/* * CDDL HEADER START * * This file and its contents are supplied under the terms of the * Common Development and Distribution License ("CDDL"), version 1.0. * You may only use this file in accordance with the terms of version * 1.0 of the CDDL. * * A full copy of the text of the CDDL should have accompanied this * source. A copy of the CDDL is also available via the Internet at * http://www.illumos.org/license/CDDL. * * CDDL HEADER END */ /* * Copyright (c) 2017, Datto, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include /* * This file's primary purpose is for managing master encryption keys in * memory and on disk. For more info on how these keys are used, see the * block comment in zio_crypt.c. * * All master keys are stored encrypted on disk in the form of the DSL * Crypto Key ZAP object. The binary key data in this object is always * randomly generated and is encrypted with the user's wrapping key. This * layer of indirection allows the user to change their key without * needing to re-encrypt the entire dataset. The ZAP also holds on to the * (non-encrypted) encryption algorithm identifier, IV, and MAC needed to * safely decrypt the master key. For more info on the user's key see the * block comment in libzfs_crypto.c * * In-memory encryption keys are managed through the spa_keystore. The * keystore consists of 3 AVL trees, which are as follows: * * The Wrapping Key Tree: * The wrapping key (wkey) tree stores the user's keys that are fed into the * kernel through 'zfs load-key' and related commands. Datasets inherit their * parent's wkey by default, so these structures are refcounted. The wrapping * keys remain in memory until they are explicitly unloaded (with * "zfs unload-key"). Unloading is only possible when no datasets are using * them (refcount=0). * * The DSL Crypto Key Tree: * The DSL Crypto Keys (DCK) are the in-memory representation of decrypted * master keys. They are used by the functions in zio_crypt.c to perform * encryption, decryption, and authentication. Snapshots and clones of a given * dataset will share a DSL Crypto Key, so they are also refcounted. Once the * refcount on a key hits zero, it is immediately zeroed out and freed. * * The Crypto Key Mapping Tree: * The zio layer needs to lookup master keys by their dataset object id. Since * the DSL Crypto Keys can belong to multiple datasets, we maintain a tree of * dsl_key_mapping_t's which essentially just map the dataset object id to its * appropriate DSL Crypto Key. The management for creating and destroying these * mappings hooks into the code for owning and disowning datasets. Usually, * there will only be one active dataset owner, but there are times * (particularly during dataset creation and destruction) when this may not be * true or the dataset may not be initialized enough to own. As a result, this * object is also refcounted. */ static void dsl_wrapping_key_hold(dsl_wrapping_key_t *wkey, void *tag) { (void) zfs_refcount_add(&wkey->wk_refcnt, tag); } static void dsl_wrapping_key_rele(dsl_wrapping_key_t *wkey, void *tag) { (void) zfs_refcount_remove(&wkey->wk_refcnt, tag); } static void dsl_wrapping_key_free(dsl_wrapping_key_t *wkey) { ASSERT0(zfs_refcount_count(&wkey->wk_refcnt)); if (wkey->wk_key.ck_data) { bzero(wkey->wk_key.ck_data, CRYPTO_BITS2BYTES(wkey->wk_key.ck_length)); kmem_free(wkey->wk_key.ck_data, CRYPTO_BITS2BYTES(wkey->wk_key.ck_length)); } zfs_refcount_destroy(&wkey->wk_refcnt); kmem_free(wkey, sizeof (dsl_wrapping_key_t)); } static int dsl_wrapping_key_create(uint8_t *wkeydata, zfs_keyformat_t keyformat, uint64_t salt, uint64_t iters, dsl_wrapping_key_t **wkey_out) { int ret; dsl_wrapping_key_t *wkey; /* allocate the wrapping key */ wkey = kmem_alloc(sizeof (dsl_wrapping_key_t), KM_SLEEP); if (!wkey) return (SET_ERROR(ENOMEM)); /* allocate and initialize the underlying crypto key */ wkey->wk_key.ck_data = kmem_alloc(WRAPPING_KEY_LEN, KM_SLEEP); if (!wkey->wk_key.ck_data) { ret = ENOMEM; goto error; } wkey->wk_key.ck_format = CRYPTO_KEY_RAW; wkey->wk_key.ck_length = CRYPTO_BYTES2BITS(WRAPPING_KEY_LEN); bcopy(wkeydata, wkey->wk_key.ck_data, WRAPPING_KEY_LEN); /* initialize the rest of the struct */ zfs_refcount_create(&wkey->wk_refcnt); wkey->wk_keyformat = keyformat; wkey->wk_salt = salt; wkey->wk_iters = iters; *wkey_out = wkey; return (0); error: dsl_wrapping_key_free(wkey); *wkey_out = NULL; return (ret); } int dsl_crypto_params_create_nvlist(dcp_cmd_t cmd, nvlist_t *props, nvlist_t *crypto_args, dsl_crypto_params_t **dcp_out) { int ret; uint64_t crypt = ZIO_CRYPT_INHERIT; uint64_t keyformat = ZFS_KEYFORMAT_NONE; uint64_t salt = 0, iters = 0; dsl_crypto_params_t *dcp = NULL; dsl_wrapping_key_t *wkey = NULL; uint8_t *wkeydata = NULL; uint_t wkeydata_len = 0; char *keylocation = NULL; dcp = kmem_zalloc(sizeof (dsl_crypto_params_t), KM_SLEEP); if (!dcp) { ret = SET_ERROR(ENOMEM); goto error; } dcp->cp_cmd = cmd; /* get relevant arguments from the nvlists */ if (props != NULL) { (void) nvlist_lookup_uint64(props, zfs_prop_to_name(ZFS_PROP_ENCRYPTION), &crypt); (void) nvlist_lookup_uint64(props, zfs_prop_to_name(ZFS_PROP_KEYFORMAT), &keyformat); (void) nvlist_lookup_string(props, zfs_prop_to_name(ZFS_PROP_KEYLOCATION), &keylocation); (void) nvlist_lookup_uint64(props, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), &salt); (void) nvlist_lookup_uint64(props, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), &iters); dcp->cp_crypt = crypt; } if (crypto_args != NULL) { (void) nvlist_lookup_uint8_array(crypto_args, "wkeydata", &wkeydata, &wkeydata_len); } /* check for valid command */ if (dcp->cp_cmd >= DCP_CMD_MAX) { ret = SET_ERROR(EINVAL); goto error; } else { dcp->cp_cmd = cmd; } /* check for valid crypt */ if (dcp->cp_crypt >= ZIO_CRYPT_FUNCTIONS) { ret = SET_ERROR(EINVAL); goto error; } else { dcp->cp_crypt = crypt; } /* check for valid keyformat */ if (keyformat >= ZFS_KEYFORMAT_FORMATS) { ret = SET_ERROR(EINVAL); goto error; } /* check for a valid keylocation (of any kind) and copy it in */ if (keylocation != NULL) { if (!zfs_prop_valid_keylocation(keylocation, B_FALSE)) { ret = SET_ERROR(EINVAL); goto error; } dcp->cp_keylocation = spa_strdup(keylocation); } /* check wrapping key length, if given */ if (wkeydata != NULL && wkeydata_len != WRAPPING_KEY_LEN) { ret = SET_ERROR(EINVAL); goto error; } /* if the user asked for the deault crypt, determine that now */ if (dcp->cp_crypt == ZIO_CRYPT_ON) dcp->cp_crypt = ZIO_CRYPT_ON_VALUE; /* create the wrapping key from the raw data */ if (wkeydata != NULL) { /* create the wrapping key with the verified parameters */ ret = dsl_wrapping_key_create(wkeydata, keyformat, salt, iters, &wkey); if (ret != 0) goto error; dcp->cp_wkey = wkey; } /* * Remove the encryption properties from the nvlist since they are not * maintained through the DSL. */ (void) nvlist_remove_all(props, zfs_prop_to_name(ZFS_PROP_ENCRYPTION)); (void) nvlist_remove_all(props, zfs_prop_to_name(ZFS_PROP_KEYFORMAT)); (void) nvlist_remove_all(props, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT)); (void) nvlist_remove_all(props, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS)); *dcp_out = dcp; return (0); error: if (wkey != NULL) dsl_wrapping_key_free(wkey); if (dcp != NULL) kmem_free(dcp, sizeof (dsl_crypto_params_t)); *dcp_out = NULL; return (ret); } void dsl_crypto_params_free(dsl_crypto_params_t *dcp, boolean_t unload) { if (dcp == NULL) return; if (dcp->cp_keylocation != NULL) spa_strfree(dcp->cp_keylocation); if (unload && dcp->cp_wkey != NULL) dsl_wrapping_key_free(dcp->cp_wkey); kmem_free(dcp, sizeof (dsl_crypto_params_t)); } static int spa_crypto_key_compare(const void *a, const void *b) { const dsl_crypto_key_t *dcka = a; const dsl_crypto_key_t *dckb = b; if (dcka->dck_obj < dckb->dck_obj) return (-1); if (dcka->dck_obj > dckb->dck_obj) return (1); return (0); } static int spa_key_mapping_compare(const void *a, const void *b) { const dsl_key_mapping_t *kma = a; const dsl_key_mapping_t *kmb = b; if (kma->km_dsobj < kmb->km_dsobj) return (-1); if (kma->km_dsobj > kmb->km_dsobj) return (1); return (0); } static int spa_wkey_compare(const void *a, const void *b) { const dsl_wrapping_key_t *wka = a; const dsl_wrapping_key_t *wkb = b; if (wka->wk_ddobj < wkb->wk_ddobj) return (-1); if (wka->wk_ddobj > wkb->wk_ddobj) return (1); return (0); } void spa_keystore_init(spa_keystore_t *sk) { rw_init(&sk->sk_dk_lock, NULL, RW_DEFAULT, NULL); rw_init(&sk->sk_km_lock, NULL, RW_DEFAULT, NULL); rw_init(&sk->sk_wkeys_lock, NULL, RW_DEFAULT, NULL); avl_create(&sk->sk_dsl_keys, spa_crypto_key_compare, sizeof (dsl_crypto_key_t), offsetof(dsl_crypto_key_t, dck_avl_link)); avl_create(&sk->sk_key_mappings, spa_key_mapping_compare, sizeof (dsl_key_mapping_t), offsetof(dsl_key_mapping_t, km_avl_link)); avl_create(&sk->sk_wkeys, spa_wkey_compare, sizeof (dsl_wrapping_key_t), offsetof(dsl_wrapping_key_t, wk_avl_link)); } void spa_keystore_fini(spa_keystore_t *sk) { dsl_wrapping_key_t *wkey; void *cookie = NULL; ASSERT(avl_is_empty(&sk->sk_dsl_keys)); ASSERT(avl_is_empty(&sk->sk_key_mappings)); while ((wkey = avl_destroy_nodes(&sk->sk_wkeys, &cookie)) != NULL) dsl_wrapping_key_free(wkey); avl_destroy(&sk->sk_wkeys); avl_destroy(&sk->sk_key_mappings); avl_destroy(&sk->sk_dsl_keys); rw_destroy(&sk->sk_wkeys_lock); rw_destroy(&sk->sk_km_lock); rw_destroy(&sk->sk_dk_lock); } static int dsl_dir_get_encryption_root_ddobj(dsl_dir_t *dd, uint64_t *rddobj) { if (dd->dd_crypto_obj == 0) return (SET_ERROR(ENOENT)); return (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, DSL_CRYPTO_KEY_ROOT_DDOBJ, 8, 1, rddobj)); } int dsl_dir_get_encryption_version(dsl_dir_t *dd, uint64_t *version) { *version = 0; if (dd->dd_crypto_obj == 0) return (SET_ERROR(ENOENT)); /* version 0 is implied by ENOENT */ (void) zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, DSL_CRYPTO_KEY_VERSION, 8, 1, version); return (0); } boolean_t dsl_dir_incompatible_encryption_version(dsl_dir_t *dd) { int ret; uint64_t version = 0; ret = dsl_dir_get_encryption_version(dd, &version); if (ret != 0) return (B_FALSE); return (version != ZIO_CRYPT_KEY_CURRENT_VERSION); } static int spa_keystore_wkey_hold_ddobj_impl(spa_t *spa, uint64_t ddobj, void *tag, dsl_wrapping_key_t **wkey_out) { int ret; dsl_wrapping_key_t search_wkey; dsl_wrapping_key_t *found_wkey; ASSERT(RW_LOCK_HELD(&spa->spa_keystore.sk_wkeys_lock)); /* init the search wrapping key */ search_wkey.wk_ddobj = ddobj; /* lookup the wrapping key */ found_wkey = avl_find(&spa->spa_keystore.sk_wkeys, &search_wkey, NULL); if (!found_wkey) { ret = SET_ERROR(ENOENT); goto error; } /* increment the refcount */ dsl_wrapping_key_hold(found_wkey, tag); *wkey_out = found_wkey; return (0); error: *wkey_out = NULL; return (ret); } static int spa_keystore_wkey_hold_dd(spa_t *spa, dsl_dir_t *dd, void *tag, dsl_wrapping_key_t **wkey_out) { int ret; dsl_wrapping_key_t *wkey; uint64_t rddobj; boolean_t locked = B_FALSE; if (!RW_WRITE_HELD(&spa->spa_keystore.sk_wkeys_lock)) { rw_enter(&spa->spa_keystore.sk_wkeys_lock, RW_READER); locked = B_TRUE; } /* get the ddobj that the keylocation property was inherited from */ ret = dsl_dir_get_encryption_root_ddobj(dd, &rddobj); if (ret != 0) goto error; /* lookup the wkey in the avl tree */ ret = spa_keystore_wkey_hold_ddobj_impl(spa, rddobj, tag, &wkey); if (ret != 0) goto error; /* unlock the wkey tree if we locked it */ if (locked) rw_exit(&spa->spa_keystore.sk_wkeys_lock); *wkey_out = wkey; return (0); error: if (locked) rw_exit(&spa->spa_keystore.sk_wkeys_lock); *wkey_out = NULL; return (ret); } int dsl_crypto_can_set_keylocation(const char *dsname, const char *keylocation) { int ret = 0; dsl_dir_t *dd = NULL; dsl_pool_t *dp = NULL; uint64_t rddobj; /* hold the dsl dir */ ret = dsl_pool_hold(dsname, FTAG, &dp); if (ret != 0) goto out; ret = dsl_dir_hold(dp, dsname, FTAG, &dd, NULL); if (ret != 0) { dd = NULL; goto out; } /* if dd is not encrypted, the value may only be "none" */ if (dd->dd_crypto_obj == 0) { if (strcmp(keylocation, "none") != 0) { ret = SET_ERROR(EACCES); goto out; } ret = 0; goto out; } /* check for a valid keylocation for encrypted datasets */ if (!zfs_prop_valid_keylocation(keylocation, B_TRUE)) { ret = SET_ERROR(EINVAL); goto out; } /* check that this is an encryption root */ ret = dsl_dir_get_encryption_root_ddobj(dd, &rddobj); if (ret != 0) goto out; if (rddobj != dd->dd_object) { ret = SET_ERROR(EACCES); goto out; } dsl_dir_rele(dd, FTAG); dsl_pool_rele(dp, FTAG); return (0); out: if (dd != NULL) dsl_dir_rele(dd, FTAG); if (dp != NULL) dsl_pool_rele(dp, FTAG); return (ret); } static void dsl_crypto_key_free(dsl_crypto_key_t *dck) { ASSERT(zfs_refcount_count(&dck->dck_holds) == 0); /* destroy the zio_crypt_key_t */ zio_crypt_key_destroy(&dck->dck_key); /* free the refcount, wrapping key, and lock */ zfs_refcount_destroy(&dck->dck_holds); if (dck->dck_wkey) dsl_wrapping_key_rele(dck->dck_wkey, dck); /* free the key */ kmem_free(dck, sizeof (dsl_crypto_key_t)); } static void dsl_crypto_key_rele(dsl_crypto_key_t *dck, void *tag) { if (zfs_refcount_remove(&dck->dck_holds, tag) == 0) dsl_crypto_key_free(dck); } static int dsl_crypto_key_open(objset_t *mos, dsl_wrapping_key_t *wkey, uint64_t dckobj, void *tag, dsl_crypto_key_t **dck_out) { int ret; uint64_t crypt = 0, guid = 0, version = 0; uint8_t raw_keydata[MASTER_KEY_MAX_LEN]; uint8_t raw_hmac_keydata[SHA512_HMAC_KEYLEN]; uint8_t iv[WRAPPING_IV_LEN]; uint8_t mac[WRAPPING_MAC_LEN]; dsl_crypto_key_t *dck; /* allocate and initialize the key */ dck = kmem_zalloc(sizeof (dsl_crypto_key_t), KM_SLEEP); if (!dck) return (SET_ERROR(ENOMEM)); /* fetch all of the values we need from the ZAP */ ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_CRYPTO_SUITE, 8, 1, &crypt); if (ret != 0) goto error; ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_GUID, 8, 1, &guid); if (ret != 0) goto error; ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_MASTER_KEY, 1, MASTER_KEY_MAX_LEN, raw_keydata); if (ret != 0) goto error; ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_HMAC_KEY, 1, SHA512_HMAC_KEYLEN, raw_hmac_keydata); if (ret != 0) goto error; ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_IV, 1, WRAPPING_IV_LEN, iv); if (ret != 0) goto error; ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_MAC, 1, WRAPPING_MAC_LEN, mac); if (ret != 0) goto error; /* the initial on-disk format for encryption did not have a version */ (void) zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_VERSION, 8, 1, &version); /* * Unwrap the keys. If there is an error return EACCES to indicate * an authentication failure. */ ret = zio_crypt_key_unwrap(&wkey->wk_key, crypt, version, guid, raw_keydata, raw_hmac_keydata, iv, mac, &dck->dck_key); if (ret != 0) { ret = SET_ERROR(EACCES); goto error; } /* finish initializing the dsl_crypto_key_t */ zfs_refcount_create(&dck->dck_holds); dsl_wrapping_key_hold(wkey, dck); dck->dck_wkey = wkey; dck->dck_obj = dckobj; zfs_refcount_add(&dck->dck_holds, tag); *dck_out = dck; return (0); error: if (dck != NULL) { bzero(dck, sizeof (dsl_crypto_key_t)); kmem_free(dck, sizeof (dsl_crypto_key_t)); } *dck_out = NULL; return (ret); } static int spa_keystore_dsl_key_hold_impl(spa_t *spa, uint64_t dckobj, void *tag, dsl_crypto_key_t **dck_out) { int ret; dsl_crypto_key_t search_dck; dsl_crypto_key_t *found_dck; ASSERT(RW_LOCK_HELD(&spa->spa_keystore.sk_dk_lock)); /* init the search key */ search_dck.dck_obj = dckobj; /* find the matching key in the keystore */ found_dck = avl_find(&spa->spa_keystore.sk_dsl_keys, &search_dck, NULL); if (!found_dck) { ret = SET_ERROR(ENOENT); goto error; } /* increment the refcount */ zfs_refcount_add(&found_dck->dck_holds, tag); *dck_out = found_dck; return (0); error: *dck_out = NULL; return (ret); } static int spa_keystore_dsl_key_hold_dd(spa_t *spa, dsl_dir_t *dd, void *tag, dsl_crypto_key_t **dck_out) { int ret; avl_index_t where; dsl_crypto_key_t *dck_io = NULL, *dck_ks = NULL; dsl_wrapping_key_t *wkey = NULL; uint64_t dckobj = dd->dd_crypto_obj; /* Lookup the key in the tree of currently loaded keys */ rw_enter(&spa->spa_keystore.sk_dk_lock, RW_READER); ret = spa_keystore_dsl_key_hold_impl(spa, dckobj, tag, &dck_ks); rw_exit(&spa->spa_keystore.sk_dk_lock); if (ret == 0) { *dck_out = dck_ks; return (0); } /* Lookup the wrapping key from the keystore */ ret = spa_keystore_wkey_hold_dd(spa, dd, FTAG, &wkey); if (ret != 0) { *dck_out = NULL; return (SET_ERROR(EACCES)); } /* Read the key from disk */ ret = dsl_crypto_key_open(spa->spa_meta_objset, wkey, dckobj, tag, &dck_io); if (ret != 0) { dsl_wrapping_key_rele(wkey, FTAG); *dck_out = NULL; return (ret); } /* * Add the key to the keystore. It may already exist if it was * added while performing the read from disk. In this case discard * it and return the key from the keystore. */ rw_enter(&spa->spa_keystore.sk_dk_lock, RW_WRITER); ret = spa_keystore_dsl_key_hold_impl(spa, dckobj, tag, &dck_ks); if (ret != 0) { avl_find(&spa->spa_keystore.sk_dsl_keys, dck_io, &where); avl_insert(&spa->spa_keystore.sk_dsl_keys, dck_io, where); *dck_out = dck_io; } else { dsl_crypto_key_free(dck_io); *dck_out = dck_ks; } /* Release the wrapping key (the dsl key now has a reference to it) */ dsl_wrapping_key_rele(wkey, FTAG); rw_exit(&spa->spa_keystore.sk_dk_lock); return (0); } void spa_keystore_dsl_key_rele(spa_t *spa, dsl_crypto_key_t *dck, void *tag) { rw_enter(&spa->spa_keystore.sk_dk_lock, RW_WRITER); if (zfs_refcount_remove(&dck->dck_holds, tag) == 0) { avl_remove(&spa->spa_keystore.sk_dsl_keys, dck); dsl_crypto_key_free(dck); } rw_exit(&spa->spa_keystore.sk_dk_lock); } int spa_keystore_load_wkey_impl(spa_t *spa, dsl_wrapping_key_t *wkey) { int ret; avl_index_t where; dsl_wrapping_key_t *found_wkey; rw_enter(&spa->spa_keystore.sk_wkeys_lock, RW_WRITER); /* insert the wrapping key into the keystore */ found_wkey = avl_find(&spa->spa_keystore.sk_wkeys, wkey, &where); if (found_wkey != NULL) { ret = SET_ERROR(EEXIST); goto error_unlock; } avl_insert(&spa->spa_keystore.sk_wkeys, wkey, where); rw_exit(&spa->spa_keystore.sk_wkeys_lock); return (0); error_unlock: rw_exit(&spa->spa_keystore.sk_wkeys_lock); return (ret); } int spa_keystore_load_wkey(const char *dsname, dsl_crypto_params_t *dcp, boolean_t noop) { int ret; dsl_dir_t *dd = NULL; dsl_crypto_key_t *dck = NULL; dsl_wrapping_key_t *wkey = dcp->cp_wkey; dsl_pool_t *dp = NULL; uint64_t keyformat, salt, iters; /* * We don't validate the wrapping key's keyformat, salt, or iters * since they will never be needed after the DCK has been wrapped. */ if (dcp->cp_wkey == NULL || dcp->cp_cmd != DCP_CMD_NONE || dcp->cp_crypt != ZIO_CRYPT_INHERIT || dcp->cp_keylocation != NULL) return (SET_ERROR(EINVAL)); ret = dsl_pool_hold(dsname, FTAG, &dp); if (ret != 0) goto error; if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) { ret = (SET_ERROR(ENOTSUP)); goto error; } /* hold the dsl dir */ ret = dsl_dir_hold(dp, dsname, FTAG, &dd, NULL); if (ret != 0) { dd = NULL; goto error; } /* initialize the wkey's ddobj */ wkey->wk_ddobj = dd->dd_object; /* verify that the wkey is correct by opening its dsl key */ ret = dsl_crypto_key_open(dp->dp_meta_objset, wkey, dd->dd_crypto_obj, FTAG, &dck); if (ret != 0) goto error; /* initialize the wkey encryption parameters from the DSL Crypto Key */ ret = zap_lookup(dp->dp_meta_objset, dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_KEYFORMAT), 8, 1, &keyformat); if (ret != 0) goto error; ret = zap_lookup(dp->dp_meta_objset, dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 8, 1, &salt); if (ret != 0) goto error; ret = zap_lookup(dp->dp_meta_objset, dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 8, 1, &iters); if (ret != 0) goto error; ASSERT3U(keyformat, <, ZFS_KEYFORMAT_FORMATS); ASSERT3U(keyformat, !=, ZFS_KEYFORMAT_NONE); IMPLY(keyformat == ZFS_KEYFORMAT_PASSPHRASE, iters != 0); IMPLY(keyformat == ZFS_KEYFORMAT_PASSPHRASE, salt != 0); IMPLY(keyformat != ZFS_KEYFORMAT_PASSPHRASE, iters == 0); IMPLY(keyformat != ZFS_KEYFORMAT_PASSPHRASE, salt == 0); wkey->wk_keyformat = keyformat; wkey->wk_salt = salt; wkey->wk_iters = iters; /* * At this point we have verified the wkey and confirmed that it can * be used to decrypt a DSL Crypto Key. We can simply cleanup and * return if this is all the user wanted to do. */ if (noop) goto error; /* insert the wrapping key into the keystore */ ret = spa_keystore_load_wkey_impl(dp->dp_spa, wkey); if (ret != 0) goto error; dsl_crypto_key_rele(dck, FTAG); dsl_dir_rele(dd, FTAG); dsl_pool_rele(dp, FTAG); /* create any zvols under this ds */ zvol_create_minors(dp->dp_spa, dsname, B_TRUE); return (0); error: if (dck != NULL) dsl_crypto_key_rele(dck, FTAG); if (dd != NULL) dsl_dir_rele(dd, FTAG); if (dp != NULL) dsl_pool_rele(dp, FTAG); return (ret); } int spa_keystore_unload_wkey_impl(spa_t *spa, uint64_t ddobj) { int ret; dsl_wrapping_key_t search_wkey; dsl_wrapping_key_t *found_wkey; /* init the search wrapping key */ search_wkey.wk_ddobj = ddobj; rw_enter(&spa->spa_keystore.sk_wkeys_lock, RW_WRITER); /* remove the wrapping key from the keystore */ found_wkey = avl_find(&spa->spa_keystore.sk_wkeys, &search_wkey, NULL); if (!found_wkey) { ret = SET_ERROR(EACCES); goto error_unlock; } else if (zfs_refcount_count(&found_wkey->wk_refcnt) != 0) { ret = SET_ERROR(EBUSY); goto error_unlock; } avl_remove(&spa->spa_keystore.sk_wkeys, found_wkey); rw_exit(&spa->spa_keystore.sk_wkeys_lock); /* free the wrapping key */ dsl_wrapping_key_free(found_wkey); return (0); error_unlock: rw_exit(&spa->spa_keystore.sk_wkeys_lock); return (ret); } int spa_keystore_unload_wkey(const char *dsname) { int ret = 0; dsl_dir_t *dd = NULL; dsl_pool_t *dp = NULL; spa_t *spa = NULL; ret = spa_open(dsname, &spa, FTAG); if (ret != 0) return (ret); /* * Wait for any outstanding txg IO to complete, releasing any * remaining references on the wkey. */ if (spa_mode(spa) != FREAD) txg_wait_synced(spa->spa_dsl_pool, 0); spa_close(spa, FTAG); /* hold the dsl dir */ ret = dsl_pool_hold(dsname, FTAG, &dp); if (ret != 0) goto error; if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) { ret = (SET_ERROR(ENOTSUP)); goto error; } ret = dsl_dir_hold(dp, dsname, FTAG, &dd, NULL); if (ret != 0) { dd = NULL; goto error; } /* unload the wkey */ ret = spa_keystore_unload_wkey_impl(dp->dp_spa, dd->dd_object); if (ret != 0) goto