/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2013, 2019 by Delphix. All rights reserved. * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. */ #include #include #include #include #include #include /* * Range trees are tree-based data structures that can be used to * track free space or generally any space allocation information. * A range tree keeps track of individual segments and automatically * provides facilities such as adjacent extent merging and extent * splitting in response to range add/remove requests. * * A range tree starts out completely empty, with no segments in it. * Adding an allocation via range_tree_add to the range tree can either: * 1) create a new extent * 2) extend an adjacent extent * 3) merge two adjacent extents * Conversely, removing an allocation via range_tree_remove can: * 1) completely remove an extent * 2) shorten an extent (if the allocation was near one of its ends) * 3) split an extent into two extents, in effect punching a hole * * A range tree is also capable of 'bridging' gaps when adding * allocations. This is useful for cases when close proximity of * allocations is an important detail that needs to be represented * in the range tree. See range_tree_set_gap(). The default behavior * is not to bridge gaps (i.e. the maximum allowed gap size is 0). * * In order to traverse a range tree, use either the range_tree_walk() * or range_tree_vacate() functions. * * To obtain more accurate information on individual segment * operations that the range tree performs "under the hood", you can * specify a set of callbacks by passing a range_tree_ops_t structure * to the range_tree_create function. Any callbacks that are non-NULL * are then called at the appropriate times. * * The range tree code also supports a special variant of range trees * that can bridge small gaps between segments. This kind of tree is used * by the dsl scanning code to group I/Os into mostly sequential chunks to * optimize disk performance. The code here attempts to do this with as * little memory and computational overhead as possible. One limitation of * this implementation is that segments of range trees with gaps can only * support removing complete segments. */ static inline void rs_copy(range_seg_t *src, range_seg_t *dest, range_tree_t *rt) { ASSERT3U(rt->rt_type, <=, RANGE_SEG_NUM_TYPES); size_t size = 0; switch (rt->rt_type) { case RANGE_SEG32: size = sizeof (range_seg32_t); break; case RANGE_SEG64: size = sizeof (range_seg64_t); break; case RANGE_SEG_GAP: size = sizeof (range_seg_gap_t); break; default: VERIFY(0); } bcopy(src, dest, size); } void range_tree_stat_verify(range_tree_t *rt) { range_seg_t *rs; zfs_btree_index_t where; uint64_t hist[RANGE_TREE_HISTOGRAM_SIZE] = { 0 }; int i; for (rs = zfs_btree_first(&rt->rt_root, &where); rs != NULL; rs = zfs_btree_next(&rt->rt_root, &where, &where)) { uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt); int idx = highbit64(size) - 1; hist[idx]++; ASSERT3U(hist[idx], !=, 0); } for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { if (hist[i] != rt->rt_histogram[i]) { zfs_dbgmsg("i=%d, hist=%px, hist=%llu, rt_hist=%llu", i, hist, (u_longlong_t)hist[i], (u_longlong_t)rt->rt_histogram[i]); } VERIFY3U(hist[i], ==, rt->rt_histogram[i]); } } static void range_tree_stat_incr(range_tree_t *rt, range_seg_t *rs) { uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt); int idx = highbit64(size) - 1; ASSERT(size != 0); ASSERT3U(idx, <, sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram)); rt->rt_histogram[idx]++; ASSERT3U(rt->rt_histogram[idx], !