed(spa, "unable to retrieve MOS config"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, &spa->spa_all_vdev_zaps, B_FALSE); if (error == ENOENT) { VERIFY(!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); spa->spa_avz_action = AVZ_ACTION_INITIALIZE; ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); } else if (error != 0) { nvlist_free(mos_config); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { /* * An older version of ZFS overwrote the sentinel value, so * we have orphaned per-vdev ZAPs in the MOS. Defer their * destruction to later; see spa_sync_config_object. */ spa->spa_avz_action = AVZ_ACTION_DESTROY; /* * We're assuming that no vdevs have had their ZAPs created * before this. Better be sure of it. */ ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); } nvlist_free(mos_config); spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object, B_FALSE); if (error && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); if (error == 0) { uint64_t autoreplace = 0; spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost); spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim); spa->spa_autoreplace = (autoreplace != 0); } /* * If we are importing a pool with missing top-level vdevs, * we enforce that the pool doesn't panic or get suspended on * error since the likelihood of missing data is extremely high. */ if (spa->spa_missing_tvds > 0 && spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { spa_load_note(spa, "forcing failmode to 'continue' " "as some top level vdevs are missing"); spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE; } return (0); } static int spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; /* * If we're assembling the pool from the split-off vdevs of * an existing pool, we don't want to attach the spares & cache * devices. */ /* * Load any hot spares for this pool. */ error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); if (load_nvlist(spa, spa->spa_spares.sav_object, &spa->spa_spares.sav_config) != 0) { spa_load_failed(spa, "error loading spares nvlist"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_spares(spa); spa_config_exit(spa, SCL_ALL, FTAG); } else if (error == 0) { spa->spa_spares.sav_sync = B_TRUE; } /* * Load any level 2 ARC devices for this pool. */ error = spa_dir_prop(spa, DMU_POOL_L2CACHE, &spa->spa_l2cache.sav_object, B_FALSE); if (error != 0 && error != ENOENT) return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); if (load_nvlist(spa, spa->spa_l2cache.sav_object, &spa->spa_l2cache.sav_config) != 0) { spa_load_failed(spa, "error loading l2cache nvlist"); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_l2cache(spa); spa_config_exit(spa, SCL_ALL, FTAG); } else if (error == 0) { spa->spa_l2cache.sav_sync = B_TRUE; } return (0); } static int spa_ld_load_vdev_metadata(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; /* * If the 'multihost' property is set, then never allow a pool to * be imported when the system hostid is zero. The exception to * this rule is zdb which is always allowed to access pools. */ if (spa_multihost(spa) && spa_get_hostid(spa) == 0 && (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) { fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); } /* * If the 'autoreplace' property is set, then post a resource notifying * the ZFS DE that it should not issue any faults for unopenable * devices. We also iterate over the vdevs, and post a sysevent for any * unopenable vdevs so that the normal autoreplace handler can take * over. */ if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { spa_check_removed(spa->spa_root_vdev); /* * For the import case, this is done in spa_import(), because * at this point we're using the spare definitions from * the MOS config, not necessarily from the userland config. */ if (spa->spa_load_state != SPA_LOAD_IMPORT) { spa_aux_check_removed(&spa->spa_spares); spa_aux_check_removed(&spa->spa_l2cache); } } /* * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc. */ error = vdev_load(rvd); if (error != 0) { spa_load_failed(spa, "vdev_load failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); } error = spa_ld_log_spacemaps(spa); if (error != 0) { spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); } /* * Propagate the leaf DTLs we just loaded all the way up the vdev tree. */ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE); spa_config_exit(spa, SCL_ALL, FTAG); return (0); } static int spa_ld_load_dedup_tables(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; error = ddt_load(spa); if (error != 0) { spa_load_failed(spa, "ddt_load failed [error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); } return (0); } static int spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport) { vdev_t *rvd = spa->spa_root_vdev; if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) { boolean_t missing = spa_check_logs(spa); if (missing) { if (spa->spa_missing_tvds != 0) { spa_load_note(spa, "spa_check_logs failed " "so dropping the logs"); } else { *ereport = FM_EREPORT_ZFS_LOG_REPLAY; spa_load_failed(spa, "spa_check_logs failed"); return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); } } } return (0); } static int spa_ld_verify_pool_data(spa_t *spa) { int error = 0; vdev_t *rvd = spa->spa_root_vdev; /* * We've successfully opened the pool, verify that we're ready * to start pushing transactions. */ if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) { error = spa_load_verify(spa); if (error != 0) { spa_load_failed(spa, "spa_load_verify failed " "[error=%d]", error); return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); } } return (0); } static void spa_ld_claim_log_blocks(spa_t *spa) { dmu_tx_t *tx; dsl_pool_t *dp = spa_get_dsl(spa); /* * Claim log blocks that haven't been committed yet. * This must all happen in a single txg. * Note: spa_claim_max_txg is updated by spa_claim_notify(), * invoked from zil_claim_log_block()'s i/o done callback. * Price of rollback is that we abandon the log. */ spa->spa_claiming = B_TRUE; tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, zil_claim, tx, DS_FIND_CHILDREN); dmu_tx_commit(tx); spa->spa_claiming = B_FALSE; spa_set_log_state(spa, SPA_LOG_GOOD); } static void spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg, boolean_t update_config_cache) { vdev_t *rvd = spa->spa_root_vdev; int need_update = B_FALSE; /* * If the config cache is stale, or we have uninitialized * metaslabs (see spa_vdev_add()), then update the config. * * If this is a verbatim import, trust the current * in-core spa_config and update the disk labels. */ if (update_config_cache || config_cache_txg != spa->spa_config_txg || spa->spa_load_state == SPA_LOAD_IMPORT || spa->spa_load_state == SPA_LOAD_RECOVER || (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) need_update = B_TRUE; for (int c = 0; c < rvd->vdev_children; c++) if (rvd->vdev_child[c]->vdev_ms_array == 0) need_update = B_TRUE; /* * Update the config cache asynchronously in case we're the * root pool, in which case the config cache isn't writable yet. */ if (need_update) spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); } static void spa_ld_prepare_for_reload(spa_t *spa) { spa_mode_t mode = spa->spa_mode; int async_suspended = spa->spa_async_suspended; spa_unload(spa); spa_deactivate(spa); spa_activate(spa, mode); /* * We save the value of spa_async_suspended as it gets reset to 0 by * spa_unload(). We want to restore it back to the original value before * returning as we might be calling spa_async_resume() later. */ spa->spa_async_suspended = async_suspended; } static int spa_ld_read_checkpoint_txg(spa_t *spa) { uberblock_t checkpoint; int error = 0; ASSERT0(spa->spa_checkpoint_txg); ASSERT(MUTEX_HELD(&spa_namespace_lock)); error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); if (error == ENOENT) return (0); if (error != 0) return (error); ASSERT3U(checkpoint.ub_txg, !=, 0); ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0); ASSERT3U(checkpoint.ub_timestamp, !=, 0); spa->spa_checkpoint_txg = checkpoint.ub_txg; spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp; return (0); } static int spa_ld_mos_init(spa_t *spa, spa_import_type_t type) { int error = 0; ASSERT(MUTEX_HELD(&spa_namespace_lock)); ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); /* * Never trust the config that is provided unless we are assembling * a pool following a split. * This means don't trust blkptrs and the vdev tree in general. This * also effectively puts the spa in read-only mode since * spa_writeable() checks for spa_trust_config to be true. * We will later load a trusted config from the MOS. */ if (type != SPA_IMPORT_ASSEMBLE) spa->spa_trust_config = B_FALSE; /* * Parse the config provided to create a vdev tree. */ error = spa_ld_parse_config(spa, type); if (error != 0) return (error); spa_import_progress_add(spa); /* * Now that we have the vdev tree, try to open each vdev. This involves * opening the underlying physical device, retrieving its geometry and * probing the vdev with a dummy I/O. The state of each vdev will be set * based on the success of those operations. After this we'll be ready * to read from the vdevs. */ error = spa_ld_open_vdevs(spa); if (error != 0) return (error); /* * Read the label of each vdev and make sure that the GUIDs stored * there match the GUIDs in the config provided. * If we're assembling a new pool that's been split off from an * existing pool, the labels haven't yet been updated so we skip * validation for now. */ if (type != SPA_IMPORT_ASSEMBLE) { error = spa_ld_validate_vdevs(spa); if (error != 0) return (error); } /* * Read all vdev labels to find the best uberblock (i.e. latest, * unless spa_load_max_txg is set) and store it in spa_uberblock. We * get the list of features required to read blkptrs in the MOS from * the vdev label with the best uberblock and verify that our version * of zfs supports them all. */ error = spa_ld_select_uberblock(spa, type); if (error != 0) return (error); /* * Pass that uberblock to the dsl_pool layer which will open the root * blkptr. This blkptr points to the latest version of the MOS and will * allow us to read its contents. */ error = spa_ld_open_rootbp(spa); if (error != 0) return (error); return (0); } static int spa_ld_checkpoint_rewind(spa_t *spa) { uberblock_t checkpoint; int error = 0; ASSERT(MUTEX_HELD(&spa_namespace_lock)); ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); if (error != 0) { spa_load_failed(spa, "unable to retrieve checkpointed " "uberblock from the MOS config [error=%d]", error); if (error == ENOENT) error = ZFS_ERR_NO_CHECKPOINT; return (error); } ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg); ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg); /* * We need to update the txg and timestamp of the checkpointed * uberblock to be higher than the latest one. This ensures that * the checkpointed uberblock is selected if we were to close and * reopen the pool right after we've written it in the vdev labels. * (also see block comment in vdev_uberblock_compare) */ checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1; checkpoint.ub_timestamp = gethrestime_sec(); /* * Set current uberblock to be the checkpointed uberblock. */ spa->spa_uberblock = checkpoint; /* * If we are doing a normal rewind, then the pool is open for * writing and we sync the "updated" checkpointed uberblock to * disk. Once this is done, we've basically rewound the whole * pool and there is no way back. * * There are cases when we don't want to attempt and sync the * checkpointed uberblock to disk because we are opening a * pool as read-only. Specifically, verifying the checkpointed * state with zdb, and importing the checkpointed state to get * a "preview" of its content. */ if (spa_writeable(spa)) { vdev_t *rvd = spa->spa_root_vdev; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; int svdcount = 0; int children = rvd->vdev_children; int c0 = random_in_range(children); for (int c = 0; c < children; c++) { vdev_t *vd = rvd->vdev_child[(c0 + c) % children]; /* Stop when revisiting the first vdev */ if (c > 0 && svd[0] == vd) break; if (vd->vdev_ms_array == 0 || vd->vdev_islog || !vdev_is_concrete(vd)) continue; svd[svdcount++] = vd; if (svdcount == SPA_SYNC_MIN_VDEVS) break; } error = vdev_config_sync(svd, svdcount, spa->spa_first_txg); if (error == 0) spa->spa_last_synced_guid = rvd->vdev_guid; spa_config_exit(spa, SCL_ALL, FTAG); if (error != 0) { spa_load_failed(spa, "failed to write checkpointed " "uberblock to the vdev labels [error=%d]", error); return (error); } } return (0); } static int spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type, boolean_t *update_config_cache) { int error; /* * Parse the config for pool, open and validate vdevs, * select an uberblock, and use that uberblock to open * the MOS. */ error = spa_ld_mos_init(spa, type); if (error != 0) return (error); /* * Retrieve the trusted config stored in the MOS and use it to create * a new, exact version of the vdev tree, then reopen all vdevs. */ error = spa_ld_trusted_config(spa, type, B_FALSE); if (error == EAGAIN) { if (update_config_cache != NULL) *update_config_cache = B_TRUE; /* * Redo the loading process with the trusted config if it is * too different from the untrusted config. */ spa_ld_prepare_for_reload(spa); spa_load_note(spa, "RELOADING"); error = spa_ld_mos_init(spa, type); if (error != 0) return (error); error = spa_ld_trusted_config(spa, type, B_TRUE); if (error != 0) return (error); } else if (error != 0) { return (error); } return (0); } /* * Load an existing storage pool, using the config provided. This config * describes which vdevs are part of the pool and is later validated against * partial configs present in each vdev's label and an entire copy of the * config stored in the MOS. */ static int spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport) { int error = 0; boolean_t missing_feat_write = B_FALSE; boolean_t checkpoint_rewind = (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); boolean_t update_config_cache = B_FALSE; ASSERT(MUTEX_HELD(&spa_namespace_lock)); ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); spa_load_note(spa, "LOADING"); error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache); if (error != 0) return (error); /* * If we are rewinding to the checkpoint then we need to repeat * everything we've done so far in this function but this time * selecting the checkpointed uberblock and using that to open * the MOS. */ if (checkpoint_rewind) { /* * If we are rewinding to the checkpoint update config cache * anyway. */ update_config_cache = B_TRUE; /* * Extract the checkpointed uberblock from the current MOS * and use this as the pool's uberblock from now on. If the * pool is imported as writeable we also write the checkpoint * uberblock to the labels, making the rewind permanent. */ error = spa_ld_checkpoint_rewind(spa); if (error != 0) return (error); /* * Redo the loading process again with the * checkpointed uberblock. */ spa_ld_prepare_for_reload(spa); spa_load_note(spa, "LOADING checkpointed uberblock"); error = spa_ld_mos_with_trusted_config(spa, type, NULL); if (error != 0) return (error); } /* * Retrieve the checkpoint txg if the pool has a checkpoint. */ error = spa_ld_read_checkpoint_txg(spa); if (error != 0) return (error); /* * Retrieve the mapping of indirect vdevs. Those vdevs were removed * from the pool and their contents were re-mapped to other vdevs. Note * that everything that we read before this step must have been * rewritten on concrete vdevs after the last device removal was * initiated. Otherwise we could be reading from indirect vdevs before * we have loaded their mappings. */ error = spa_ld_open_indirect_vdev_metadata(spa); if (error != 0) return (error); /* * Retrieve the full list of active features from the MOS and check if * they are all supported. */ error = spa_ld_check_features(spa, &missing_feat_write); if (error != 0) return (error); /* * Load several special directories from the MOS needed by the dsl_pool * layer. */ error = spa_ld_load_special_directories(spa); if (error != 0) return (error); /* * Retrieve pool properties from the MOS. */ error = spa_ld_get_props(spa); if (error != 0) return (error); /* * Retrieve the list of auxiliary devices - cache devices and spares - * and open them. */ error = spa_ld_open_aux_vdevs(spa, type); if (error != 0) return (error); /* * Load the metadata for all vdevs. Also check if unopenable devices * should be autoreplaced. */ error = spa_ld_load_vdev_metadata(spa); if (error != 0) return (error); error = spa_ld_load_dedup_tables(spa); if (error != 0) return (error); /* * Verify the logs now to make sure we don't have any unexpected errors * when we claim log blocks later. */ error = spa_ld_verify_logs(spa, type, ereport); if (error != 0) return (error); if (missing_feat_write) { ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT); /* * At this point, we know that we can open the pool in * read-only mode but not read-write mode. We now have enough * information and can return to userland. */ return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); } /* * Traverse the last txgs to make sure the pool was left off in a safe * state. When performing an extreme rewind, we verify the whole pool, * which can take a very long time. */ error = spa_ld_verify_pool_data(spa); if (error != 0) return (error); /* * Calculate the deflated space for the pool. This must be done before * we write anything to the pool because we'd need to update the space * accounting using the deflated sizes. */ spa_update_dspace(spa); /* * We have now retrieved all the information we needed to open the * pool. If we are importing the pool in read-write mode, a few * additional steps must be performed to finish the import. */ if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER || spa->spa_load_max_txg == UINT64_MAX)) { uint64_t config_cache_txg = spa->spa_config_txg; ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT); /* * In case of a checkpoint rewind, log the original txg * of the checkpointed uberblock. */ if (checkpoint_rewind) { spa_history_log_internal(spa, "checkpoint rewind", NULL, "rewound state to txg=%llu", (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg); } /* * Traverse the ZIL and claim all blocks. */ spa_ld_claim_log_blocks(spa); /* * Kick-off the syncing thread. */ spa->spa_sync_on = B_TRUE; txg_sync_start(spa->spa_dsl_pool); mmp_thread_start(spa); /* * Wait for all claims to sync. We sync up to the highest * claimed log block birth time so that claimed log blocks * don't appear to be from the future. spa_claim_max_txg * will have been set for us by ZIL traversal operations * performed above. */ txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); /* * Check if we need to request an update of the config. On the * next sync, we would update the config stored in vdev labels * and the cachefile (by default /etc/zfs/zpool.cache). */ spa_ld_check_for_config_update(spa, config_cache_txg, update_config_cache); /* * Check if a rebuild was in progress and if so resume it. * Then check all DTLs to see if anything needs resilvering. * The resilver will be deferred if a rebuild was started. */ if (vdev_rebuild_active(spa->spa_root_vdev)) { vdev_rebuild_restart(spa); } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) && vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { spa_async_request(spa, SPA_ASYNC_RESILVER); } /* * Log the fact that we booted up (so that we can detect if * we rebooted in the middle of an operation). */ spa_history_log_version(spa, "open", NULL); spa_restart_removal(spa); spa_spawn_aux_threads(spa); /* * Delete any inconsistent datasets. * * Note: * Since we may be issuing deletes for clones here, * we make sure to do so after we've spawned all the * auxiliary threads above (from which the livelist * deletion zthr is part of). */ (void) dmu_objset_find(spa_name(spa), dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); /* * Clean up any stale temporary dataset userrefs. */ dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); vdev_initialize_restart(spa->spa_root_vdev); vdev_trim_restart(spa->spa_root_vdev); vdev_autotrim_restart(spa); spa_config_exit(spa, SCL_CONFIG, FTAG); } spa_import_progress_remove(spa_guid(spa)); spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); spa_load_note(spa, "LOADED"); return (0); } static int spa_load_retry(spa_t *spa, spa_load_state_t state) { spa_mode_t mode = spa->spa_mode; spa_unload(spa); spa_deactivate(spa); spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; spa_activate(spa, mode); spa_async_suspend(spa); spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu", (u_longlong_t)spa->spa_load_max_txg); return (spa_load(spa, state, SPA_IMPORT_EXISTING)); } /* * If spa_load() fails this function will try loading prior txg's. If * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this * function will not rewind the pool and will return the same error as * spa_load(). */ static int spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request, int rewind_flags) { nvlist_t *loadinfo = NULL; nvlist_t *config = NULL; int load_error, rewind_error; uint64_t safe_rewind_txg; uint64_t min_txg; if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { spa->spa_load_max_txg = spa->spa_load_txg; spa_set_log_state(spa, SPA_LOG_CLEAR); } else { spa->spa_load_max_txg = max_request; if (max_request != UINT64_MAX) spa->spa_extreme_rewind = B_TRUE; } load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING); if (load_error == 0) return (0); if (load_error == ZFS_ERR_NO_CHECKPOINT) { /* * When attempting checkpoint-rewind on a pool with no * checkpoint, we should not attempt to load uberblocks * from previous txgs when spa_load fails. */ ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); spa_import_progress_remove(spa_guid(spa)); return (load_error); } if (spa->spa_root_vdev != NULL) config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; if (rewind_flags & ZPOOL_NEVER_REWIND) { nvlist_free(config); spa_import_progress_remove(spa_guid(spa)); return (load_error); } if (state == SPA_LOAD_RECOVER) { /* Price of rolling back is discarding txgs, including log */ spa_set_log_state(spa, SPA_LOG_CLEAR); } else { /* * If we aren't rolling back save the load info from our first * import attempt so that we can restore it after attempting * to rewind. */ loadinfo = spa->spa_load_info; spa->spa_load_info = fnvlist_alloc(); } spa->spa_load_max_txg = spa->spa_last_ubsync_txg; safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? TXG_INITIAL : safe_rewind_txg; /* * Continue as long as we're finding errors, we're still within * the acceptable rewind range, and we're still finding uberblocks */ while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { if (spa->spa_load_max_txg < safe_rewind_txg) spa->spa_extreme_rewind = B_TRUE; rewind_error = spa_load_retry(spa, state); } spa->spa_extreme_rewind = B_FALSE; spa->spa_load_max_txg = UINT64_MAX; if (config && (rewind_error || state != SPA_LOAD_RECOVER)) spa_config_set(spa, config); else nvlist_free(config); if (state == SPA_LOAD_RECOVER) { ASSERT3P(loadinfo, ==, NULL); spa_import_progress_remove(spa_guid(spa)); return (rewind_error); } else { /* Store the rewind info as part of the initial load info */ fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, spa->spa_load_info); /* Restore the initial load info */ fnvlist_free(spa->spa_load_info); spa->spa_load_info = loadinfo; spa_import_progress_remove(spa_guid(spa)); return (load_error); } } /* * Pool Open/Import * * The import case is identical to an open except that the configuration is sent * down from userland, instead of grabbed from the configuration cache. For the * case of an open, the pool configuration will exist in the * POOL_STATE_UNINITIALIZED state. * * The stats information (gen/count/ustats) is used to gather vdev statistics at * the same time open the pool, without having to keep around the spa_t in some * ambiguous state. */ static int spa_open_common(const char *pool, spa_t **spapp, const void *tag, nvlist_t *nvpolicy, nvlist_t **config) { spa_t *spa; spa_load_state_t state = SPA_LOAD_OPEN; int error; int locked = B_FALSE; int firstopen = B_FALSE; *spapp = NULL; /* * As disgusting as this is, we need to support recursive calls to this * function because dsl_dir_open() is called during spa_load(), and ends * up calling spa_open() again. The real fix is to figure out how to * avoid dsl_dir_open() calling this in the first place. */ if (MUTEX_NOT_HELD(&spa_namespace_lock)) { mutex_enter(&spa_namespace_lock); locked = B_TRUE; } if ((spa = spa_lookup(pool)) == NULL) { if (locked) mutex_exit(&spa_namespace_lock); return (SET_ERROR(ENOENT)); } if (spa->spa_state == POOL_STATE_UNINITIALIZED) { zpool_load_policy_t policy; firstopen = B_TRUE; zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config, &policy); if (policy.zlp_rewind & ZPOOL_DO_REWIND) state = SPA_LOAD_RECOVER; spa_activate(spa, spa_mode_global); if (state != SPA_LOAD_RECOVER) spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; zfs_dbgmsg("spa_open_common: opening %s", pool); error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); if (error == EBADF) { /* * If vdev_validate() returns failure (indicated by * EBADF), it indicates that one of the vdevs indicates * that the pool has been exported or destroyed. If * this is the case, the config cache is out of sync and * we should remove the pool from the namespace. */ spa_unload(spa); spa_deactivate(spa); spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE); spa_remove(spa); if (locked) mutex_exit(&spa_namespace_lock); return (SET_ERROR(ENOENT)); } if (error) { /* * We can't open the pool, but we still have useful * information: the state of each vdev after the * attempted vdev_open(). Return this to the user. */ if (config != NULL && spa->spa_config) { *config = fnvlist_dup(spa->spa_config); fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info); } spa_unload(spa); spa_deactivate(spa); spa->spa_last_open_failed = error; if (locked) mutex_exit(&spa_namespace_lock); *spapp = NULL; return (error); } } spa_open_ref(spa, tag); if (config != NULL) *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); /* * If we've recovered the pool, pass back any information we * gathered while doing the load. */ if (state == SPA_LOAD_RECOVER) { fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info); } if (locked) { spa->spa_last_open_failed = 0; spa->spa_last_ubsync_txg = 0; spa->spa_load_txg = 0; mutex_exit(&spa_namespace_lock); } if (firstopen) zvol_create_minors_recursive(spa_name(spa)); *spapp = spa; return (0); } int spa_open_rewind(const char *name, spa_t **spapp, const void *tag, nvlist_t *policy, nvlist_t **config) { return (spa_open_common(name, spapp, tag, policy, config)); } int spa_open(const char *name, spa_t **spapp, const void *tag) { return (spa_open_common(name, spapp, tag, NULL, NULL)); } /* * Lookup the given spa_t, incrementing the inject count in the process, * preventing it from being exported or destroyed. */ spa_t * spa_inject_addref(char *name) { spa_t *spa; mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(name)) == NULL) { mutex_exit(&spa_namespace_lock); return (NULL); } spa->spa_inject_ref++; mutex_exit(&spa_namespace_lock); return (spa); } void spa_inject_delref(spa_t *spa) { mutex_enter(&spa_namespace_lock); spa->spa_inject_ref--; mutex_exit(&spa_namespace_lock); } /* * Add spares device information to the nvlist. */ static void spa_add_spares(spa_t *spa, nvlist_t *config) { nvlist_t **spares; uint_t i, nspares; nvlist_t *nvroot; uint64_t guid; vdev_stat_t *vs; uint_t vsc; uint64_t pool; ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); if (spa->spa_spares.sav_count == 0) return; nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, &spares, &nspares)); if (nspares != 0) { fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, nspares); VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares)); /* * Go through and find any spares which have since been * repurposed as an active spare. If this is the case, update * their status appropriately. */ for (i = 0; i < nspares; i++) { guid = fnvlist_lookup_uint64(spares[i], ZPOOL_CONFIG_GUID); if (spa_spare_exists(guid, &pool, NULL) && pool != 0ULL) { VERIFY0(nvlist_lookup_uint64_array(spares[i], ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)); vs->vs_state = VDEV_STATE_CANT_OPEN; vs->vs_aux = VDEV_AUX_SPARED; } } } } /* * Add l2cache device information to the nvlist, including vdev stats. */ static void spa_add_l2cache(spa_t *spa, nvlist_t *config) { nvlist_t **l2cache; uint_t i, j, nl2cache; nvlist_t *nvroot; uint64_t guid; vdev_t *vd; vdev_stat_t *vs; uint_t vsc; ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); if (spa->spa_l2cache.sav_count == 0) return; nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache)); if (nl2cache != 0) { fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, nl2cache); VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache)); /* * Update level 2 cache device stats. */ for (i = 0; i < nl2cache; i++) { guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID); vd = NULL; for (j = 0; j < spa->spa_l2cache.sav_count; j++) { if (guid == spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { vd = spa->spa_l2cache.sav_vdevs[j]; break; } } ASSERT(vd != NULL); VERIFY0(nvlist_lookup_uint64_array(l2cache[i], ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)); vdev_get_stats(vd, vs); vdev_config_generate_stats(vd, l2cache[i]); } } } static void spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features) { zap_cursor_t zc; zap_attribute_t za; if (spa->spa_feat_for_read_obj != 0) { for (zap_cursor_init(&zc, spa->spa_meta_objset, spa->spa_feat_for_read_obj); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { ASSERT(za.za_integer_length == sizeof (uint64_t) && za.za_num_integers == 1); VERIFY0(nvlist_add_uint64(features, za.za_name, za.za_first_integer)); } zap_cursor_fini(&zc); } if (spa->spa_feat_for_write_obj != 0) { for (zap_cursor_init(&zc, spa->spa_meta_objset, spa->spa_feat_for_write_obj); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { ASSERT(za.za_integer_length == sizeof (uint64_t) && za.za_num_integers == 1); VERIFY0(nvlist_add_uint64(features, za.za_name, za.za_first_integer)); } zap_cursor_fini(&zc); } } static void spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features) { int i; for (i = 0; i < SPA_FEATURES; i++) { zfeature_info_t feature = spa_feature_table[i]; uint64_t refcount; if (feature_get_refcount(spa, &feature, &refcount) != 0) continue; VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount)); } } /* * Store a list of pool features and their reference counts in the * config. * * The first time this is called on a spa, allocate a new nvlist, fetch * the pool features and reference counts from disk, then save the list * in the spa. In subsequent calls on the same spa use the saved nvlist * and refresh its values from the cached reference counts. This * ensures we don't block here on I/O on a suspended pool so 'zpool * clear' can resume the pool. */ static void spa_add_feature_stats(spa_t *spa, nvlist_t *config) { nvlist_t *features; ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); mutex_enter(&spa->spa_feat_stats_lock); features = spa->spa_feat_stats; if (features != NULL) { spa_feature_stats_from_cache(spa, features); } else { VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP)); spa->spa_feat_stats = features; spa_feature_stats_from_disk(spa, features); } VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, features)); mutex_exit(&spa->spa_feat_stats_lock); } int spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) { int error; spa_t *spa; *config = NULL; error = spa_open_common(name, &spa, FTAG, NULL, config); if (spa != NULL) { /* * This still leaves a window of inconsistency where the spares * or l2cache devices could change and the config would be * self-inconsistent. */ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); if (*config != NULL) { uint64_t loadtimes[2]; loadtimes[0] = spa->spa_loaded_ts.tv_sec; loadtimes[1] = spa->spa_loaded_ts.tv_nsec; fnvlist_add_uint64_array(*config, ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2); fnvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT, spa_get_errlog_size(spa)); if (spa_suspended(spa)) { fnvlist_add_uint64(*config, ZPOOL_CONFIG_SUSPENDED, spa->spa_failmode); fnvlist_add_uint64(*config, ZPOOL_CONFIG_SUSPENDED_REASON, spa->spa_suspended); } spa_add_spares(spa, *config); spa_add_l2cache(spa, *config); spa_add_feature_stats(spa, *config); } } /* * We want to get the alternate root even for faulted pools, so we cheat * and call spa_lookup() directly. */ if (altroot) { if (spa == NULL) { mutex_enter(&spa_namespace_lock); spa = spa_lookup(name); if (spa) spa_altroot(spa, altroot, buflen); else altroot[0] = '\0'; spa = NULL; mutex_exit(&spa_namespace_lock); } else { spa_altroot(spa, altroot, buflen); } } if (spa != NULL) { spa_config_exit(spa, SCL_CONFIG, FTAG); spa_close(spa, FTAG); } return (error); } /* * Validate that the auxiliary device array is well formed. We must have an * array of nvlists, each which describes a valid leaf vdev. If this is an * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be * specified, as long as they are well-formed. */ static int spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, spa_aux_vdev_t *sav, const char *config, uint64_t version, vdev_labeltype_t label) { nvlist_t **dev; uint_t i, ndev; vdev_t *vd; int error; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); /* * It's acceptable to have no devs specified. */ if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) return (0); if (ndev == 0) return (SET_ERROR(EINVAL)); /* * Make sure the pool is formatted with a version that supports this * device type. */ if (spa_version(spa) < version) return (SET_ERROR(ENOTSUP)); /* * Set the pending device list so we correctly handle device in-use * checking. */ sav->sav_pending = dev; sav->sav_npending = ndev; for (i = 0; i < ndev; i++) { if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, mode)) != 0) goto out; if (!vd->vdev_ops->vdev_op_leaf) { vdev_free(vd); error = SET_ERROR(EINVAL); goto out; } vd->vdev_top = vd; if ((error = vdev_open(vd)) == 0 && (error = vdev_label_init(vd, crtxg, label)) == 0) { fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, vd->vdev_guid); } vdev_free(vd); if (error && (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) goto out; else error = 0; } out: sav->sav_pending = NULL; sav->sav_npending = 0; return (error); } static int spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) { int error; ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, VDEV_LABEL_SPARE)) != 0) { return (error); } return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, VDEV_LABEL_L2CACHE)); } static void spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, const char *config) { int i; if (sav->sav_config != NULL) { nvlist_t **olddevs; uint_t oldndevs; nvlist_t **newdevs; /* * Generate new dev list by concatenating with the * current dev list. */ VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config, &olddevs, &oldndevs)); newdevs = kmem_alloc(sizeof (void *) * (ndevs + oldndevs), KM_SLEEP); for (i = 0; i < oldndevs; i++) newdevs[i] = fnvlist_dup(olddevs[i]); for (i = 0; i < ndevs; i++) newdevs[i + oldndevs] = fnvlist_dup(devs[i]); fnvlist_remove(sav->sav_config, config); fnvlist_add_nvlist_array(sav->sav_config, config, (const nvlist_t * const *)newdevs, ndevs + oldndevs); for (i = 0; i < oldndevs + ndevs; i++) nvlist_free(newdevs[i]); kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); } else { /* * Generate a new dev list. */ sav->sav_config = fnvlist_alloc(); fnvlist_add_nvlist_array(sav->sav_config, config, (const nvlist_t * const *)devs, ndevs); } } /* * Stop and drop level 2 ARC devices */ void spa_l2cache_drop(spa_t *spa) { vdev_t *vd; int i; spa_aux_vdev_t *sav = &spa->spa_l2cache; for (i = 0; i < sav->sav_count; i++) { uint64_t pool; vd = sav->sav_vdevs[i]; ASSERT(vd != NULL); if (spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL && l2arc_vdev_present(vd)) l2arc_remove_vdev(vd); } } /* * Verify encryption parameters for spa creation. If we are encrypting, we must * have the encryption feature flag enabled. */ static int spa_create_check_encryption_params(dsl_crypto_params_t *dcp, boolean_t has_encryption) { if (dcp->cp_crypt != ZIO_CRYPT_OFF && dcp->cp_crypt != ZIO_CRYPT_INHERIT && !has_encryption) return (SET_ERROR(ENOTSUP)); return (dmu_objset_create_crypt_check(NULL, dcp, NULL)); } /* * Pool