=, 0); } static void range_tree_stat_decr(range_tree_t *rt, range_seg_t *rs) { uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt); int idx = highbit64(size) - 1; ASSERT(size != 0); ASSERT3U(idx, <, sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram)); ASSERT3U(rt->rt_histogram[idx], !=, 0); rt->rt_histogram[idx]--; } static int range_tree_seg32_compare(const void *x1, const void *x2) { const range_seg32_t *r1 = x1; const range_seg32_t *r2 = x2; ASSERT3U(r1->rs_start, <=, r1->rs_end); ASSERT3U(r2->rs_start, <=, r2->rs_end); return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start)); } static int range_tree_seg64_compare(const void *x1, const void *x2) { const range_seg64_t *r1 = x1; const range_seg64_t *r2 = x2; ASSERT3U(r1->rs_start, <=, r1->rs_end); ASSERT3U(r2->rs_start, <=, r2->rs_end); return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start)); } static int range_tree_seg_gap_compare(const void *x1, const void *x2) { const range_seg_gap_t *r1 = x1; const range_seg_gap_t *r2 = x2; ASSERT3U(r1->rs_start, <=, r1->rs_end); ASSERT3U(r2->rs_start, <=, r2->rs_end); return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start)); } range_tree_t * range_tree_create_gap(const range_tree_ops_t *ops, range_seg_type_t type, void *arg, uint64_t start, uint64_t shift, uint64_t gap) { range_tree_t *rt = kmem_zalloc(sizeof (range_tree_t), KM_SLEEP); ASSERT3U(shift, <, 64); ASSERT3U(type, <=, RANGE_SEG_NUM_TYPES); size_t size; int (*compare) (const void *, const void *); switch (type) { case RANGE_SEG32: size = sizeof (range_seg32_t); compare = range_tree_seg32_compare; break; case RANGE_SEG64: size = sizeof (range_seg64_t); compare = range_tree_seg64_compare; break; case RANGE_SEG_GAP: size = sizeof (range_seg_gap_t); compare = range_tree_seg_gap_compare; break; default: panic("Invalid range seg type %d", type); } zfs_btree_create(&rt->rt_root, compare, size); rt->rt_ops = ops; rt->rt_gap = gap; rt->rt_arg = arg; rt->rt_type = type; rt->rt_start = start; rt->rt_shift = shift; if (rt->rt_ops != NULL && rt->rt_ops->rtop_create != NULL) rt->rt_ops->rtop_create(rt, rt->rt_arg); return (rt); } range_tree_t * range_tree_create(const range_tree_ops_t *ops, range_seg_type_t type, void *arg, uint64_t start, uint64_t shift) { return (range_tree_create_gap(ops, type, arg, start, shift, 0)); } void range_tree_destroy(range_tree_t *rt) { VERIFY0(rt->rt_space); if (rt->rt_ops != NULL && rt->rt_ops->rtop_destroy != NULL) rt->rt_ops->rtop_destroy(rt, rt->rt_arg); zfs_btree_destroy(&rt->rt_root); kmem_free(rt, sizeof (*rt)); } void range_tree_adjust_fill(range_tree_t *rt, range_seg_t *rs, int64_t delta) { if (delta < 0 && delta * -1 >= rs_get_fill(rs, rt)) { zfs_panic_recover("zfs: attempting to decrease fill to or " "below 0; probable double remove in segment [%llx:%llx]", (longlong_t)rs_get_start(rs, rt), (longlong_t)rs_get_end(rs, rt)); } if (rs_get_fill(rs, rt) + delta > rs_get_end(rs, rt) - rs_get_start(rs, rt)) { zfs_panic_recover("zfs: attempting to increase fill beyond " "max; probable double add in segment [%llx:%llx]", (longlong_t)rs_get_start(rs, rt), (longlong_t)rs_get_end(rs, rt)); } if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); rs_set_fill(rs, rt, rs_get_fill(rs, rt) + delta); if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) rt->rt_ops->rtop_add(rt, rs, rt->rt_arg); } static void range_tree_add_impl(void *arg, uint64_t start, uint64_t size, uint64_t fill) { range_tree_t *rt = arg; zfs_btree_index_t where; range_seg_t *rs_before, *rs_after, *rs; range_seg_max_t tmp, rsearch; uint64_t end = start + size, gap = rt->rt_gap; uint64_t bridge_size = 0; boolean_t merge_before, merge_after; ASSERT3U(size, !=, 0); ASSERT3U(fill, <=, size); ASSERT3U(start + size, >, start); rs_set_start(&rsearch, rt, start); rs_set_end(&rsearch, rt, end); rs = zfs_btree_find(&rt->rt_root, &rsearch, &where); /* * If this is a gap-supporting range tree, it is possible that we * are inserting into an existing segment. In this case simply * bump the fill count and call the remove / add callbacks. If the * new range will extend an existing segment, we remove the * existing one, apply the new extent to it and re-insert it using * the normal code paths. */ if (rs != NULL) { if (gap == 0) { zfs_panic_recover("zfs: adding existent segment to " "range tree (offset=%llx size=%llx)", (longlong_t)start, (longlong_t)size); return; } uint64_t rstart = rs_get_start(rs, rt); uint64_t rend = rs_get_end(rs, rt); if (rstart <= start && rend >= end) { range_tree_adjust_fill(rt, rs, fill); return; } if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); range_tree_stat_decr(rt, rs); rt->rt_space -= rend - rstart; fill += rs_get_fill(rs, rt); start = MIN(start, rstart); end = MAX(end, rend); size = end - start; zfs_btree_remove(&rt->rt_root, rs); range_tree_add_impl(rt, start, size, fill); return; } ASSERT3P(rs, ==, NULL); /* * Determine whether or not we will have to merge with our neighbors. * If gap != 0, we might need to merge with our neighbors even if we * aren't directly touching. */ zfs_btree_index_t where_before, where_after; rs_before = zfs_btree_prev(&rt->rt_root, &where, &where_before); rs_after = zfs_btree_next(&rt->rt_root, &where, &where_after); merge_before = (rs_before != NULL && rs_get_end(rs_before, rt) >= start - gap); merge_after = (rs_after != NULL && rs_get_start(rs_after, rt) <= end + gap); if (merge_before && gap != 0) bridge_size += start - rs_get_end(rs_before, rt); if (merge_after && gap != 0) bridge_size += rs_get_start(rs_after, rt) - end; if (merge_before && merge_after) { if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) { rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg); rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg); } range_tree_stat_decr(rt, rs_before); range_tree_stat_decr(rt, rs_after); rs_copy(rs_after, &tmp, rt); uint64_t before_start = rs_get_start_raw(rs_before, rt); uint64_t before_fill = rs_get_fill(rs_before, rt); uint64_t after_fill = rs_get_fill(rs_after, rt); zfs_btree_remove_idx(&rt->rt_root, &where_before); /* * We have to re-find the node because our old reference is * invalid as soon as we do any mutating btree operations. */ rs_after = zfs_btree_find(&rt->rt_root, &tmp, &where_after); rs_set_start_raw(rs_after, rt, before_start); rs_set_fill(rs_after, rt, after_fill + before_fill + fill); rs = rs_after; } else if (merge_before) { if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg); range_tree_stat_decr(rt, rs_before); uint64_t before_fill = rs_get_fill(rs_before, rt); rs_set_end(rs_before, rt, end); rs_set_fill(rs_before, rt, before_fill + fill); rs = rs_before; } else if (merge_after) { if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg); range_tree_stat_decr(rt, rs_after); uint64_t after_fill = rs_get_fill(rs_after, rt); rs_set_start(rs_after, rt, start); rs_set_fill(rs_after, rt, after_fill + fill); rs = rs_after; } else { rs = &tmp; rs_set_start(rs, rt, start); rs_set_end(rs, rt, end); rs_set_fill(rs, rt, fill); zfs_btree_add_idx(&rt->rt_root, rs, &where); } if (gap != 0) { ASSERT3U(rs_get_fill(rs, rt), <=, rs_get_end(rs, rt) - rs_get_start(rs, rt)); } else { ASSERT3U(rs_get_fill(rs, rt), ==, rs_get_end(rs, rt) - rs_get_start(rs, rt)); } if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) rt->rt_ops->rtop_add(rt, rs, rt->rt_arg); range_tree_stat_incr(rt, rs); rt->rt_space += size + bridge_size; } void range_tree_add(void *arg, uint64_t start, uint64_t size) { range_tree_add_impl(arg, start, size, size); } static void range_tree_remove_impl(range_tree_t *rt, uint64_t start, uint64_t size, boolean_t do_fill) { zfs_btree_index_t where; range_seg_t *rs; range_seg_max_t rsearch, rs_tmp; uint64_t end = start + size; boolean_t left_over, right_over; VERIFY3U(size, !