Creation */ int spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, nvlist_t *zplprops, dsl_crypto_params_t *dcp) { spa_t *spa; char *altroot = NULL; vdev_t *rvd; dsl_pool_t *dp; dmu_tx_t *tx; int error = 0; uint64_t txg = TXG_INITIAL; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; uint64_t version, obj, ndraid = 0; boolean_t has_features; boolean_t has_encryption; boolean_t has_allocclass; spa_feature_t feat; char *feat_name; char *poolname; nvlist_t *nvl; if (props == NULL || nvlist_lookup_string(props, "tname", &poolname) != 0) poolname = (char *)pool; /* * If this pool already exists, return failure. */ mutex_enter(&spa_namespace_lock); if (spa_lookup(poolname) != NULL) { mutex_exit(&spa_namespace_lock); return (SET_ERROR(EEXIST)); } /* * Allocate a new spa_t structure. */ nvl = fnvlist_alloc(); fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool); (void) nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); spa = spa_add(poolname, nvl, altroot); fnvlist_free(nvl); spa_activate(spa, spa_mode_global); if (props && (error = spa_prop_validate(spa, props))) { spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } /* * Temporary pool names should never be written to disk. */ if (poolname != pool) spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME; has_features = B_FALSE; has_encryption = B_FALSE; has_allocclass = B_FALSE; for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); elem != NULL; elem = nvlist_next_nvpair(props, elem)) { if (zpool_prop_feature(nvpair_name(elem))) { has_features = B_TRUE; feat_name = strchr(nvpair_name(elem), '@') + 1; VERIFY0(zfeature_lookup_name(feat_name, &feat)); if (feat == SPA_FEATURE_ENCRYPTION) has_encryption = B_TRUE; if (feat == SPA_FEATURE_ALLOCATION_CLASSES) has_allocclass = B_TRUE; } } /* verify encryption params, if they were provided */ if (dcp != NULL) { error = spa_create_check_encryption_params(dcp, has_encryption); if (error != 0) { spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } } if (!has_allocclass && zfs_special_devs(nvroot, NULL)) { spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (ENOTSUP); } if (has_features || nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { version = SPA_VERSION; } ASSERT(SPA_VERSION_IS_SUPPORTED(version)); spa->spa_first_txg = txg; spa->spa_uberblock.ub_txg = txg - 1; spa->spa_uberblock.ub_version = version; spa->spa_ubsync = spa->spa_uberblock; spa->spa_load_state = SPA_LOAD_CREATE; spa->spa_removing_phys.sr_state = DSS_NONE; spa->spa_removing_phys.sr_removing_vdev = -1; spa->spa_removing_phys.sr_prev_indirect_vdev = -1; spa->spa_indirect_vdevs_loaded = B_TRUE; /* * Create "The Godfather" zio to hold all async IOs */ spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), KM_SLEEP); for (int i = 0; i < max_ncpus; i++) { spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); } /* * Create the root vdev. */ spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); ASSERT(error != 0 || rvd != NULL); ASSERT(error != 0 || spa->spa_root_vdev == rvd); if (error == 0 && !zfs_allocatable_devs(nvroot)) error = SET_ERROR(EINVAL); if (error == 0 && (error = vdev_create(rvd, txg, B_FALSE)) == 0 && (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 && (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) { /* * instantiate the metaslab groups (this will dirty the vdevs) * we can no longer error exit past this point */ for (int c = 0; error == 0 && c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; vdev_metaslab_set_size(vd); vdev_expand(vd, txg); } } spa_config_exit(spa, SCL_ALL, FTAG); if (error != 0) { spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } /* * Get the list of spares, if specified. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { spa->spa_spares.sav_config = fnvlist_alloc(); fnvlist_add_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, nspares); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_spares(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_spares.sav_sync = B_TRUE; } /* * Get the list of level 2 cache devices, if specified. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config, NV_UNIQUE_NAME, KM_SLEEP)); fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, nl2cache); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_l2cache(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_l2cache.sav_sync = B_TRUE; } spa->spa_is_initializing = B_TRUE; spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg); spa->spa_is_initializing = B_FALSE; /* * Create DDTs (dedup tables). */ ddt_create(spa); spa_update_dspace(spa); tx = dmu_tx_create_assigned(dp, txg); /* * Create the pool's history object. */ if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history) spa_history_create_obj(spa, tx); spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE); spa_history_log_version(spa, "create", tx); /* * Create the pool config object. */ spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { cmn_err(CE_PANIC, "failed to add pool config"); } if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, sizeof (uint64_t), 1, &version, tx) != 0) { cmn_err(CE_PANIC, "failed to add pool version"); } /* Newly created pools with the right version are always deflated. */ if (version >= SPA_VERSION_RAIDZ_DEFLATE) { spa->spa_deflate = TRUE; if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { cmn_err(CE_PANIC, "failed to add deflate"); } } /* * Create the deferred-free bpobj. Turn off compression * because sync-to-convergence takes longer if the blocksize * keeps changing. */ obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); dmu_object_set_compress(spa->spa_meta_objset, obj, ZIO_COMPRESS_OFF, tx); if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, sizeof (uint64_t), 1, &obj, tx) != 0) { cmn_err(CE_PANIC, "failed to add bpobj"); } VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj)); /* * Generate some random noise for salted checksums to operate on. */ (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, sizeof (spa->spa_cksum_salt.zcs_bytes)); /* * Set pool properties. */ spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST); spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM); if (props != NULL) { spa_configfile_set(spa, props, B_FALSE); spa_sync_props(props, tx); } for (int i = 0; i < ndraid; i++) spa_feature_incr(spa, SPA_FEATURE_DRAID, tx); dmu_tx_commit(tx); spa->spa_sync_on = B_TRUE; txg_sync_start(dp); mmp_thread_start(spa); txg_wait_synced(dp, txg); spa_spawn_aux_threads(spa); spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); /* * Don't count references from objsets that are already closed * and are making their way through the eviction process. */ spa_evicting_os_wait(spa); spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); spa->spa_load_state = SPA_LOAD_NONE; spa_import_os(spa); mutex_exit(&spa_namespace_lock); return (0); } /* * Import a non-root pool into the system. */ int spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) { spa_t *spa; char *altroot = NULL; spa_load_state_t state = SPA_LOAD_IMPORT; zpool_load_policy_t policy; spa_mode_t mode = spa_mode_global; uint64_t readonly = B_FALSE; int error; nvlist_t *nvroot; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; /* * If a pool with this name exists, return failure. */ mutex_enter(&spa_namespace_lock); if (spa_lookup(pool) != NULL) { mutex_exit(&spa_namespace_lock); return (SET_ERROR(EEXIST)); } /* * Create and initialize the spa structure. */ (void) nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); (void) nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); if (readonly) mode = SPA_MODE_READ; spa = spa_add(pool, config, altroot); spa->spa_import_flags = flags; /* * Verbatim import - Take a pool and insert it into the namespace * as if it had been loaded at boot. */ if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { if (props != NULL) spa_configfile_set(spa, props, B_FALSE); spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE); spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); zfs_dbgmsg("spa_import: verbatim import of %s", pool); mutex_exit(&spa_namespace_lock); return (0); } spa_activate(spa, mode); /* * Don't start async tasks until we know everything is healthy. */ spa_async_suspend(spa); zpool_get_load_policy(config, &policy); if (policy.zlp_rewind & ZPOOL_DO_REWIND) state = SPA_LOAD_RECOVER; spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT; if (state != SPA_LOAD_RECOVER) { spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; zfs_dbgmsg("spa_import: importing %s", pool); } else { zfs_dbgmsg("spa_import: importing %s, max_txg=%lld " "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg); } error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); /* * Propagate anything learned while loading the pool and pass it * back to caller (i.e. rewind info, missing devices, etc). */ fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); /* * Toss any existing sparelist, as it doesn't have any validity * anymore, and conflicts with spa_has_spare(). */ if (spa->spa_spares.sav_config) { nvlist_free(spa->spa_spares.sav_config); spa->spa_spares.sav_config = NULL; spa_load_spares(spa); } if (spa->spa_l2cache.sav_config) { nvlist_free(spa->spa_l2cache.sav_config); spa->spa_l2cache.sav_config = NULL; spa_load_l2cache(spa); } nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); spa_config_exit(spa, SCL_ALL, FTAG); if (props != NULL) spa_configfile_set(spa, props, B_FALSE); if (error != 0 || (props && spa_writeable(spa) && (error = spa_prop_set(spa, props)))) { spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } spa_async_resume(spa); /* * Override any spares and level 2 cache devices as specified by * the user, as these may have correct device names/devids, etc. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { if (spa->spa_spares.sav_config) fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES); else spa->spa_spares.sav_config = fnvlist_alloc(); fnvlist_add_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, nspares); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_spares(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_spares.sav_sync = B_TRUE; } if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { if (spa->spa_l2cache.sav_config) fnvlist_remove(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE); else spa->spa_l2cache.sav_config = fnvlist_alloc(); fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, nl2cache); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa_load_l2cache(spa); spa_config_exit(spa, SCL_ALL, FTAG); spa->spa_l2cache.sav_sync = B_TRUE; } /* * Check for any removed devices. */ if (spa->spa_autoreplace) { spa_aux_check_removed(&spa->spa_spares); spa_aux_check_removed(&spa->spa_l2cache); } if (spa_writeable(spa)) { /* * Update the config cache to include the newly-imported pool. */ spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); } /* * It's possible that the pool was expanded while it was exported. * We kick off an async task to handle this for us. */ spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); spa_history_log_version(spa, "import", NULL); spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); mutex_exit(&spa_namespace_lock); zvol_create_minors_recursive(pool); spa_import_os(spa); return (0); } nvlist_t * spa_tryimport(nvlist_t *tryconfig) { nvlist_t *config = NULL; char *poolname, *cachefile; spa_t *spa; uint64_t state; int error; zpool_load_policy_t policy; if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) return (NULL); if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) return (NULL); /* * Create and initialize the spa structure. */ mutex_enter(&spa_namespace_lock); spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); spa_activate(spa, SPA_MODE_READ); /* * Rewind pool if a max txg was provided. */ zpool_get_load_policy(spa->spa_config, &policy); if (policy.zlp_txg != UINT64_MAX) { spa->spa_load_max_txg = policy.zlp_txg; spa->spa_extreme_rewind = B_TRUE; zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld", poolname, (longlong_t)policy.zlp_txg); } else { zfs_dbgmsg("spa_tryimport: importing %s", poolname); } if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile) == 0) { zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile); spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; } else { spa->spa_config_source = SPA_CONFIG_SRC_SCAN; } error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING); /* * If 'tryconfig' was at least parsable, return the current config. */ if (spa->spa_root_vdev != NULL) { config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname); fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state); fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, spa->spa_uberblock.ub_timestamp); fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info); fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA, spa->spa_errata); /* * If the bootfs property exists on this pool then we * copy it out so that external consumers can tell which * pools are bootable. */ if ((!error || error == EEXIST) && spa->spa_bootfs) { char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); /* * We have to play games with the name since the * pool was opened as TRYIMPORT_NAME. */ if (dsl_dsobj_to_dsname(spa_name(spa), spa->spa_bootfs, tmpname) == 0) { char *cp; char *dsname; dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); cp = strchr(tmpname, '/'); if (cp == NULL) { (void) strlcpy(dsname, tmpname, MAXPATHLEN); } else { (void) snprintf(dsname, MAXPATHLEN, "%s/%s", poolname, ++cp); } fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS, dsname); kmem_free(dsname, MAXPATHLEN); } kmem_free(tmpname, MAXPATHLEN); } /* * Add the list of hot spares and level 2 cache devices. */ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); spa_add_spares(spa, config); spa_add_l2cache(spa, config); spa_config_exit(spa, SCL_CONFIG, FTAG); } spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (config); } /* * Pool export/destroy * * The act of destroying or exporting a pool is very simple. We make sure there * is no more pending I/O and any references to the pool are gone. Then, we * update the pool state and sync all the labels to disk, removing the * configuration from the cache afterwards. If the 'hardforce' flag is set, then * we don't sync the labels or remove the configuration cache. */ static int spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig, boolean_t force, boolean_t hardforce) { int error; spa_t *spa; if (oldconfig) *oldconfig = NULL; if (!(spa_mode_global & SPA_MODE_WRITE)) return (SET_ERROR(EROFS)); mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(pool)) == NULL) { mutex_exit(&spa_namespace_lock); return (SET_ERROR(ENOENT)); } if (spa->spa_is_exporting) { /* the pool is being exported by another thread */ mutex_exit(&spa_namespace_lock); return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS)); } spa->spa_is_exporting = B_TRUE; /* * Put a hold on the pool, drop the namespace lock, stop async tasks, * reacquire the namespace lock, and see if we can export. */ spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); spa_async_suspend(spa); if (spa->spa_zvol_taskq) { zvol_remove_minors(spa, spa_name(spa), B_TRUE); taskq_wait(spa->spa_zvol_taskq); } mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); if (spa->spa_state == POOL_STATE_UNINITIALIZED) goto export_spa; /* * The pool will be in core if it's openable, in which case we can * modify its state. Objsets may be open only because they're dirty, * so we have to force it to sync before checking spa_refcnt. */ if (spa->spa_sync_on) { txg_wait_synced(spa->spa_dsl_pool, 0); spa_evicting_os_wait(spa); } /* * A pool cannot be exported or destroyed if there are active * references. If we are resetting a pool, allow references by * fault injection handlers. */ if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) { error = SET_ERROR(EBUSY); goto fail; } if (spa->spa_sync_on) { vdev_t *rvd = spa->spa_root_vdev; /* * A pool cannot be exported if it has an active shared spare. * This is to prevent other pools stealing the active spare * from an exported pool. At user's own will, such pool can * be forcedly exported. */ if (!force && new_state == POOL_STATE_EXPORTED && spa_has_active_shared_spare(spa)) { error = SET_ERROR(EXDEV); goto fail; } /* * We're about to export or destroy this pool. Make sure * we stop all initialization and trim activity here before * we set the spa_final_txg. This will ensure that all * dirty data resulting from the initialization is * committed to disk before we unload the pool. */ vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE); vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE); vdev_autotrim_stop_all(spa); vdev_rebuild_stop_all(spa); /* * We want this to be reflected on every label, * so mark them all dirty. spa_unload() will do the * final sync that pushes these changes out. */ if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa->spa_state = new_state; vdev_config_dirty(rvd); spa_config_exit(spa, SCL_ALL, FTAG); } /* * If the log space map feature is enabled and the pool is * getting exported (but not destroyed), we want to spend some * time flushing as many metaslabs as we can in an attempt to * destroy log space maps and save import time. This has to be * done before we set the spa_final_txg, otherwise * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs. * spa_should_flush_logs_on_unload() should be called after * spa_state has been set to the new_state. */ if (spa_should_flush_logs_on_unload(spa)) spa_unload_log_sm_flush_all(spa); if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); spa->spa_final_txg = spa_last_synced_txg(spa) + TXG_DEFER_SIZE + 1; spa_config_exit(spa, SCL_ALL, FTAG); } } export_spa: spa_export_os(spa); if (new_state == POOL_STATE_DESTROYED) spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY); else if (new_state == POOL_STATE_EXPORTED) spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT); if (spa->spa_state != POOL_STATE_UNINITIALIZED) { spa_unload(spa); spa_deactivate(spa); } if (oldconfig && spa->spa_config) *oldconfig = fnvlist_dup(spa->spa_config); if (new_state != POOL_STATE_UNINITIALIZED) { if (!hardforce) spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE); spa_remove(spa); } else { /* * If spa_remove() is not called for this spa_t and * there is any possibility that it can be reused, * we make sure to reset the exporting flag. */ spa->spa_is_exporting = B_FALSE; } mutex_exit(&spa_namespace_lock); return (0); fail: spa->spa_is_exporting = B_FALSE; spa_async_resume(spa); mutex_exit(&spa_namespace_lock); return (error); } /* * Destroy a storage pool. */ int spa_destroy(const char *pool) { return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, B_FALSE, B_FALSE)); } /* * Export a storage pool. */ int spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force, boolean_t hardforce) { return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, force, hardforce)); } /* * Similar to spa_export(), this unloads the spa_t without actually removing it * from the namespace in any way. */ int spa_reset(const char *pool) { return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, B_FALSE, B_FALSE)); } /* * ========================================================================== * Device manipulation * ========================================================================== */ /* * This is called as a synctask to increment the draid feature flag */ static void spa_draid_feature_incr(void *arg, dmu_tx_t *tx) { spa_t *spa = dmu_tx_pool(tx)->dp_spa; int draid = (int)(uintptr_t)arg; for (int c = 0; c < draid; c++) spa_feature_incr(spa, SPA_FEATURE_DRAID, tx); } /* * Add a device to a storage pool. */ int spa_vdev_add(spa_t *spa, nvlist_t *nvroot) { uint64_t txg, ndraid = 0; int error; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd, *tvd; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; ASSERT(spa_writeable(spa)); txg = spa_vdev_enter(spa); if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, VDEV_ALLOC_ADD)) != 0) return (spa_vdev_exit(spa, NULL, txg, error)); spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0) nspares = 0; if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) != 0) nl2cache = 0; if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) return (spa_vdev_exit(spa, vd, txg, EINVAL)); if (vd->vdev_children != 0 && (error = vdev_create(vd, txg, B_FALSE)) != 0) { return (spa_vdev_exit(spa, vd, txg, error)); } /* * The virtual dRAID spares must be added after vdev tree is created * and the vdev guids are generated. The guid of their associated * dRAID is stored in the config and used when opening the spare. */ if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid, rvd->vdev_children)) == 0) { if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0) nspares = 0; } else { return (spa_vdev_exit(spa, vd, txg, error)); } /* * We must validate the spares and l2cache devices after checking the * children. Otherwise, vdev_inuse() will blindly overwrite the spare. */ if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) return (spa_vdev_exit(spa, vd, txg, error)); /* * If we are in the middle of a device removal, we can only add * devices which match the existing devices in the pool. * If we are in the middle of a removal, or have some indirect * vdevs, we can not add raidz or dRAID top levels. */ if (spa->spa_vdev_removal != NULL || spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { for (int c = 0; c < vd->vdev_children; c++) { tvd = vd->vdev_child[c]; if (spa->spa_vdev_removal != NULL && tvd->vdev_ashift != spa->spa_max_ashift) { return (spa_vdev_exit(spa, vd, txg, EINVAL)); } /* Fail if top level vdev is raidz or a dRAID */ if (vdev_get_nparity(tvd) != 0) return (spa_vdev_exit(spa, vd, txg, EINVAL)); /* * Need the top level mirror to be * a mirror of leaf vdevs only */ if (tvd->vdev_ops == &vdev_mirror_ops) { for (uint64_t cid = 0; cid < tvd->vdev_children; cid++) { vdev_t *cvd = tvd->vdev_child[cid]; if (!cvd->vdev_ops->vdev_op_leaf) { return (spa_vdev_exit(spa, vd, txg, EINVAL)); } } } } } for (int c = 0; c < vd->vdev_children; c++) { tvd = vd->vdev_child[c]; vdev_remove_child(vd, tvd); tvd->vdev_id = rvd->vdev_children; vdev_add_child(rvd, tvd); vdev_config_dirty(tvd); } if (nspares != 0) { spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, ZPOOL_CONFIG_SPARES); spa_load_spares(spa); spa->spa_spares.sav_sync = B_TRUE; } if (nl2cache != 0) { spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, ZPOOL_CONFIG_L2CACHE); spa_load_l2cache(spa); spa->spa_l2cache.sav_sync = B_TRUE; } /* * We can't increment a feature while holding spa_vdev so we * have to do it in a synctask. */ if (ndraid != 0) { dmu_tx_t *tx; tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr, (void *)(uintptr_t)ndraid, tx); dmu_tx_commit(tx); } /* * We have to be careful when adding new vdevs to an existing pool. * If other threads start allocating from these vdevs before we * sync the config cache, and we lose power, then upon reboot we may * fail to open the pool because there are DVAs that the config cache * can't translate. Therefore, we first add the vdevs without * initializing metaslabs; sync the config cache (via spa_vdev_exit()); * and then let spa_config_update() initialize the new metaslabs. * * spa_load() checks for added-but-not-initialized vdevs, so that * if we lose power at any point in this sequence, the remaining * steps will be completed the next time we load the pool. */ (void) spa_vdev_exit(spa, vd, txg, 0); mutex_enter(&spa_namespace_lock); spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD); mutex_exit(&spa_namespace_lock); return (0); } /* * Attach a device to a mirror. The arguments are the path to any device * in the mirror, and the nvroot for the new device. If the path specifies * a device that is not mirrored, we automatically insert the mirror vdev. * * If 'replacing' is specified, the new device is intended to replace the * existing device; in this case the two devices are made into their own * mirror using the 'replacing' vdev, which is functionally identical to * the mirror vdev (it actually reuses all the same ops) but has a few * extra rules: you can't attach to it after it's been created, and upon * completion of resilvering, the first disk (the one being replaced) * is automatically detached. * * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild) * should be performed instead of traditional healing reconstruction. From * an administrators perspective these are both resilver operations. */ int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing, int rebuild) { uint64_t txg, dtl_max_txg; vdev_t *rvd = spa->spa_root_vdev; vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; vdev_ops_t *pvops; char *oldvdpath, *newvdpath; int newvd_isspare; int error; ASSERT(spa_writeable(spa)); txg = spa_vdev_enter(spa); oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); ASSERT(MUTEX_HELD(&spa_namespace_lock)); if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { error = (spa_has_checkpoint(spa)) ? ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; return (spa_vdev_exit(spa, NULL, txg, error)); } if (rebuild) { if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); if (dsl_scan_resilvering(spa_get_dsl(spa))) return (spa_vdev_exit(spa, NULL, txg, ZFS_ERR_RESILVER_IN_PROGRESS)); } else { if (vdev_rebuild_active(rvd)) return (spa_vdev_exit(spa, NULL, txg, ZFS_ERR_REBUILD_IN_PROGRESS)); } if (spa->spa_vdev_removal != NULL) return (spa_vdev_exit(spa, NULL, txg, EBUSY)); if (oldvd == NULL) return (spa_vdev_exit(spa, NULL, txg, ENODEV)); if (!oldvd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); pvd = oldvd->vdev_parent; if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, VDEV_ALLOC_ATTACH) != 0) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); if (newrootvd->vdev_children != 1) return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); newvd = newrootvd->vdev_child[0]; if (!newvd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); if ((error = vdev_create(newrootvd, txg, replacing)) != 0) return (spa_vdev_exit(spa, newrootvd, txg, error)); /* * Spares can't replace logs */ if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); /* * A dRAID spare can only replace a child of its parent dRAID vdev. */ if (newvd->vdev_ops == &vdev_draid_spare_ops && oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) { return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); } if (rebuild) { /* * For rebuilds, the top vdev must support reconstruction * using only space maps. This means the only allowable * vdevs types are the root vdev, a mirror, or dRAID. */ tvd = pvd; if (pvd->vdev_top != NULL) tvd = pvd->vdev_top; if (tvd->vdev_ops != &vdev_mirror_ops && tvd->vdev_ops != &vdev_root_ops && tvd->vdev_ops != &vdev_draid_ops) { return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); } } if (!replacing) { /* * For attach, the only allowable parent is a mirror or the root * vdev. */ if (pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_root_ops) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); pvops = &vdev_mirror_ops; } else { /* * Active hot spares can only be replaced by inactive hot * spares. */ if (pvd->vdev_ops == &vdev_spare_ops && oldvd->vdev_isspare && !spa_has_spare(spa, newvd->vdev_guid)) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); /* * If the source is a hot spare, and the parent isn't already a * spare, then we want to create a new hot spare. Otherwise, we * want to create a replacing vdev. The user is not allowed to * attach to a spared vdev child unless the 'isspare' state is * the same (spare replaces spare, non-spare replaces * non-spare). */ if (pvd->vdev_ops == &vdev_replacing_ops && spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); } else if (pvd->vdev_ops == &vdev_spare_ops && newvd->vdev_isspare != oldvd->vdev_isspare) { return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); } if (newvd->vdev_isspare) pvops = &vdev_spare_ops; else pvops = &vdev_replacing_ops; } /* * Make sure the new device is big enough. */ if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); /* * The new device cannot have a higher alignment requirement * than the top-level vdev. */ if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); /* * If this is an in-place replacement, update oldvd's path and devid * to make it distinguishable from newvd, and unopenable from now on. */ if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { spa_strfree(oldvd->vdev_path); oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, KM_SLEEP); (void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5, "%s/%s", newvd->vdev_path, "old"); if (oldvd->vdev_devid != NULL) { spa_strfree(oldvd->vdev_devid); oldvd->vdev_devid = NULL; } } /* * If the parent is not a mirror, or if we're replacing, insert the new * mirror/replacing/spare vdev above oldvd. */ if (pvd->vdev_ops != pvops) pvd = vdev_add_parent(oldvd, pvops); ASSERT(pvd->vdev_top->vdev_parent == rvd); ASSERT(pvd->vdev_ops == pvops); ASSERT(oldvd->vdev_parent == pvd); /* * Extract the new device from its root and add it to pvd. */ vdev_remove_child(newrootvd, newvd); newvd->vdev_id = pvd->vdev_children; newvd->vdev_crtxg = oldvd->vdev_crtxg; vdev_add_child(pvd, newvd); /* * Reevaluate the parent vdev state. */ vdev_propagate_state(pvd); tvd = newvd->vdev_top; ASSERT(pvd->vdev_top == tvd); ASSERT(tvd->vdev_parent == rvd); vdev_config_dirty(tvd); /* * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account * for any dmu_sync-ed blocks. It will propagate upward when * spa_vdev_exit() calls vdev_dtl_reassess(). */ dtl_max_txg = txg + TXG_CONCURRENT_STATES; vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, dtl_max_txg - TXG_INITIAL); if (newvd->vdev_isspare) { spa_spare_activate(newvd); spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE); } oldvdpath = spa_strdup(oldvd->vdev_path); newvdpath = spa_strdup(newvd->vdev_path); newvd_isspare = newvd->vdev_isspare; /* * Mark newvd's DTL dirty in this txg. */ vdev_dirty(tvd, VDD_DTL, newvd, txg); /* * Schedule the resilver or rebuild to restart in the future. We do * this to ensure that dmu_sync-ed blocks have been stitched into the * respective datasets. */ if (rebuild) { newvd->vdev_rebuild_txg = txg; vdev_rebuild(tvd); } else { newvd->vdev_resilver_txg = txg; if (dsl_scan_resilvering(spa_get_dsl(spa)) && spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) { vdev_defer_resilver(newvd); } else { dsl_scan_restart_resilver(spa->spa_dsl_pool, dtl_max_txg); } } if (spa->spa_bootfs) spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH); spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH); /* * Commit the config */ (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); spa_history_log_internal(spa, "vdev attach", NULL, "%s vdev=%s %s vdev=%s", replacing && newvd_isspare ? "spare in" : replacing ? "replace" : "attach", newvdpath, replacing ? "for" : "to", oldvdpath); spa_strfree(oldvdpath); spa_strfree(newvdpath); return (0); } /* * Detach a device from a mirror or replacing vdev. * * If 'replace_done' is specified, only detach if the parent * is a replacing vdev. */ int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) { uint64_t txg; int error; vdev_t *rvd __maybe_unused = spa->spa_root_vdev; vdev_t *vd, *pvd, *cvd, *tvd; boolean_t unspare = B_FALSE; uint64_t unspare_guid = 0; char *vdpath; ASSERT(spa_writeable(spa)); txg = spa_vdev_detach_enter(spa, guid); vd = spa_lookup_by_guid(spa, guid, B_FALSE); /* * Besides being called directly from the userland through the * ioctl interface, spa_vdev_detach() can be potentially called * at the end of spa_vdev_resilver_done(). * * In the regular case, when we have a checkpoint this shouldn't * happen as we never empty the DTLs of a vdev during the scrub * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done() * should never get here when we have a checkpoint. * * That said, even in a case when we checkpoint the pool exactly * as spa_vdev_resilver_done() calls this function everything * should be fine as the resilver will return right away. */ ASSERT(MUTEX_HELD(&spa_namespace_lock)); if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { error = (spa_has_checkpoint(spa)) ? ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; return (spa_vdev_exit(spa, NULL, txg, error)); } if (vd == NULL) return (spa_vdev_exit(spa, NULL, txg, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); pvd = vd->vdev_parent; /* * If the parent/child relationship is not as expected, don't do it. * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing * vdev that's replacing B with C. The user's intent in replacing * is to go from M(A,B) to M(A,C). If the user decides to cancel * the replace by detaching C, the expected behavior is to end up * M(A,B). But suppose that right after deciding to detach C, * the replacement of B completes. We would have M(A,C), and then * ask to detach C, which would leave us with just A -- not what * the user wanted. To prevent this, we make sure that the * parent/child relationship hasn't changed -- in this example, * that C's parent is still the replacing vdev R. */ if (pvd->vdev_guid != pguid && pguid != 0) return (spa_vdev_exit(spa, NULL, txg, EBUSY)); /* * Only 'replacing' or 'spare' vdevs can be replaced. */ if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && pvd->vdev_ops != &vdev_spare_ops) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); ASSERT(pvd->vdev_ops != &vdev_spare_ops || spa_version(spa) >= SPA_VERSION_SPARES); /* * Only mirror, replacing, and spare vdevs support detach. */ if (pvd->vdev_ops != &vdev_replacing_ops && pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_spare_ops) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); /* * If this device has the only valid copy of some data, * we cannot safely detach it. */ if (vdev_dtl_required(vd)) return (spa_vdev_exit(spa, NULL, txg, EBUSY)); ASSERT(pvd->vdev_children >= 2); /* * If we are detaching the second disk from a replacing vdev, then * check to see if we changed the original vdev's path to have "/old" * at the end in spa_vdev_attach(). If so, undo that change now. */ if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && vd->vdev_path != NULL) { size_t len = strlen(vd->vdev_path); for (int c = 0; c < pvd->vdev_children; c++) { cvd = pvd->vdev_child[c]; if (cvd == vd || cvd->vdev_path == NULL) continue; if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && strcmp(cvd->vdev_path + len, "/old") == 0) { spa_strfree(cvd->vdev_path); cvd->vdev_path = spa_strdup(vd->vdev_path); break; } } } /* * If we are detaching the original disk from a normal spare, then it * implies that the spare should become a real disk, and be removed * from the active spare list for the pool. dRAID spares on the * other hand are coupled to the pool and thus should never be removed * from the spares list. */ if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) { vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1]; if (last_cvd->vdev_isspare && last_cvd->vdev_ops != &vdev_draid_spare_ops) { unspare = B_TRUE; } } /* * Erase the disk labels so the disk can be used for other things. * This must be done after all other error cases are handled, * but before we disembowel vd (so we can still do I/O to it). * But if we can't do it, don't treat the error as fatal -- * it may be that the unwritability of the disk is the reason * it's being detached! */ (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); /* * Remove vd from its parent and compact the parent's children. */ vdev_remove_child(pvd, vd); vdev_compact_children(pvd); /* * Remember one of the remaining children so we can get tvd below. */ cvd = pvd->vdev_child[pvd->vdev_children - 1]; /* * If we need to remove the remaining child from the list of hot spares, * do it now, marking the vdev as no longer a spare in the process. * We must do this before vdev_remove_parent(), because that can * change the GUID if it creates a new toplevel GUID. For a similar * reason, we must remove the spare now, in the same txg as the detach; * otherwise someone could attach a new sibling, change the GUID, and * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. */ if (unspare) { ASSERT(cvd->vdev_isspare); spa_spare_remove(cvd); unspare_guid = cvd->vdev_guid; (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); cvd->vdev_unspare = B_TRUE; } /* * If the parent mirror/replacing vdev only has one child, * the parent is no longer needed. Remove it from the tree. */ if (pvd->vdev_children == 1) { if (pvd->vdev_ops == &vdev_spare_ops) cvd->vdev_unspare = B_FALSE; vdev_remove_parent(cvd); } /* * We don't set tvd until now because the parent we just removed * may have been the previous top-level vdev. */ tvd = cvd->vdev_top; ASSERT(tvd->vdev_parent == rvd); /* * Reevaluate the parent vdev state. */ vdev_propagate_state(cvd); /* * If the 'autoexpand' property is set on the pool then automatically * try to expand the size of the pool. For example if the device we * just detached was smaller than the others, it may be possible to * add metaslabs (i.e. grow the pool). We need to reopen the vdev * first so that we can obtain the updated sizes of the leaf vdevs. */ if (spa->spa_autoexpand) { vdev_reopen(tvd); vdev_expand(tvd, txg); } vdev_config_dirty(tvd); /* * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that * vd->vdev_detached is set and free vd's DTL object in syncing context. * But first make sure we're not on any *other* txg's DTL list, to * prevent vd from being accessed after it's freed. */ vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none"); for (int t = 0; t < TXG_SIZE; t++) (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); vd->vdev_detached = B_TRUE; vdev_dirty(tvd, VDD_DTL, vd, txg); spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE); spa_notify_waiters(spa); /* hang on to the spa before we release the lock */ spa_open_ref(spa, FTAG); error = spa_vdev_exit(spa, vd, txg, 0); spa_history_log_internal(spa, "detach", NULL, "vdev=%s", vdpath); spa_strfree(vdpath); /* * If this was the removal of the original device in a hot spare vdev, * then we want to go through and remove the device from the hot spare * list of every other pool. */ if (unspare) { spa_t *altspa = NULL; mutex_enter(&spa_namespace_lock); while ((altspa = spa_next(altspa)) != NULL) { if (altspa->spa_state != POOL_STATE_ACTIVE || altspa == spa) continue; spa_open_ref(altspa, FTAG); mutex_exit(&spa_namespace_lock); (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); mutex_enter(&spa_namespace_lock); spa_close(altspa, FTAG); } mutex_exit(&spa_namespace_lock); /* search the rest of the vdevs for spares to remove */ spa_vdev_resilver_done(spa); } /* all done with the spa; OK to release */ mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); mutex_exit(&spa_namespace_lock); return (error); } static int spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, list_t *vd_list) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); /* Look up vdev and ensure it's a leaf. */ vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); if (vd == NULL || vd->vdev_detached) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(ENODEV)); } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(EINVAL)); } else if (!vdev_writeable(vd)) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(EROFS)); } mutex_enter(&vd->vdev_initialize_lock); spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); /* * When we activate an initialize action we check to see * if the vdev_initialize_thread is NULL. We do this instead * of using the vdev_initialize_state since there might be * a previous initialization process which has completed but * the thread is not exited. */ if (cmd_type == POOL_INITIALIZE_START && (vd->vdev_initialize_thread != NULL || vd->vdev_top->vdev_removing)) { mutex_exit(&vd->vdev_initialize_lock); return (SET_ERROR(EBUSY)); } else if (cmd_type == POOL_INITIALIZE_CANCEL && (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE && vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) { mutex_exit(&vd->vdev_initialize_lock); return (SET_ERROR(ESRCH)); } else if (cmd_type == POOL_INITIALIZE_SUSPEND && vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) { mutex_exit(&vd->vdev_initialize_lock); return (SET_ERROR(ESRCH)); } switch (cmd_type) { case POOL_INITIALIZE_START: vdev_initialize(vd); break; case POOL_INITIALIZE_CANCEL: vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list); break; case POOL_INITIALIZE_SUSPEND: vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list); break; default: panic("invalid cmd_type %llu", (unsigned long long)cmd_type); } mutex_exit(&vd->vdev_initialize_lock); return (0); } int spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, nvlist_t *vdev_errlist) { int total_errors = 0; list_t vd_list; list_create(&vd_list, sizeof (vdev_t), offsetof(vdev_t, vdev_initialize_node)); /* * We hold the namespace lock through the whole function * to prevent any changes to the pool while we're starting or * stopping initialization. The config and state locks are held so that * we can properly assess the vdev state before we commit to * the initializing operation. */ mutex_enter(&spa_namespace_lock); for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { uint64_t vdev_guid = fnvpair_value_uint64(pair); int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type, &vd_list); if (error != 0) { char guid_as_str[MAXNAMELEN]; (void) snprintf(guid_as_str, sizeof (guid_as_str), "%llu", (unsigned long long)vdev_guid); fnvlist_add_int64(vdev_errlist, guid_as_str, error); total_errors++; } } /* Wait for all initialize threads to stop. */ vdev_initialize_stop_wait(spa, &vd_list); /* Sync out the initializing state */ txg_wait_synced(spa->spa_dsl_pool, 0); mutex_exit(&spa_namespace_lock); list_destroy(&vd_list); return (total_errors); } static int spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list) { ASSERT(MUTEX_HELD(&spa_namespace_lock)); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); /* Look up vdev and ensure it's a leaf. */ vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); if (vd == NULL || vd->vdev_detached) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(ENODEV)); } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(EINVAL)); } else if (!vdev_writeable(vd)) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(EROFS)); } else if (!vd->vdev_has_trim) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(EOPNOTSUPP)); } else if (secure && !vd->vdev_has_securetrim) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (SET_ERROR(EOPNOTSUPP)); } mutex_enter(&vd->vdev_trim_lock); spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); /* * When we activate a TRIM action we check to see if the * vdev_trim_thread is NULL. We do this instead of using the * vdev_trim_state since there might be a previous TRIM process * which has completed but the thread is not exited. */ if (cmd_type == POOL_TRIM_START && (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) { mutex_exit(&vd->vdev_trim_lock); return (SET_ERROR(EBUSY)); } else if (cmd_type == POOL_TRIM_CANCEL && (vd->vdev_trim_state != VDEV_TRIM_ACTIVE && vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) { mutex_exit(&vd->vdev_trim_lock); return (SET_ERROR(ESRCH)); } else if (cmd_type == POOL_TRIM_SUSPEND && vd->vdev_trim_state != VDEV_TRIM_ACTIVE) { mutex_exit(&vd->vdev_trim_lock); return (SET_ERROR(ESRCH)); } switch (cmd_type) { case POOL_TRIM_START: vdev_trim(vd, rate, partial, secure); break; case POOL_TRIM_CANCEL: vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list); break; case POOL_TRIM_SUSPEND: vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list); break; default: panic("invalid cmd_type %llu", (unsigned long long)cmd_type); } mutex_exit(&vd->vdev_trim_lock); return (0); } /* * Initiates a manual TRIM for the requested vdevs. This kicks off individual * TRIM threads for each child vdev. These threads pass over all of the free * space in the vdev's metaslabs and issues TRIM commands for that space. */ int spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate, boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist) { int total_errors = 0; list_t vd_list; list_create(&vd_list, sizeof (vdev_t), offsetof(vdev_t, vdev_trim_node)); /* * We hold the namespace lock through the whole function * to prevent any changes to the pool while we're starting or * stopping TRIM. The config and state locks are held so that * we can properly assess the vdev state before we commit to * the TRIM operation. */ mutex_enter(&spa_namespace_lock); for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { uint64_t vdev_guid = fnvpair_value_uint64(pair); int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type, rate, partial, secure, &vd_list); if (error != 0) { char guid_as_str[MAXNAMELEN]; (void) snprintf(guid_as_str, sizeof (guid_as_str), "%llu", (unsigned long long)vdev_guid); fnvlist_add_int64(vdev_errlist, guid_as_str, error); total_errors++; } } /* Wait for all TRIM threads to stop. */ vdev_trim_stop_wait(spa, &vd_list); /* Sync out the TRIM state */ txg_wait_synced(spa->spa_dsl_pool, 0); mutex_exit(&spa_namespace_lock); list_destroy(&vd_list); return (total_errors); } /* * Split a set of devices from their mirrors, and create a new pool from them. */ int spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config, nvlist_t *props, boolean_t exp) { int error = 0; uint64_t txg, *glist; spa_t *newspa; uint_t c, children, lastlog; nvlist_t **child, *nvl, *tmp; dmu_tx_t *tx; char *altroot = NULL; vdev_t *rvd, **vml = NULL; /* vdev modify list */ boolean_t activate_slog; ASSERT(spa_writeable(spa)); txg = spa_vdev_enter(spa); ASSERT(MUTEX_HELD(&spa_namespace_lock)); if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { error = (spa_has_checkpoint(spa)) ? ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; return (spa_vdev_exit(spa, NULL, txg, error)); } /* clear the log and flush everything up to now */ activate_slog = spa_passivate_log(spa); (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); error = spa_reset_logs(spa); txg = spa_vdev_config_enter(spa); if (activate_slog) spa_activate_log(spa); if (error != 0) return (spa_vdev_exit(spa, NULL, txg, error)); /* check new spa name before going any further */ if (spa_lookup(newname) != NULL) return (spa_vdev_exit(spa, NULL, txg, EEXIST)); /* * scan through all the children to ensure they're all mirrors */ if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); /* first, check to ensure we've got the right child count */ rvd = spa->spa_root_vdev; lastlog = 0; for (c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; /* don't count the holes & logs as children */ if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops && !vdev_is_concrete(vd))) { if (lastlog == 0) lastlog = c; continue; } lastlog = 0; } if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); /* next, ensure no spare or cache devices are part of the split */ if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); /* then, loop over each vdev and validate it */ for (c = 0; c < children; c++) { uint64_t is_hole = 0; (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, &is_hole); if (is_hole != 0) { if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || spa->spa_root_vdev->vdev_child[c]->vdev_islog) { continue; } else { error = SET_ERROR(EINVAL); break; } } /* deal with indirect vdevs */ if (spa->spa_root_vdev->vdev_child[c]->vdev_ops == &vdev_indirect_ops) continue; /* which disk is going to be split? */ if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, &glist[c]) != 0) { error = SET_ERROR(EINVAL); break; } /* look it up in the spa */ vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); if (vml[c] == NULL) { error = SET_ERROR(ENODEV); break; } /* make sure there's nothing stopping the split */ if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || vml[c]->vdev_islog || !vdev_is_concrete(vml[c]) || vml[c]->vdev_isspare || vml[c]->vdev_isl2cache || !vdev_writeable(vml[c]) || vml[c]->vdev_children != 0 || vml[c]->vdev_state != VDEV_STATE_HEALTHY || c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { error = SET_ERROR(EINVAL); break; } if (vdev_dtl_required(vml[c]) || vdev_resilver_needed(vml[c], NULL, NULL)) { error = SET_ERROR(EBUSY); break; } /* we need certain info from the top level */ fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, vml[c]->vdev_top->vdev_ms_array); fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, vml[c]->vdev_top->vdev_ms_shift); fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, vml[c]->vdev_top->vdev_asize); fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, vml[c]->vdev_top->vdev_ashift); /* transfer per-vdev ZAPs */ ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); VERIFY0(nvlist_add_uint64(child[c], ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); VERIFY0(nvlist_add_uint64(child[c], ZPOOL_CONFIG_VDEV_TOP_ZAP, vml[c]->vdev_parent->vdev_top_zap)); } if (error != 0) { kmem_free(vml, children * sizeof (vdev_t *)); kmem_free(glist, children * sizeof (uint64_t)); return (spa_vdev_exit(spa, NULL, txg, error)); } /* stop writers from using the disks */ for (c = 0; c < children; c++) { if (vml[c] != NULL) vml[c]->vdev_offline = B_TRUE; } vdev_reopen(spa->spa_root_vdev); /* * Temporarily record the splitting vdevs in the spa config. This * will disappear once the config is regenerated. */ nvl = fnvlist_alloc(); fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children); kmem_free(glist, children * sizeof (uint64_t)); mutex_enter(&spa->spa_props_lock); fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl); mutex_exit(&spa->spa_props_lock); spa->spa_config_splitting = nvl; vdev_config_dirty(spa->spa_root_vdev); /* configure and create the new pool */ fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname); fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE); fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa)); fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg); fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, spa_generate_guid(NULL)); VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); (void) nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); /* add the new pool to the namespace */ newspa = spa_add(newname, config, altroot); newspa->spa_avz_action = AVZ_ACTION_REBUILD; newspa->spa_config_txg = spa->spa_config_txg; spa_set_log_state(newspa, SPA_LOG_CLEAR); /* release the spa config lock, retaining the namespace lock */ spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); if (zio_injection_enabled) zio_handle_panic_injection(spa, FTAG, 1); spa_activate(newspa, spa_mode_global); spa_async_suspend(newspa); /* * Temporarily stop the initializing and TRIM activity. We set the * state to ACTIVE so that we know to resume initializing or TRIM * once the split has completed. */ list_t vd_initialize_list; list_create(&vd_initialize_list, sizeof (vdev_t), offsetof(vdev_t, vdev_initialize_node)); list_t vd_trim_list; list_create(&vd_trim_list, sizeof (vdev_t), offsetof(vdev_t, vdev_trim_node)); for (c = 0; c < children; c++) { if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { mutex_enter(&vml[c]->vdev_initialize_lock); vdev_initialize_stop(vml[c], VDEV_INITIALIZE_ACTIVE, &vd_initialize_list); mutex_exit(&vml[c]->vdev_initialize_lock); mutex_enter(&vml[c]->vdev_trim_lock); vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list); mutex_exit(&vml[c]->vdev_trim_lock); } } vdev_initialize_stop_wait(spa, &vd_initialize_list); vdev_trim_stop_wait(spa, &vd_trim_list); list_destroy(&vd_initialize_list); list_destroy(&vd_trim_list); newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT; newspa->spa_is_splitting = B_TRUE; /* create the new pool from the disks of the original pool */ error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE); if (error) goto out; /* if that worked, generate a real config for the new pool */ if (newspa->spa_root_vdev != NULL) { newspa->spa_config_splitting = fnvlist_alloc(); fnvlist_add_uint64(newspa->spa_config_splitting, ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)); spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, B_TRUE)); } /* set the props */ if (props != NULL) { spa_configfile_set(newspa, props, B_FALSE); error = spa_prop_set(newspa, props); if (error) goto out; } /* flush everything */ txg = spa_vdev_config_enter(newspa); vdev_config_dirty(newspa->spa_root_vdev); (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); if (zio_injection_enabled) zio_handle_panic_injection(spa, FTAG, 2); spa_async_resume(newspa); /* finally, update the original pool's config */ txg = spa_vdev_config_enter(spa); tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); error = dmu_tx_assign(tx, TXG_WAIT); if (error != 0) dmu_tx_abort(tx); for (c = 0; c < children; c++) { if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { vdev_t *tvd = vml[c]->vdev_top; /* * Need to be sure the detachable VDEV is not * on any *other* txg's DTL list to prevent it * from being accessed after it's freed. */ for (int t = 0; t < TXG_SIZE; t++) { (void) txg_list_remove_this( &tvd->vdev_dtl_list, vml[c], t); } vdev_split(vml[c]); if (error == 0) spa_history_log_internal(spa, "detach", tx, "vdev=%s", vml[c]->vdev_path); vdev_free(vml[c]); } } spa->spa_avz_action = AVZ_ACTION_REBUILD; vdev_config_dirty(spa->spa_root_vdev); spa->spa_config_splitting = NULL; nvlist_free(nvl); if (error == 0) dmu_tx_commit(tx); (void) spa_vdev_exit(spa, NULL, txg, 0); if (zio_injection_enabled) zio_handle_panic_injection(spa, FTAG, 3); /* split is complete; log a history record */ spa_history_log_internal(newspa, "split", NULL, "from pool %s", spa_name(spa)); newspa->spa_is_splitting = B_FALSE; kmem_free(vml, children * sizeof (vdev_t *)); /* if we're not going to mount the filesystems in userland, export */ if (exp) error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, B_FALSE, B_FALSE); return (error); out: spa_unload(newspa); spa_deactivate(newspa); spa_remove(newspa); txg = spa_vdev_config_enter(spa); /* re-online all offlined disks */ for (c = 0; c < children; c++) { if (vml[c] != NULL) vml[c]->vdev_offline = B_FALSE; } /* restart initializing or trimming disks as necessary */ spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); spa_async_request(spa, SPA_ASYNC_TRIM_RESTART); spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); vdev_reopen(spa->spa_root_vdev); nvlist_free(spa->spa_config_splitting); spa->spa_config_splitting = NULL; (void) spa_vdev_exit(spa, NULL, txg, error); kmem_free(vml, children * sizeof (vdev_t *)); return (error); } /* * Find any device that's done replacing, or a vdev marked 'unspare' that's * currently spared, so we can detach it. */ static vdev_t * spa_vdev_resilver_done_hunt(vdev_t *vd) { vdev_t *newvd, *oldvd; for (int c = 