=, 0); VERIFY3U(size, <=, rt->rt_space); if (rt->rt_type == RANGE_SEG64) ASSERT3U(start + size, >, start); rs_set_start(&rsearch, rt, start); rs_set_end(&rsearch, rt, end); rs = zfs_btree_find(&rt->rt_root, &rsearch, &where); /* Make sure we completely overlap with someone */ if (rs == NULL) { zfs_panic_recover("zfs: removing nonexistent segment from " "range tree (offset=%llx size=%llx)", (longlong_t)start, (longlong_t)size); return; } /* * Range trees with gap support must only remove complete segments * from the tree. This allows us to maintain accurate fill accounting * and to ensure that bridged sections are not leaked. If we need to * remove less than the full segment, we can only adjust the fill count. */ if (rt->rt_gap != 0) { if (do_fill) { if (rs_get_fill(rs, rt) == size) { start = rs_get_start(rs, rt); end = rs_get_end(rs, rt); size = end - start; } else { range_tree_adjust_fill(rt, rs, -size); return; } } else if (rs_get_start(rs, rt) != start || rs_get_end(rs, rt) != end) { zfs_panic_recover("zfs: freeing partial segment of " "gap tree (offset=%llx size=%llx) of " "(offset=%llx size=%llx)", (longlong_t)start, (longlong_t)size, (longlong_t)rs_get_start(rs, rt), (longlong_t)rs_get_end(rs, rt) - rs_get_start(rs, rt)); return; } } VERIFY3U(rs_get_start(rs, rt), <=, start); VERIFY3U(rs_get_end(rs, rt), >=, end); left_over = (rs_get_start(rs, rt) != start); right_over = (rs_get_end(rs, rt) != end); range_tree_stat_decr(rt, rs); if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); if (left_over && right_over) { range_seg_max_t newseg; rs_set_start(&newseg, rt, end); rs_set_end_raw(&newseg, rt, rs_get_end_raw(rs, rt)); rs_set_fill(&newseg, rt, rs_get_end(rs, rt) - end); range_tree_stat_incr(rt, &newseg); // This modifies the buffer already inside the range tree rs_set_end(rs, rt, start); rs_copy(rs, &rs_tmp, rt); if (zfs_btree_next(&rt->rt_root, &where, &where) != NULL) zfs_btree_add_idx(&rt->rt_root, &newseg, &where); else zfs_btree_add(&rt->rt_root, &newseg); if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) rt->rt_ops->rtop_add(rt, &newseg, rt->rt_arg); } else if (left_over) { // This modifies the buffer already inside the range tree rs_set_end(rs, rt, start); rs_copy(rs, &rs_tmp, rt); } else if (right_over) { // This modifies the buffer already inside the range tree rs_set_start(rs, rt, end); rs_copy(rs, &rs_tmp, rt); } else { zfs_btree_remove_idx(&rt->rt_root, &where); rs = NULL; } if (rs != NULL) { /* * The fill of the leftover segment will always be equal to * the size, since we do not support removing partial segments * of range trees with gaps. */ rs_set_fill_raw(rs, rt, rs_get_end_raw(rs, rt) - rs_get_start_raw(rs, rt)); range_tree_stat_incr(rt, &rs_tmp); if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) rt->rt_ops->rtop_add(rt, &rs_tmp, rt->rt_arg); } rt->rt_space -= size; } void range_tree_remove(void *arg, uint64_t start, uint64_t size) { range_tree_remove_impl(arg, start, size, B_FALSE); } void range_tree_remove_fill(range_tree_t *rt, uint64_t start, uint64_t size) { range_tree_remove_impl(rt, start, size, B_TRUE); } void