0; c < vd->vdev_children; c++) { oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); if (oldvd != NULL) return (oldvd); } /* * Check for a completed replacement. We always consider the first * vdev in the list to be the oldest vdev, and the last one to be * the newest (see spa_vdev_attach() for how that works). In * the case where the newest vdev is faulted, we will not automatically * remove it after a resilver completes. This is OK as it will require * user intervention to determine which disk the admin wishes to keep. */ if (vd->vdev_ops == &vdev_replacing_ops) { ASSERT(vd->vdev_children > 1); newvd = vd->vdev_child[vd->vdev_children - 1]; oldvd = vd->vdev_child[0]; if (vdev_dtl_empty(newvd, DTL_MISSING) && vdev_dtl_empty(newvd, DTL_OUTAGE) && !vdev_dtl_required(oldvd)) return (oldvd); } /* * Check for a completed resilver with the 'unspare' flag set. * Also potentially update faulted state. */ if (vd->vdev_ops == &vdev_spare_ops) { vdev_t *first = vd->vdev_child[0]; vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; if (last->vdev_unspare) { oldvd = first; newvd = last; } else if (first->vdev_unspare) { oldvd = last; newvd = first; } else { oldvd = NULL; } if (oldvd != NULL && vdev_dtl_empty(newvd, DTL_MISSING) && vdev_dtl_empty(newvd, DTL_OUTAGE) && !vdev_dtl_required(oldvd)) return (oldvd); vdev_propagate_state(vd); /* * If there are more than two spares attached to a disk, * and those spares are not required, then we want to * attempt to free them up now so that they can be used * by other pools. Once we're back down to a single * disk+spare, we stop removing them. */ if (vd->vdev_children > 2) { newvd = vd->vdev_child[1]; if (newvd->vdev_isspare && last->vdev_isspare && vdev_dtl_empty(last, DTL_MISSING) && vdev_dtl_empty(last, DTL_OUTAGE) && !vdev_dtl_required(newvd)) return (newvd); } } return (NULL); } static void spa_vdev_resilver_done(spa_t *spa) { vdev_t *vd, *pvd, *ppvd; uint64_t guid, sguid, pguid, ppguid; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { pvd = vd->vdev_parent; ppvd = pvd->vdev_parent; guid = vd->vdev_guid; pguid = pvd->vdev_guid; ppguid = ppvd->vdev_guid; sguid = 0; /* * If we have just finished replacing a hot spared device, then * we need to detach the parent's first child (the original hot * spare) as well. */ if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && ppvd->vdev_children == 2) { ASSERT(pvd->vdev_ops == &vdev_replacing_ops); sguid = ppvd->vdev_child[1]->vdev_guid; } ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); spa_config_exit(spa, SCL_ALL, FTAG); if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) return; if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) return; spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); } spa_config_exit(spa, SCL_ALL, FTAG); /* * If a detach was not performed above replace waiters will not have * been notified. In which case we must do so now. */ spa_notify_waiters(spa); } /* * Update the stored path or FRU for this vdev. */ static int spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, boolean_t ispath) { vdev_t *vd; boolean_t sync = B_FALSE; ASSERT(spa_writeable(spa)); spa_vdev_state_enter(spa, SCL_ALL); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) return (spa_vdev_state_exit(spa, NULL, ENOENT)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); if (ispath) { if (strcmp(value, vd->vdev_path) != 0) { spa_strfree(vd->vdev_path); vd->vdev_path = spa_strdup(value); sync = B_TRUE; } } else { if (vd->vdev_fru == NULL) { vd->vdev_fru = spa_strdup(value); sync = B_TRUE; } else if (strcmp(value, vd->vdev_fru) != 0) { spa_strfree(vd->vdev_fru); vd->vdev_fru = spa_strdup(value); sync = B_TRUE; } } return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); } int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) { return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); } int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) { return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); } /* * ========================================================================== * SPA Scanning * ========================================================================== */ int spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd) { ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); if (dsl_scan_resilvering(spa->spa_dsl_pool)) return (SET_ERROR(EBUSY)); return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd)); } int spa_scan_stop(spa_t *spa) { ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); if (dsl_scan_resilvering(spa->spa_dsl_pool)) return (SET_ERROR(EBUSY)); return (dsl_scan_cancel(spa->spa_dsl_pool)); } int spa_scan(spa_t *spa, pool_scan_func_t func) { ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) return (SET_ERROR(ENOTSUP)); if (func == POOL_SCAN_RESILVER && !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) return (SET_ERROR(ENOTSUP)); /* * If a resilver was requested, but there is no DTL on a * writeable leaf device, we have nothing to do. */ if (func == POOL_SCAN_RESILVER && !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); return (0); } return (dsl_scan(spa->spa_dsl_pool, func)); } /* * ========================================================================== * SPA async task processing * ========================================================================== */ static void spa_async_remove(spa_t *spa, vdev_t *vd) { if (vd->vdev_remove_wanted) { vd->vdev_remove_wanted = B_FALSE; vd->vdev_delayed_close = B_FALSE; vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); /* * We want to clear the stats, but we don't want to do a full * vdev_clear() as that will cause us to throw away * degraded/faulted state as well as attempt to reopen the * device, all of which is a waste. */ vd->vdev_stat.vs_read_errors = 0; vd->vdev_stat.vs_write_errors = 0; vd->vdev_stat.vs_checksum_errors = 0; vdev_state_dirty(vd->vdev_top); /* Tell userspace that the vdev is gone. */ zfs_post_remove(spa, vd); } for (int c = 0; c < vd->vdev_children; c++) spa_async_remove(spa, vd->vdev_child[c]); } static void spa_async_probe(spa_t *spa, vdev_t *vd) { if (vd->vdev_probe_wanted) { vd->vdev_probe_wanted = B_FALSE; vdev_reopen(vd); /* vdev_open() does the actual probe */ } for (int c = 0; c < vd->vdev_children; c++) spa_async_probe(spa, vd->vdev_child[c]); } static void spa_async_autoexpand(spa_t *spa, vdev_t *vd) { if (!spa->spa_autoexpand) return; for (int c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; spa_async_autoexpand(spa, cvd); } if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) return; spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND); } static __attribute__((noreturn)) void spa_async_thread(void *arg) { spa_t *spa = (spa_t *)arg; dsl_pool_t *dp = spa->spa_dsl_pool; int tasks; ASSERT(spa->spa_sync_on); mutex_enter(&spa->spa_async_lock); tasks = spa->spa_async_tasks; spa->spa_async_tasks = 0; mutex_exit(&spa->spa_async_lock); /* * See if the config needs to be updated. */ if (tasks & SPA_ASYNC_CONFIG_UPDATE) { uint64_t old_space, new_space; mutex_enter(&spa_namespace_lock); old_space = metaslab_class_get_space(spa_normal_class(spa)); old_space += metaslab_class_get_space(spa_special_class(spa)); old_space += metaslab_class_get_space(spa_dedup_class(spa)); old_space += metaslab_class_get_space( spa_embedded_log_class(spa)); spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); new_space = metaslab_class_get_space(spa_normal_class(spa)); new_space += metaslab_class_get_space(spa_special_class(spa)); new_space += metaslab_class_get_space(spa_dedup_class(spa)); new_space += metaslab_class_get_space( spa_embedded_log_class(spa)); mutex_exit(&spa_namespace_lock); /* * If the pool grew as a result of the config update, * then log an internal history event. */ if (new_space != old_space) { spa_history_log_internal(spa, "vdev online", NULL, "pool '%s' size: %llu(+%llu)", spa_name(spa), (u_longlong_t)new_space, (u_longlong_t)(new_space - old_space)); } } /* * See if any devices need to be marked REMOVED. */ if (tasks & SPA_ASYNC_REMOVE) { spa_vdev_state_enter(spa, SCL_NONE); spa_async_remove(spa, spa->spa_root_vdev); for (int i = 0; i < spa->spa_l2cache.sav_count; i++) spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); for (int i = 0; i < spa->spa_spares.sav_count; i++) spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); (void) spa_vdev_state_exit(spa, NULL, 0); } if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); spa_async_autoexpand(spa, spa->spa_root_vdev); spa_config_exit(spa, SCL_CONFIG, FTAG); } /* * See if any devices need to be probed. */ if (tasks & SPA_ASYNC_PROBE) { spa_vdev_state_enter(spa, SCL_NONE); spa_async_probe(spa, spa->spa_root_vdev); (void) spa_vdev_state_exit(spa, NULL, 0); } /* * If any devices are done replacing, detach them. */ if (tasks & SPA_ASYNC_RESILVER_DONE || tasks & SPA_ASYNC_REBUILD_DONE) { spa_vdev_resilver_done(spa); } /* * Kick off a resilver. */ if (tasks & SPA_ASYNC_RESILVER && !vdev_rebuild_active(spa->spa_root_vdev) && (!dsl_scan_resilvering(dp) || !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))) dsl_scan_restart_resilver(dp, 0); if (tasks & SPA_ASYNC_INITIALIZE_RESTART) { mutex_enter(&spa_namespace_lock); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); vdev_initialize_restart(spa->spa_root_vdev); spa_config_exit(spa, SCL_CONFIG, FTAG); mutex_exit(&spa_namespace_lock); } if (tasks & SPA_ASYNC_TRIM_RESTART) { mutex_enter(&spa_namespace_lock); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); vdev_trim_restart(spa->spa_root_vdev); spa_config_exit(spa, SCL_CONFIG, FTAG); mutex_exit(&spa_namespace_lock); } if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) { mutex_enter(&spa_namespace_lock); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); vdev_autotrim_restart(spa); spa_config_exit(spa, SCL_CONFIG, FTAG); mutex_exit(&spa_namespace_lock); } /* * Kick off L2 cache whole device TRIM. */ if (tasks & SPA_ASYNC_L2CACHE_TRIM) { mutex_enter(&spa_namespace_lock); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); vdev_trim_l2arc(spa); spa_config_exit(spa, SCL_CONFIG, FTAG); mutex_exit(&spa_namespace_lock); } /* * Kick off L2 cache rebuilding. */ if (tasks & SPA_ASYNC_L2CACHE_REBUILD) { mutex_enter(&spa_namespace_lock); spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER); l2arc_spa_rebuild_start(spa); spa_config_exit(spa, SCL_L2ARC, FTAG); mutex_exit(&spa_namespace_lock); } /* * Let the world know that we're done. */ mutex_enter(&spa->spa_async_lock); spa->spa_async_thread = NULL; cv_broadcast(&spa->spa_async_cv); mutex_exit(&spa->spa_async_lock); thread_exit(); } void spa_async_suspend(spa_t *spa) { mutex_enter(&spa->spa_async_lock); spa->spa_async_suspended++; while (spa->spa_async_thread != NULL) cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); mutex_exit(&spa->spa_async_lock); spa_vdev_remove_suspend(spa); zthr_t *condense_thread = spa->spa_condense_zthr; if (condense_thread != NULL) zthr_cancel(condense_thread); zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; if (discard_thread != NULL) zthr_cancel(discard_thread); zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; if (ll_delete_thread != NULL) zthr_cancel(ll_delete_thread); zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; if (ll_condense_thread != NULL) zthr_cancel(ll_condense_thread); } void spa_async_resume(spa_t *spa) { mutex_enter(&spa->spa_async_lock); ASSERT(spa->spa_async_suspended != 0); spa->spa_async_suspended--; mutex_exit(&spa->spa_async_lock); spa_restart_removal(spa); zthr_t *condense_thread = spa->spa_condense_zthr; if (condense_thread != NULL) zthr_resume(condense_thread); zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; if (discard_thread != NULL) zthr_resume(discard_thread); zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; if (ll_delete_thread != NULL) zthr_resume(ll_delete_thread); zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; if (ll_condense_thread != NULL) zthr_resume(ll_condense_thread); } static boolean_t spa_async_tasks_pending(spa_t *spa) { uint_t non_config_tasks; uint_t config_task; boolean_t config_task_suspended; non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; if (spa->spa_ccw_fail_time == 0) { config_task_suspended = B_FALSE; } else { config_task_suspended = (gethrtime() - spa->spa_ccw_fail_time) < ((hrtime_t)zfs_ccw_retry_interval * NANOSEC); } return (non_config_tasks || (config_task && !config_task_suspended)); } static void spa_async_dispatch(spa_t *spa) { mutex_enter(&spa->spa_async_lock); if (spa_async_tasks_pending(spa) && !spa->spa_async_suspended && spa->spa_async_thread == NULL) spa->spa_async_thread = thread_create(NULL, 0, spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); mutex_exit(&spa->spa_async_lock); } void spa_async_request(spa_t *spa, int task) { zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); mutex_enter(&spa->spa_async_lock); spa->spa_async_tasks |= task; mutex_exit(&spa->spa_async_lock); } int spa_async_tasks(spa_t *spa) { return (spa->spa_async_tasks); } /* * ========================================================================== * SPA syncing routines * ========================================================================== */ static int bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) { bpobj_t *bpo = arg; bpobj_enqueue(bpo, bp, bp_freed, tx); return (0); } int bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx)); } int bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx)); } static int spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { zio_t *pio = arg; zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp, pio->io_flags)); return (0); } static int bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) { ASSERT(!bp_freed); return (spa_free_sync_cb(arg, bp, tx)); } /* * Note: this simple function is not inlined to make it easier to dtrace the * amount of time spent syncing frees. */ static void spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) { zio_t *zio = zio_root(spa, NULL, NULL, 0); bplist_iterate(bpl, spa_free_sync_cb, zio, tx); VERIFY(zio_wait(zio) == 0); } /* * Note: this simple function is not inlined to make it easier to dtrace the * amount of time spent syncing deferred frees. */ static void spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) { if (spa_sync_pass(spa) != 1) return; /* * Note: * If the log space map feature is active, we stop deferring * frees to the next TXG and therefore running this function * would be considered a no-op as spa_deferred_bpobj should * not have any entries. * * That said we run this function anyway (instead of returning * immediately) for the edge-case scenario where we just * activated the log space map feature in this TXG but we have * deferred frees from the previous TXG. */ zio_t *zio = zio_root(spa, NULL, NULL, 0); VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, bpobj_spa_free_sync_cb, zio, tx), ==, 0); VERIFY0(zio_wait(zio)); } static void spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) { char *packed = NULL; size_t bufsize; size_t nvsize = 0; dmu_buf_t *db; VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); /* * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration * information. This avoids the dmu_buf_will_dirty() path and * saves us a pre-read to get data we don't actually care about. */ bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); packed = vmem_alloc(bufsize, KM_SLEEP); VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, KM_SLEEP) == 0); memset(packed + nvsize, 0, bufsize - nvsize); dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); vmem_free(packed, bufsize); VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); dmu_buf_will_dirty(db, tx); *(uint64_t *)db->db_data = nvsize; dmu_buf_rele(db, FTAG); } static void spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, const char *config, const char *entry) { nvlist_t *nvroot; nvlist_t **list; int i; if (!sav->sav_sync) return; /* * Update the MOS nvlist describing the list of available devices. * spa_validate_aux() will have already made sure this nvlist is * valid and the vdevs are labeled appropriately. */ if (sav->sav_object == 0) { sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); VERIFY(zap_update(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, &sav->sav_object, tx) == 0); } nvroot = fnvlist_alloc(); if (sav->sav_count == 0) { fnvlist_add_nvlist_array(nvroot, config, (const nvlist_t * const *)NULL, 0); } else { list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP); for (i = 0; i < sav->sav_count; i++) list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], B_FALSE, VDEV_CONFIG_L2CACHE); fnvlist_add_nvlist_array(nvroot, config, (const nvlist_t * const *)list, sav->sav_count); for (i = 0; i < sav->sav_count; i++) nvlist_free(list[i]); kmem_free(list, sav->sav_count * sizeof (void *)); } spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); nvlist_free(nvroot); sav->sav_sync = B_FALSE; } /* * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. * The all-vdev ZAP must be empty. */ static void spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) { spa_t *spa = vd->vdev_spa; if (vd->vdev_top_zap != 0) { VERIFY0(zap_add_int(spa->spa_meta_objset, avz, vd->vdev_top_zap, tx)); } if (vd->vdev_leaf_zap != 0) { VERIFY0(zap_add_int(spa->spa_meta_objset, avz, vd->vdev_leaf_zap, tx)); } for (uint64_t i = 0; i < vd->vdev_children; i++) { spa_avz_build(vd->vdev_child[i], avz, tx); } } static void spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) { nvlist_t *config; /* * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, * its config may not be dirty but we still need to build per-vdev ZAPs. * Similarly, if the pool is being assembled (e.g. after a split), we * need to rebuild the AVZ although the config may not be dirty. */ if (list_is_empty(&spa->spa_config_dirty_list) && spa->spa_avz_action == AVZ_ACTION_NONE) return; spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || spa->spa_avz_action == AVZ_ACTION_INITIALIZE || spa->spa_all_vdev_zaps != 0); if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { /* Make and build the new AVZ */ uint64_t new_avz = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); spa_avz_build(spa->spa_root_vdev, new_avz, tx); /* Diff old AVZ with new one */ zap_cursor_t zc; zap_attribute_t za; for (zap_cursor_init(&zc, spa->spa_meta_objset, spa->spa_all_vdev_zaps); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { uint64_t vdzap = za.za_first_integer; if (zap_lookup_int(spa->spa_meta_objset, new_avz, vdzap) == ENOENT) { /* * ZAP is listed in old AVZ but not in new one; * destroy it */ VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, tx)); } } zap_cursor_fini(&zc); /* Destroy the old AVZ */ VERIFY0(zap_destroy(spa->spa_meta_objset, spa->spa_all_vdev_zaps, tx)); /* Replace the old AVZ in the dir obj with the new one */ VERIFY0(zap_update(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, sizeof (new_avz), 1, &new_avz, tx)); spa->spa_all_vdev_zaps = new_avz; } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { zap_cursor_t zc; zap_attribute_t za; /* Walk through the AVZ and destroy all listed ZAPs */ for (zap_cursor_init(&zc, spa->spa_meta_objset, spa->spa_all_vdev_zaps); zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { uint64_t zap = za.za_first_integer; VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); } zap_cursor_fini(&zc); /* Destroy and unlink the AVZ itself */ VERIFY0(zap_destroy(spa->spa_meta_objset, spa->spa_all_vdev_zaps, tx)); VERIFY0(zap_remove(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); spa->spa_all_vdev_zaps = 0; } if (spa->spa_all_vdev_zaps == 0) { spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx); } spa->spa_avz_action = AVZ_ACTION_NONE; /* Create ZAPs for vdevs that don't have them. */ vdev_construct_zaps(spa->spa_root_vdev, tx); config = spa_config_generate(spa, spa->spa_root_vdev, dmu_tx_get_txg(tx), B_FALSE); /* * If we're upgrading the spa version then make sure that * the config object gets updated with the correct version. */ if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa->spa_uberblock.ub_version); spa_config_exit(spa, SCL_STATE, FTAG); nvlist_free(spa->spa_config_syncing); spa->spa_config_syncing = config; spa_sync_nvlist(spa, spa->spa_config_object, config, tx); } static void spa_sync_version(void *arg, dmu_tx_t *tx) { uint64_t *versionp = arg; uint64_t version = *versionp; spa_t *spa = dmu_tx_pool(tx)->dp_spa; /* * Setting the version is special cased when first creating the pool. */ ASSERT(tx->tx_txg != TXG_INITIAL); ASSERT(SPA_VERSION_IS_SUPPORTED(version)); ASSERT(version >= spa_version(spa)); spa->spa_uberblock.ub_version = version; vdev_config_dirty(spa->spa_root_vdev); spa_history_log_internal(spa, "set", tx, "version=%lld", (longlong_t)version); } /* * Set zpool properties. */ static void spa_sync_props(void *arg, dmu_tx_t *tx) { nvlist_t *nvp = arg; spa_t *spa = dmu_tx_pool(tx)->dp_spa; objset_t *mos = spa->spa_meta_objset; nvpair_t *elem = NULL; mutex_enter(&spa->spa_props_lock); while ((elem = nvlist_next_nvpair(nvp, elem))) { uint64_t intval; char *strval, *fname; zpool_prop_t prop; const char *propname; zprop_type_t proptype; spa_feature_t fid; switch (prop = zpool_name_to_prop(nvpair_name(elem))) { case ZPOOL_PROP_INVAL: /* * We checked this earlier in spa_prop_validate(). */ ASSERT(zpool_prop_feature(nvpair_name(elem))); fname = strchr(nvpair_name(elem), '@') + 1; VERIFY0(zfeature_lookup_name(fname, &fid)); spa_feature_enable(spa, fid, tx); spa_history_log_internal(spa, "set", tx, "%s=enabled", nvpair_name(elem)); break; case ZPOOL_PROP_VERSION: intval = fnvpair_value_uint64(elem); /* * The version is synced separately before other * properties and should be correct by now. */ ASSERT3U(spa_version(spa), >=, intval); break; case ZPOOL_PROP_ALTROOT: /* * 'altroot' is a non-persistent property. It should * have been set temporarily at creation or import time. */ ASSERT(spa->spa_root != NULL); break; case ZPOOL_PROP_READONLY: case ZPOOL_PROP_CACHEFILE: /* * 'readonly' and 'cachefile' are also non-persistent * properties. */ break; case ZPOOL_PROP_COMMENT: strval = fnvpair_value_string(elem); if (spa->spa_comment != NULL) spa_strfree(spa->spa_comment); spa->spa_comment = spa_strdup(strval); /* * We need to dirty the configuration on all the vdevs * so that their labels get updated. We also need to * update the cache file to keep it in sync with the * MOS version. It's unnecessary to do this for pool * creation since the vdev's configuration has already * been dirtied. */ if (tx->tx_txg != TXG_INITIAL) { vdev_config_dirty(spa->spa_root_vdev); spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); } spa_history_log_internal(spa, "set", tx, "%s=%s", nvpair_name(elem), strval); break; case ZPOOL_PROP_COMPATIBILITY: strval = fnvpair_value_string(elem); if (spa->spa_compatibility != NULL) spa_strfree(spa->spa_compatibility); spa->spa_compatibility = spa_strdup(strval); /* * Dirty the configuration on vdevs as above. */ if (tx->tx_txg != TXG_INITIAL) { vdev_config_dirty(spa->spa_root_vdev); spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); } spa_history_log_internal(spa, "set", tx, "%s=%s", nvpair_name(elem), strval); break; default: /* * Set pool property values in the poolprops mos object. */ if (spa->spa_pool_props_object == 0) { spa->spa_pool_props_object = zap_create_link(mos, DMU_OT_POOL_PROPS, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, tx); } /* normalize the property name */ propname = zpool_prop_to_name(prop); proptype = zpool_prop_get_type(prop); if (nvpair_type(elem) == DATA_TYPE_STRING) { ASSERT(proptype == PROP_TYPE_STRING); strval = fnvpair_value_string(elem); VERIFY0(zap_update(mos, spa->spa_pool_props_object, propname, 1, strlen(strval) + 1, strval, tx)); spa_history_log_internal(spa, "set", tx, "%s=%s", nvpair_name(elem), strval); } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { intval = fnvpair_value_uint64(elem); if (proptype == PROP_TYPE_INDEX) { const char *unused; VERIFY0(zpool_prop_index_to_string( prop, intval, &unused)); } VERIFY0(zap_update(mos, spa->spa_pool_props_object, propname, 8, 1, &intval, tx)); spa_history_log_internal(spa, "set", tx, "%s=%lld", nvpair_name(elem), (longlong_t)intval); } else { ASSERT(0); /* not allowed */ } switch (prop) { case ZPOOL_PROP_DELEGATION: spa->spa_delegation = intval; break; case ZPOOL_PROP_BOOTFS: spa->spa_bootfs = intval; break; case ZPOOL_PROP_FAILUREMODE: spa->spa_failmode = intval; break; case ZPOOL_PROP_AUTOTRIM: spa->spa_autotrim = intval; spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); break; case ZPOOL_PROP_AUTOEXPAND: spa->spa_autoexpand = intval; if (tx->tx_txg != TXG_INITIAL) spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); break; case ZPOOL_PROP_MULTIHOST: spa->spa_multihost = intval; break; default: break; } } } mutex_exit(&spa->spa_props_lock); } /* * Perform one-time upgrade on-disk changes. spa_version() does not * reflect the new version this txg, so there must be no changes this * txg to anything that the upgrade code depends on after it executes. * Therefore this must be called after dsl_pool_sync() does the sync * tasks. */ static void spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) { if (spa_sync_pass(spa) != 1) return; dsl_pool_t *dp = spa->spa_dsl_pool; rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { dsl_pool_create_origin(dp, tx); /* Keeping the origin open increases spa_minref */ spa->spa_minref += 3; } if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { dsl_pool_upgrade_clones(dp, tx); } if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { dsl_pool_upgrade_dir_clones(dp, tx); /* Keeping the freedir open increases spa_minref */ spa->spa_minref += 3; } if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { spa_feature_create_zap_objects(spa, tx); } /* * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable * when possibility to use lz4 compression for metadata was added * Old pools that have this feature enabled must be upgraded to have * this feature active */ if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { boolean_t lz4_en = spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS); boolean_t lz4_ac = spa_feature_is_active(spa, SPA_FEATURE_LZ4_COMPRESS); if (lz4_en && !lz4_ac) spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); } /* * If we haven't written the salt, do so now. Note that the * feature may not be activated yet, but that's fine since * the presence of this ZAP entry is backwards compatible. */ if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT) == ENOENT) { VERIFY0(zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, sizeof (spa->spa_cksum_salt.zcs_bytes), spa->spa_cksum_salt.zcs_bytes, tx)); } rrw_exit(&dp->dp_config_rwlock, FTAG); } static void vdev_indirect_state_sync_verify(vdev_t *vd) { vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping; vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births; if (vd->vdev_ops == &vdev_indirect_ops) { ASSERT(vim != NULL); ASSERT(vib != NULL); } uint64_t obsolete_sm_object = 0; ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); if (obsolete_sm_object != 0) { ASSERT(vd->vdev_obsolete_sm != NULL); ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops); ASSERT(vdev_indirect_mapping_num_entries(vim) > 0); ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0); ASSERT3U(obsolete_sm_object, ==, space_map_object(vd->vdev_obsolete_sm)); ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=, space_map_allocated(vd->vdev_obsolete_sm)); } ASSERT(vd->vdev_obsolete_segments != NULL); /* * Since frees / remaps to an indirect vdev can only * happen in syncing context, the obsolete segments * tree must be empty when we start syncing. */ ASSERT0(range_tree_space(vd->vdev_obsolete_segments)); } /* * Set the top-level vdev's max queue depth. Evaluate each top-level's * async write queue depth in case it changed. The max queue depth will * not change in the middle of syncing out this txg. */ static void spa_sync_adjust_vdev_max_queue_depth(spa_t *spa) { ASSERT(spa_writeable(spa)); vdev_t *rvd = spa->spa_root_vdev; uint32_t max_queue_depth = zfs_vdev_async_write_max_active * zfs_vdev_queue_depth_pct / 100; metaslab_class_t *normal = spa_normal_class(spa); metaslab_class_t *special = spa_special_class(spa); metaslab_class_t *dedup = spa_dedup_class(spa); uint64_t slots_per_allocator = 0; for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; metaslab_group_t *mg = tvd->vdev_mg; if (mg == NULL || !metaslab_group_initialized(mg)) continue; metaslab_class_t *mc = mg->mg_class; if (mc != normal && mc != special && mc != dedup) continue; /* * It is safe to do a lock-free check here because only async * allocations look at mg_max_alloc_queue_depth, and async * allocations all happen from spa_sync(). */ for (int i = 0; i < mg->mg_allocators; i++) { ASSERT0(zfs_refcount_count( &(mg->mg_allocator[i].mga_alloc_queue_depth))); } mg->mg_max_alloc_queue_depth = max_queue_depth; for (int i = 0; i < mg->mg_allocators; i++) { mg->mg_allocator[i].mga_cur_max_alloc_queue_depth = zfs_vdev_def_queue_depth; } slots_per_allocator += zfs_vdev_def_queue_depth; } for (int i = 0; i < spa->spa_alloc_count; i++) { ASSERT0(zfs_refcount_count(&normal->mc_allocator[i]. mca_alloc_slots)); ASSERT0(zfs_refcount_count(&special->mc_allocator[i]. mca_alloc_slots)); ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i]. mca_alloc_slots)); normal->mc_allocator[i].mca_alloc_max_slots = slots_per_allocator; special->mc_allocator[i].mca_alloc_max_slots = slots_per_allocator; dedup->mc_allocator[i].mca_alloc_max_slots = slots_per_allocator; } normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; } static void spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx) { ASSERT(spa_writeable(spa)); vdev_t *rvd = spa->spa_root_vdev; for (int c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; vdev_indirect_state_sync_verify(vd); if (vdev_indirect_should_condense(vd)) { spa_condense_indirect_start_sync(vd, tx); break; } } } static void spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx) { objset_t *mos = spa->spa_meta_objset; dsl_pool_t *dp = spa->spa_dsl_pool; uint64_t txg = tx->tx_txg; bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; do { int pass = ++spa->spa_sync_pass; spa_sync_config_object(spa, tx); spa_sync_aux_dev(spa, &spa->spa_spares, tx, ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); spa_errlog_sync(spa, txg); dsl_pool_sync(dp, txg); if (pass < zfs_sync_pass_deferred_free || spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { /* * If the log space map feature is active we don't * care about deferred frees and the deferred bpobj * as the log space map should effectively have the * same results (i.e. appending only to one object). */ spa_sync_frees(spa, free_bpl, tx); } else { /* * We can not defer frees in pass 1, because * we sync the deferred frees later in pass 1. */ ASSERT3U(pass, >, 1); bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb, &spa->spa_deferred_bpobj, tx); } ddt_sync(spa, txg); dsl_scan_sync(dp, tx); svr_sync(spa, tx); spa_sync_upgrades(spa, tx); spa_flush_metaslabs(spa, tx); vdev_t *vd = NULL; while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) != NULL) vdev_sync(vd, txg); /* * Note: We need to check if the MOS is dirty because we could * have marked the MOS dirty without updating the uberblock * (e.g. if we have sync tasks but no dirty user data). We need * to check the uberblock's rootbp because it is updated if we * have synced out dirty data (though in this case the MOS will * most likely also be dirty due to second order effects, we * don't want to rely on that here). */ if (pass == 1 && spa->spa_uberblock.ub_rootbp.blk_birth < txg && !dmu_objset_is_dirty(mos, txg)) { /* * Nothing changed on the first pass, therefore this * TXG is a no-op. Avoid syncing deferred frees, so * that we can keep this TXG as a no-op. */ ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg)); break; } spa_sync_deferred_frees(spa, tx); } while (dmu_objset_is_dirty(mos, txg)); } /* * Rewrite the vdev configuration (which includes the uberblock) to * commit the transaction group. * * If there are no dirty vdevs, we sync the uberblock to a few random * top-level vdevs that are known to be visible in the config cache * (see spa_vdev_add() for a complete description). If there *are* dirty * vdevs, sync the uberblock to all vdevs. */ static void spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx) { vdev_t *rvd = spa->spa_root_vdev; uint64_t txg = tx->tx_txg; for (;;) { int error = 0; /* * We hold SCL_STATE to prevent vdev open/close/etc. * while we're attempting to write the vdev labels. */ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); if (list_is_empty(&spa->spa_config_dirty_list)) { vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; int svdcount = 0; int children = rvd->vdev_children; int c0 = random_in_range(children); for (int c = 0; c < children; c++) { vdev_t *vd = rvd->vdev_child[(c0 + c) % children]; /* Stop when revisiting the first vdev */ if (c > 0 && svd[0] == vd) break; if (vd->vdev_ms_array == 0 || vd->vdev_islog || !vdev_is_concrete(vd)) continue; svd[svdcount++] = vd; if (svdcount == SPA_SYNC_MIN_VDEVS) break; } error = vdev_config_sync(svd, svdcount, txg); } else { error = vdev_config_sync(rvd->vdev_child, rvd->vdev_children, txg); } if (error == 0) spa->spa_last_synced_guid = rvd->vdev_guid; spa_config_exit(spa, SCL_STATE, FTAG); if (error == 0) break; zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR); zio_resume_wait(spa); } } /* * Sync the specified transaction group. New blocks may be dirtied as * part of the process, so we iterate until it converges. */ void spa_sync(spa_t *spa, uint64_t txg) { vdev_t *vd = NULL; VERIFY(spa_writeable(spa)); /* * Wait for i/os issued in open context that need to complete * before this txg syncs. */ (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]); spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); /* * Lock out configuration changes. */ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); spa->spa_syncing_txg = txg; spa->spa_sync_pass = 0; for (int i = 0; i < spa->spa_alloc_count; i++) { mutex_enter(&spa->spa_allocs[i].spaa_lock); VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree)); mutex_exit(&spa->spa_allocs[i].spaa_lock); } /* * If there are any pending vdev state changes, convert them * into config changes that go out with this transaction group. */ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); while (list_head(&spa->spa_state_dirty_list) != NULL) { /* * We need the write lock here because, for aux vdevs, * calling vdev_config_dirty() modifies sav_config. * This is ugly and will become unnecessary when we * eliminate the aux vdev wart by integrating all vdevs * into the root vdev tree. */ spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { vdev_state_clean(vd); vdev_config_dirty(vd); } spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); } spa_config_exit(spa, SCL_STATE, FTAG); dsl_pool_t *dp = spa->spa_dsl_pool; dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); spa->spa_sync_starttime = gethrtime(); taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + NSEC_TO_TICK(spa->spa_deadman_synctime)); /* * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, * set spa_deflate if we have no raid-z vdevs. */ if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { vdev_t *rvd = spa->spa_root_vdev; int i; for (i = 0; i < rvd->vdev_children; i++) { vd = rvd->vdev_child[i]; if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) break; } if (i == rvd->vdev_children) { spa->spa_deflate = TRUE; VERIFY0(zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, sizeof (uint64_t), 1, &spa->spa_deflate, tx)); } } spa_sync_adjust_vdev_max_queue_depth(spa); spa_sync_condense_indirect(spa, tx); spa_sync_iterate_to_convergence(spa, tx); #ifdef ZFS_DEBUG if (!list_is_empty(&spa->spa_config_dirty_list)) { /* * Make sure that the number of ZAPs for all the vdevs matches * the number of ZAPs in the per-vdev ZAP list. This only gets * called if the config is dirty; otherwise there may be * outstanding AVZ operations that weren't completed in * spa_sync_config_object. */ uint64_t all_vdev_zap_entry_count; ASSERT0(zap_count(spa->spa_meta_objset, spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, all_vdev_zap_entry_count); } #endif if (spa->spa_vdev_removal != NULL) { ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]); } spa_sync_rewrite_vdev_config(spa, tx); dmu_tx_commit(tx); taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); spa->spa_deadman_tqid = 0; /* * Clear the dirty config list. */ while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) vdev_config_clean(vd); /* * Now that the new config has synced transactionally, * let it become visible to the config cache. */ if (spa->spa_config_syncing != NULL) { spa_config_set(spa, spa->spa_config_syncing); spa->spa_config_txg = txg; spa->spa_config_syncing = NULL; } dsl_pool_sync_done(dp, txg); for (int i = 0; i < spa->spa_alloc_count; i++) { mutex_enter(&spa->spa_allocs[i].spaa_lock); VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree)); mutex_exit(&spa->spa_allocs[i].spaa_lock); } /* * Update usable space statistics. */ while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) != NULL) vdev_sync_done(vd, txg); metaslab_class_evict_old(spa->spa_normal_class, txg); metaslab_class_evict_old(spa->spa_log_class, txg); spa_sync_close_syncing_log_sm(spa); spa_update_dspace(spa); /* * It had better be the case that we didn't dirty anything * since vdev_config_sync(). */ ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); while (zfs_pause_spa_sync) delay(1); spa->spa_sync_pass = 0; /* * Update the last synced uberblock here. We want to do this at * the end of spa_sync() so that consumers of spa_last_synced_txg() * will be guaranteed that all the processing associated with * that txg has been completed. */ spa->spa_ubsync = spa->spa_uberblock; spa_config_exit(spa, SCL_CONFIG, FTAG); spa_handle_ignored_writes(spa); /* * If any async tasks have been requested, kick them off. */ spa_async_dispatch(spa); } /* * Sync all pools. We don't want to hold the namespace lock across these * operations, so we take a reference on the spa_t and drop the lock during the * sync. */ void spa_sync_allpools(void) { spa_t *spa = NULL; mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) { if (spa_state(spa) != POOL_STATE_ACTIVE || !spa_writeable(spa) || spa_suspended(spa)) continue; spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); txg_wait_synced(spa_get_dsl(spa), 0); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); } mutex_exit(&spa_namespace_lock); } /* * ========================================================================== * Miscellaneous routines * ========================================================================== */ /* * Remove all pools in the system. */ void spa_evict_all(void) { spa_t *spa; /* * Remove all cached state. All pools should be closed now, * so every spa in the AVL tree should be unreferenced. */ mutex_enter(&spa_namespace_lock); while ((spa = spa_next(NULL)) != NULL) { /* * Stop async tasks. The async thread may need to detach * a device that's been replaced, which requires grabbing * spa_namespace_lock, so we must drop it here. */ spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); spa_async_suspend(spa); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); if (spa->spa_state != POOL_STATE_UNINITIALIZED) { spa_unload(spa); spa_deactivate(spa); } spa_remove(spa); } mutex_exit(&spa_namespace_lock); } vdev_t * spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) { vdev_t *vd; int i; if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) return (vd); if (aux) { for (i = 0; i < spa->spa_l2cache.sav_count; i++) { vd = spa->spa_l2cache.sav_vdevs[i]; if (vd->vdev_guid == guid) return (vd); } for (i = 0; i < spa->spa_spares.sav_count; i++) { vd = spa->spa_spares.sav_vdevs[i]; if (vd->vdev_guid == guid) return (vd); } } return (NULL); } void spa_upgrade(spa_t *spa, uint64_t version) { ASSERT(spa_writeable(spa)); spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); /* * This should only be called for a non-faulted pool, and since a * future version would result in an unopenable pool, this shouldn't be * possible. */ ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); ASSERT3U(version, >=, spa->spa_uberblock.ub_version); spa->spa_uberblock.ub_version = version; vdev_config_dirty(spa->spa_root_vdev); spa_config_exit(spa, SCL_ALL, FTAG); txg_wait_synced(spa_get_dsl(spa), 0); } static boolean_t spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav) { (void) spa; int i; uint64_t vdev_guid; for (i = 0; i < sav->sav_count; i++) if (sav->sav_vdevs[i]->vdev_guid == guid) return (B_TRUE); for (i = 0; i < sav->sav_npending; i++) { if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, &vdev_guid) == 0 && vdev_guid == guid) return (B_TRUE); } return (B_FALSE); } boolean_t spa_has_l2cache(spa_t *spa, uint64_t guid) { return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache)); } boolean_t spa_has_spare(spa_t *spa, uint64_t guid) { return (spa_has_aux_vdev(spa, guid, &spa->spa_spares)); } /* * Check if a pool has an active shared spare device. * Note: reference count of an active spare is 2, as a spare and as a replace */ static boolean_t spa_has_active_shared_spare(spa_t *spa) { int i, refcnt; uint64_t pool; spa_aux_vdev_t *sav = &spa->spa_spares; for (i = 0; i < sav->sav_count; i++) { if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, &refcnt) && pool != 0ULL && pool == spa_guid(spa) && refcnt > 2) return (B_TRUE); } return (B_FALSE); } uint64_t spa_total_metaslabs(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; uint64_t m = 0; for (uint64_t c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; if (!vdev_is_concrete(vd)) continue; m += vd->vdev_ms_count; } return (m); } /* * Notify any waiting threads that some activity has switched from being in- * progress to not-in-progress so that the thread can wake up and determine * whether it is finished waiting. */ void spa_notify_waiters(spa_t *spa) { /* * Acquiring spa_activities_lock here prevents the cv_broadcast from * happening between the waiting thread's check and cv_wait. */ mutex_enter(&spa->spa_activities_lock); cv_broadcast(&spa->spa_activities_cv); mutex_exit(&spa->spa_activities_lock); } /* * Notify any waiting threads that the pool is exporting, and then block until * they are finished using the spa_t. */ void spa_wake_waiters(spa_t *spa) { mutex_enter(&spa->spa_activities_lock); spa->spa_waiters_cancel = B_TRUE; cv_broadcast(&spa->spa_activities_cv); while (spa->spa_waiters != 0) cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock); spa->spa_waiters_cancel = B_FALSE; mutex_exit(&spa->spa_activities_lock); } /* Whether the vdev or any of its descendants are being initialized/trimmed. */ static boolean_t spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity) { spa_t *spa = vd->vdev_spa; ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER)); ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); ASSERT(activity == ZPOOL_WAIT_INITIALIZE || activity == ZPOOL_WAIT_TRIM); kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ? &vd->vdev_initialize_lock : &vd->vdev_trim_lock; mutex_exit(&spa->spa_activities_lock); mutex_enter(lock); mutex_enter(&spa->spa_activities_lock); boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ? (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) : (vd->vdev_trim_state == VDEV_TRIM_ACTIVE); mutex_exit(lock); if (in_progress) return (B_TRUE); for (int i = 0; i < vd->vdev_children; i++) { if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i], activity)) return (B_TRUE); } return (B_FALSE); } /* * If use_guid is true, this checks whether the vdev specified by guid is * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool * is being initialized/trimmed. The caller must hold the config lock and * spa_activities_lock. */ static int spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid, zpool_wait_activity_t activity, boolean_t *in_progress) { mutex_exit(&spa->spa_activities_lock); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); mutex_enter(&spa->spa_activities_lock); vdev_t *vd; if (use_guid) { vd = spa_lookup_by_guid(spa, guid, B_FALSE); if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) { spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (EINVAL); } } else { vd = spa->spa_root_vdev; } *in_progress = spa_vdev_activity_in_progress_impl(vd, activity); spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); return (0); } /* * Locking for waiting threads * --------------------------- * * Waiting threads need a way to check whether a given activity is in progress, * and then, if it is, wait for it to complete. Each activity will have some * in-memory representation of the relevant on-disk state which can be used to * determine whether or not the activity is in progress. The in-memory state and * the locking used to protect it will be different for each activity, and may * not be suitable for use with a cvar (e.g., some state is protected by the * config lock). To allow waiting threads to wait without any races, another * lock, spa_activities_lock, is used. * * When the state is checked, both the activity-specific lock (if there is one) * and spa_activities_lock are held. In some cases, the activity-specific lock * is acquired explicitly (e.g. the config lock). In others, the locking is * internal to some check (e.g. bpobj_is_empty). After checking, the waiting * thread releases the activity-specific lock and, if the activity is in * progress, then cv_waits using spa_activities_lock. * * The waiting thread is woken when another thread, one completing some * activity, updates the state of the activity and then calls * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only * needs to hold its activity-specific lock when updating the state, and this * lock can (but doesn't have to) be dropped before calling spa_notify_waiters. * * Because spa_notify_waiters acquires spa_activities_lock before broadcasting, * and because it is held when the waiting thread checks the state of the * activity, it can never be the case that the completing thread both updates * the activity state and cv_broadcasts in between the waiting thread's check * and cv_wait. Thus, a waiting thread can never miss a wakeup. * * In order to prevent deadlock, when the waiting thread does its check, in some * cases it will temporarily drop spa_activities_lock in order to acquire the * activity-specific lock. The order in which spa_activities_lock and the * activity specific lock are acquired in the waiting thread is determined by * the order in which they are acquired in the completing thread; if the * completing thread calls spa_notify_waiters with the activity-specific lock * held, then the waiting thread must also acquire the activity-specific lock * first. */ static int spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity, boolean_t use_tag, uint64_t tag, boolean_t *in_progress) { int error = 0; ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); switch (activity) { case ZPOOL_WAIT_CKPT_DISCARD: *in_progress = (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) && zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) == ENOENT); break; case ZPOOL_WAIT_FREE: *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS && !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) || spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) || spa_livelist_delete_check(spa)); break; case ZPOOL_WAIT_INITIALIZE: case ZPOOL_WAIT_TRIM: error = spa_vdev_activity_in_progress(spa, use_tag, tag, activity, in_progress); break; case ZPOOL_WAIT_REPLACE: mutex_exit(&spa->spa_activities_lock); spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); mutex_enter(&spa->spa_activities_lock); *in_progress = vdev_replace_in_progress(spa->spa_root_vdev); spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); break; case ZPOOL_WAIT_REMOVE: *in_progress = (spa->spa_removing_phys.sr_state == DSS_SCANNING); break; case ZPOOL_WAIT_RESILVER: if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev))) break; zfs_fallthrough; case ZPOOL_WAIT_SCRUB: { boolean_t scanning, paused, is_scrub; dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB); scanning = (scn->scn_phys.scn_state == DSS_SCANNING); paused = dsl_scan_is_paused_scrub(scn); *in_progress = (scanning && !paused && is_scrub == (activity == ZPOOL_WAIT_SCRUB)); break; } default: panic("unrecognized value for activity %d", activity); } return (error); } static int spa_wait_common(const char *pool, zpool_wait_activity_t activity, boolean_t use_tag, uint64_t tag, boolean_t *waited) { /* * The tag is used to distinguish between instances of an activity. * 'initialize' and 'trim' are the only activities that we use this for. * The other activities can only have a single instance in progress in a * pool at one time, making the tag unnecessary. * * There can be multiple devices being replaced at once, but since they * all finish once resilvering finishes, we don't bother keeping track * of them individually, we just wait for them all to finish. */ if (use_tag && activity != ZPOOL_WAIT_INITIALIZE && activity != ZPOOL_WAIT_TRIM) return (EINVAL); if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES) return (EINVAL); spa_t *spa; int error = spa_open(pool, &spa, FTAG); if (error != 0) return (error); /* * Increment the spa's waiter count so that we can call spa_close and * still ensure that the spa_t doesn't get freed before this thread is * finished with it when the pool is exported. We want to call spa_close * before we start waiting because otherwise the additional ref would * prevent the pool from being exported or destroyed throughout the * potentially long wait. */ mutex_enter(&spa->spa_activities_lock); spa->spa_waiters++; spa_close(spa, FTAG); *waited = B_FALSE; for (;;) { boolean_t in_progress; error = spa_activity_in_progress(spa, activity, use_tag, tag, &in_progress); if (error || !in_progress || spa->spa_waiters_cancel) break; *waited = B_TRUE; if (cv_wait_sig(&spa->spa_activities_cv, &spa->spa_activities_lock) == 0) { error = EINTR; break; } } spa->spa_waiters--; cv_signal(&spa->spa_waiters_cv); mutex_exit(&spa->spa_activities_lock); return (error); } /* * Wait for a particular instance of the specified activity to complete, where * the instance is identified by 'tag' */ int spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag, boolean_t *waited) { return (spa_wait_common(pool, activity, B_TRUE, tag, waited)); } /* * Wait for all instances of the specified activity complete */ int spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited) { return (spa_wait_common(pool, activity, B_FALSE, 0, waited)); } sysevent_t * spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) { sysevent_t *ev = NULL; #ifdef _KERNEL nvlist_t *resource; resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl); if (resource) { ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP); ev->resource = resource; } #else (void) spa, (void) vd, (void) hist_nvl, (void) name; #endif return (ev); } void spa_event_post(sysevent_t *ev) { #ifdef _KERNEL if (ev) { zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb); kmem_free(ev, sizeof (*ev)); } #else (void) ev; #endif } /* * Post a zevent corresponding to the given sysevent. The 'name' must be one * of the event definitions in sys/sysevent/eventdefs.h. The payload will be * filled in from the spa and (optionally) the vdev. This doesn't do anything * in the userland libzpool, as we don't want consumers to misinterpret ztest * or zdb as real changes. */ void spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) { spa_event_post(spa_event_create(spa, vd, hist_nvl, name)); } /* state manipulation functions */ EXPORT_SYMBOL(spa_open); EXPORT_SYMBOL(spa_open_rewind); EXPORT_SYMBOL(spa_get_stats); EXPORT_SYMBOL(spa_create); EXPORT_SYMBOL(spa_import); EXPORT_SYMBOL(spa_tryimport); EXPORT_SYMBOL(spa_destroy); EXPORT_SYMBOL(spa_export); EXPORT_SYMBOL(spa_reset); EXPORT_SYMBOL(spa_async_request); EXPORT_SYMBOL(spa_async_suspend); EXPORT_SYMBOL(spa_async_resume); EXPORT_SYMBOL(spa_inject_addref); EXPORT_SYMBOL(spa_inject_delref); EXPORT_SYMBOL(spa_scan_stat_init); EXPORT_SYMBOL(spa_scan_get_stats); /* device manipulation */ EXPORT_SYMBOL(spa_vdev_add); EXPORT_SYMBOL(spa_vdev_attach); EXPORT_SYMBOL(spa_vdev_detach); EXPORT_SYMBOL(spa_vdev_setpath); EXPORT_SYMBOL(spa_vdev_setfru); EXPORT_SYMBOL(spa_vdev_split_mirror); /* spare statech is global across all pools) */ EXPORT_SYMBOL(spa_spare_add); EXPORT_SYMBOL(spa_spare_remove); EXPORT_SYMBOL(spa_spare_exists); EXPORT_SYMBOL(spa_spare_activate); /* L2ARC statech is global across all pools) */ EXPORT_SYMBOL(spa_l2cache_add); EXPORT_SYMBOL(spa_l2cache_remove); EXPORT_SYMBOL(spa_l2cache_exists); EXPORT_SYMBOL(spa_l2cache_activate); EXPORT_SYMBOL(spa_l2cache_drop); /* scanning */ EXPORT_SYMBOL(spa_scan); EXPORT_SYMBOL(spa_scan_stop); /* spa syncing */ EXPORT_SYMBOL(spa_sync); /* only for DMU use */ EXPORT_SYMBOL(spa_sync_allpools); /* properties */ EXPORT_SYMBOL(spa_prop_set); EXPORT_SYMBOL(spa_prop_get); EXPORT_SYMBOL(spa_prop_clear_bootfs); /* asynchronous event notification */ EXPORT_SYMBOL(spa_event_notify); /* BEGIN CSTYLED */ ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW, "log2 fraction of arc that can be used by inflight I/Os when " "verifying pool during import"); /* END CSTYLED */ ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW, "Set to traverse metadata on pool import"); ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW, "Set to traverse data on pool import"); ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW, "Print vdev tree to zfs_dbgmsg during pool import"); ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD, "Percentage of CPUs to run an IO worker thread"); ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD, "Number of threads per IO worker taskqueue"); /* BEGIN CSTYLED */ ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW, "Allow importing pool with up to this number of missing top-level " "vdevs (in read-only mode)"); /* END CSTYLED */ ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, ZMOD_RW, "Set the livelist condense zthr to pause"); ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, ZMOD_RW, "Set the livelist condense synctask to pause"); /* BEGIN CSTYLED */ ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, INT, ZMOD_RW, "Whether livelist condensing was canceled in the synctask"); ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, INT, ZMOD_RW, "Whether livelist condensing was canceled in the zthr function"); ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, ZMOD_RW, "Whether extra ALLOC blkptrs were added to a livelist entry while it " "was being condensed"); /* END CSTYLED */