range_tree_resize_segment(range_tree_t *rt, range_seg_t *rs, uint64_t newstart, uint64_t newsize) { int64_t delta = newsize - (rs_get_end(rs, rt) - rs_get_start(rs, rt)); range_tree_stat_decr(rt, rs); if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); rs_set_start(rs, rt, newstart); rs_set_end(rs, rt, newstart + newsize); range_tree_stat_incr(rt, rs); if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) rt->rt_ops->rtop_add(rt, rs, rt->rt_arg); rt->rt_space += delta; } static range_seg_t * range_tree_find_impl(range_tree_t *rt, uint64_t start, uint64_t size) { range_seg_max_t rsearch; uint64_t end = start + size; VERIFY(size != 0); rs_set_start(&rsearch, rt, start); rs_set_end(&rsearch, rt, end); return (zfs_btree_find(&rt->rt_root, &rsearch, NULL)); } range_seg_t * range_tree_find(range_tree_t *rt, uint64_t start, uint64_t size) { if (rt->rt_type == RANGE_SEG64) ASSERT3U(start + size, >, start); range_seg_t *rs = range_tree_find_impl(rt, start, size); if (rs != NULL && rs_get_start(rs, rt) <= start && rs_get_end(rs, rt) >= start + size) { return (rs); } return (NULL); } void range_tree_verify_not_present(range_tree_t *rt, uint64_t off, uint64_t size) { range_seg_t *rs = range_tree_find(rt, off, size); if (rs != NULL) panic("segment already in tree; rs=%p", (void *)rs); } boolean_t range_tree_contains(range_tree_t *rt, uint64_t start, uint64_t size) { return (range_tree_find(rt, start, size) != NULL); } /* * Returns the first subset of the given range which overlaps with the range * tree. Returns true if there is a segment in the range, and false if there * isn't. */ boolean_t range_tree_find_in(range_tree_t *rt, uint64_t start, uint64_t size, uint64_t *ostart, uint64_t *osize) { if (rt->rt_type == RANGE_SEG64) ASSERT3U(start + size, >, start); range_seg_max_t rsearch; rs_set_start(&rsearch, rt, start); rs_set_end_raw(&rsearch, rt, rs_get_start_raw(&rsearch, rt) + 1); zfs_btree_index_t where; range_seg_t *rs = zfs_btree_find(&rt->rt_root, &rsearch, &where); if (rs != NULL) { *ostart = start; *osize = MIN(size, rs_get_end(rs, rt) - start); return (B_TRUE); } rs = zfs_btree_next(&rt->rt_root, &where, &where); if (rs == NULL || rs_get_start(rs, rt) > start + size) return (B_FALSE); *ostart = rs_get_start(rs, rt); *osize = MIN(start + size, rs_get_end(rs, rt)) - rs_get_start(rs, rt); return (B_TRUE); } /* * Ensure that this range is not in the tree, regardless of whether * it is currently in the tree. */ void range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size) { range_seg_t *rs; if (size == 0) return; if (rt->rt_type == RANGE_SEG64) ASSERT3U(start + size, >, start); while ((rs = range_tree_find_impl(rt, start, size)) != NULL) { uint64_t free_start = MAX(rs_get_start(rs, rt), start); uint64_t free_end = MIN(rs_get_end(rs, rt), start + size); range_tree_remove(rt, free_start, free_end - free_start); } } void range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst) { range_tree_t *rt; ASSERT0(range_tree_space(*rtdst)); ASSERT0(zfs_btree_numnodes(&(*rtdst)->rt_root)); rt = *rtsrc; *rtsrc = *rtdst; *rtdst = rt; } void range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg) { if (rt->rt_ops != NULL && rt->rt_ops->rtop_vacate != NULL) rt->rt_ops->rtop_vacate(rt, rt->rt_arg); if (func != NULL) { range_seg_t *rs; zfs_btree_index_t *cookie = NULL; while ((rs = zfs_btree_destroy_nodes(&rt->rt_root, &cookie)) != NULL) { func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) - rs_get_start(rs, rt)); } } else { zfs_btree_clear(&rt->rt_root); } bzero(rt->rt_histogram, sizeof (rt->rt_histogram)); rt->rt_space = 0; } void range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg) { zfs_btree_index_t where; for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where); rs != NULL; rs = zfs_btree_next(&rt->rt_root, &where, &where)) { func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) - rs_get_start(rs, rt)); } } range_seg_t * range_tree_first(range_tree_t *rt) { return (zfs_btree_first(&rt->rt_root, NULL)); } uint64_t range_tree_space(range_tree_t *rt) { return (rt->rt_space); } uint64_t range_tree_numsegs(range_tree_t *rt) { return ((rt == NULL) ? 0 : zfs_btree_numnodes(&rt->rt_root)); } boolean_t range_tree_is_empty(range_tree_t *rt) { ASSERT(rt != NULL); return (range_tree_space(rt) == 0); } /* * Remove any overlapping ranges between the given segment [start, end) * from removefrom. Add non-overlapping leftovers to addto. */ void range_tree_remove_xor_add_segment(uint64_t start, uint64_t end, range_tree_t *removefrom, range_tree_t *addto) { zfs_btree_index_t where; range_seg_max_t starting_rs; rs_set_start(&starting_rs, removefrom, start); rs_set_end_raw(&starting_rs, removefrom, rs_get_start_raw(&starting_rs, removefrom) + 1); range_seg_t *curr = zfs_btree_find(&removefrom->rt_root, &starting_rs, &where); if (curr == NULL) curr = zfs_btree_next(&removefrom->rt_root, &where, &where); range_seg_t *next; for (; curr != NULL; curr = next) { if (start == end) return; VERIFY3U(start, <, end); /* there is no overlap */ if (end <= rs_get_start(curr, removefrom)) { range_tree_add(addto, start, end - start); return; } uint64_t overlap_start = MAX(rs_get_start(curr, removefrom), start); uint64_t overlap_end = MIN(rs_get_end(curr, removefrom), end); uint64_t overlap_size = overlap_end - overlap_start; ASSERT3S(overlap_size, >, 0); range_seg_max_t rs; rs_copy(curr, &rs, removefrom); range_tree_remove(removefrom, overlap_start, overlap_size); if (start < overlap_start) range_tree_add(addto, start, overlap_start - start); start = overlap_end; next = zfs_btree_find(&removefrom->rt_root, &rs, &where); /* * If we find something here, we only removed part of the * curr segment. Either there's some left at the end * because we've reached the end of the range we're removing, * or there's some left at the start because we started * partway through the range. Either way, we continue with * the loop. If it's the former, we'll return at the start of * the loop, and if it's the latter we'll see if there is more * area to process. */ if (next != NULL) { ASSERT(start == end || start == rs_get_end(&rs, removefrom)); } next = zfs_btree_next(&removefrom->rt_root, &where, &where); } VERIFY3P(curr, ==, NULL); if (start != end) { VERIFY3U(start, <, end); range_tree_add(addto, start, end - start); } else { VERIFY3U(start, ==, end); } } /* * For each entry in rt, if it exists in removefrom, remove it * from removefrom. Otherwise, add it to addto. */ void range_tree_remove_xor_add(range_tree_t *rt, range_tree_t *removefrom, range_tree_t *addto) { zfs_btree_index_t where; for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where); rs; rs = zfs_btree_next(&rt->rt_root, &where, &where)) { range_tree_remove_xor_add_segment(rs_get_start(rs, rt), rs_get_end(rs, rt), removefrom, addto); } } uint64_t range_tree_min(range_tree_t *rt) { range_seg_t *rs = zfs_btree_first(&rt->rt_root, NULL); return (rs != NULL ? rs_get_start(rs, rt) : 0); } uint64_t range_tree_max(range_tree_t *rt) { range_seg_t *rs = zfs_btree_last(&rt->rt_root, NULL); return (rs != NULL ? rs_get_end(rs, rt) : 0); } uint64_t range_tree_span(range_tree_t *rt) { return (range_tree_max(rt) - range_tree_min(rt)); }