error; dsl_dir_rele(dd, FTAG); dsl_pool_rele(dp, FTAG); /* remove any zvols under this ds */ zvol_remove_minors(dp->dp_spa, dsname, B_TRUE); return (0); error: if (dd != NULL) dsl_dir_rele(dd, FTAG); if (dp != NULL) dsl_pool_rele(dp, FTAG); return (ret); } void key_mapping_add_ref(dsl_key_mapping_t *km, void *tag) { ASSERT3U(zfs_refcount_count(&km->km_refcnt), >=, 1); zfs_refcount_add(&km->km_refcnt, tag); } /* * The locking here is a little tricky to ensure we don't cause unnecessary * performance problems. We want to release a key mapping whenever someone * decrements the refcount to 0, but freeing the mapping requires removing * it from the spa_keystore, which requires holding sk_km_lock as a writer. * Most of the time we don't want to hold this lock as a writer, since the * same lock is held as a reader for each IO that needs to encrypt / decrypt * data for any dataset and in practice we will only actually free the * mapping after unmounting a dataset. */ void key_mapping_rele(spa_t *spa, dsl_key_mapping_t *km, void *tag) { ASSERT3U(zfs_refcount_count(&km->km_refcnt), >=, 1); if (zfs_refcount_remove(&km->km_refcnt, tag) != 0) return; /* * We think we are going to need to free the mapping. Add a * reference to prevent most other releasers from thinking * this might be their responsibility. This is inherently * racy, so we will confirm that we are legitimately the * last holder once we have the sk_km_lock as a writer. */ zfs_refcount_add(&km->km_refcnt, FTAG); rw_enter(&spa->spa_keystore.sk_km_lock, RW_WRITER); if (zfs_refcount_remove(&km->km_refcnt, FTAG) != 0) { rw_exit(&spa->spa_keystore.sk_km_lock); return; } avl_remove(&spa->spa_keystore.sk_key_mappings, km); rw_exit(&spa->spa_keystore.sk_km_lock); spa_keystore_dsl_key_rele(spa, km->km_key, km); kmem_free(km, sizeof (dsl_key_mapping_t)); } int spa_keystore_create_mapping(spa_t *spa, dsl_dataset_t *ds, void *tag, dsl_key_mapping_t **km_out) { int ret; avl_index_t where; dsl_key_mapping_t *km, *found_km; boolean_t should_free = B_FALSE; /* Allocate and initialize the mapping */ km = kmem_zalloc(sizeof (dsl_key_mapping_t), KM_SLEEP); zfs_refcount_create(&km->km_refcnt); ret = spa_keystore_dsl_key_hold_dd(spa, ds->ds_dir, km, &km->km_key); if (ret != 0) { zfs_refcount_destroy(&km->km_refcnt); kmem_free(km, sizeof (dsl_key_mapping_t)); if (km_out != NULL) *km_out = NULL; return (ret); } km->km_dsobj = ds->ds_object; rw_enter(&spa->spa_keystore.sk_km_lock, RW_WRITER); /* * If a mapping already exists, simply increment its refcount and * cleanup the one we made. We want to allocate / free outside of * the lock because this lock is also used by the zio layer to lookup * key mappings. Otherwise, use the one we created. Normally, there will * only be one active reference at a time (the objset owner), but there * are times when there could be multiple async users. */ found_km = avl_find(&spa->spa_keystore.sk_key_mappings, km, &where); if (found_km != NULL) { should_free = B_TRUE; zfs_refcount_add(&found_km->km_refcnt, tag); if (km_out != NULL) *km_out = found_km; } else { zfs_refcount_add(&km->km_refcnt, tag); avl_insert(&spa->spa_keystore.sk_key_mappings, km, where); if (km_out != NULL) *km_out = km; } rw_exit(&spa->spa_keystore.sk_km_lock); if (should_free) { spa_keystore_dsl_key_rele(spa, km->km_key, km); zfs_refcount_destroy(&km->km_refcnt); kmem_free(km, sizeof (dsl_key_mapping_t)); } return (0); } int spa_keystore_remove_mapping(spa_t *spa, uint64_t dsobj, void *tag) { int ret; dsl_key_mapping_t search_km; dsl_key_mapping_t *found_km; /* init the search key mapping */ search_km.km_dsobj = dsobj; rw_enter(&spa->spa_keystore.sk_km_lock, RW_READER); /* find the matching mapping */ found_km = avl_find(&spa->spa_keystore.sk_key_mappings, &search_km, NULL); if (found_km == NULL) { ret = SET_ERROR(ENOENT); goto error_unlock; } rw_exit(&spa->spa_keystore.sk_km_lock); key_mapping_rele(spa, found_km, tag); return (0); error_unlock: rw_exit(&spa->spa_keystore.sk_km_lock); return (ret); } /* * This function is primarily used by the zio and arc layer to lookup * DSL Crypto Keys for encryption. Callers must release the key with * spa_keystore_dsl_key_rele(). The function may also be called with * dck_out == NULL and tag == NULL to simply check that a key exists * without getting a reference to it. */ int spa_keystore_lookup_key(spa_t *spa, uint64_t dsobj, void *tag, dsl_crypto_key_t **dck_out) { int ret; dsl_key_mapping_t search_km; dsl_key_mapping_t *found_km; ASSERT((tag != NULL && dck_out != NULL) || (tag == NULL && dck_out == NULL)); /* init the search key mapping */ search_km.km_dsobj = dsobj; rw_enter(&spa->spa_keystore.sk_km_lock, RW_READER); /* remove the mapping from the tree */ found_km = avl_find(&spa->spa_keystore.sk_key_mappings, &search_km, NULL); if (found_km == NULL) { ret = SET_ERROR(ENOENT); goto error_unlock; } if (found_km && tag) zfs_refcount_add(&found_km->km_key->dck_holds, tag); rw_exit(&spa->spa_keystore.sk_km_lock); if (dck_out != NULL) *dck_out = found_km->km_key; return (0); error_unlock: rw_exit(&spa->spa_keystore.sk_km_lock); if (dck_out != NULL) *dck_out = NULL; return (ret); } static int dmu_objset_check_wkey_loaded(dsl_dir_t *dd) { int ret; dsl_wrapping_key_t *wkey = NULL; ret = spa_keystore_wkey_hold_dd(dd->dd_pool->dp_spa, dd, FTAG, &wkey); if (ret != 0) return (SET_ERROR(EACCES)); dsl_wrapping_key_rele(wkey, FTAG); return (0); } static zfs_keystatus_t dsl_dataset_get_keystatus(dsl_dir_t *dd) { /* check if this dd has a has a dsl key */ if (dd->dd_crypto_obj == 0) return (ZFS_KEYSTATUS_NONE); return (dmu_objset_check_wkey_loaded(dd) == 0 ? ZFS_KEYSTATUS_AVAILABLE : ZFS_KEYSTATUS_UNAVAILABLE); } static int dsl_dir_get_crypt(dsl_dir_t *dd, uint64_t *crypt) { if (dd->dd_crypto_obj == 0) { *crypt = ZIO_CRYPT_OFF; return (0); } return (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, DSL_CRYPTO_KEY_CRYPTO_SUITE, 8, 1, crypt)); } static void dsl_crypto_key_sync_impl(objset_t *mos, uint64_t dckobj, uint64_t crypt, uint64_t root_ddobj, uint64_t guid, uint8_t *iv, uint8_t *mac, uint8_t *keydata, uint8_t *hmac_keydata, uint64_t keyformat, uint64_t salt, uint64_t iters, dmu_tx_t *tx) { VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_CRYPTO_SUITE, 8, 1, &crypt, tx)); VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_ROOT_DDOBJ, 8, 1, &root_ddobj, tx)); VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_GUID, 8, 1, &guid, tx)); VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_IV, 1, WRAPPING_IV_LEN, iv, tx)); VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_MAC, 1, WRAPPING_MAC_LEN, mac, tx)); VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_MASTER_KEY, 1, MASTER_KEY_MAX_LEN, keydata, tx)); VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_HMAC_KEY, 1, SHA512_HMAC_KEYLEN, hmac_keydata, tx)); VERIFY0(zap_update(mos, dckobj, zfs_prop_to_name(ZFS_PROP_KEYFORMAT), 8, 1, &keyformat, tx)); VERIFY0(zap_update(mos, dckobj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 8, 1, &salt, tx)); VERIFY0(zap_update(mos, dckobj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 8, 1, &iters, tx)); } static void dsl_crypto_key_sync(dsl_crypto_key_t *dck, dmu_tx_t *tx) { zio_crypt_key_t *key = &dck->dck_key; dsl_wrapping_key_t *wkey = dck->dck_wkey; uint8_t keydata[MASTER_KEY_MAX_LEN]; uint8_t hmac_keydata[SHA512_HMAC_KEYLEN]; uint8_t iv[WRAPPING_IV_LEN]; uint8_t mac[WRAPPING_MAC_LEN]; ASSERT(dmu_tx_is_syncing(tx)); ASSERT3U(key->zk_crypt, <, ZIO_CRYPT_FUNCTIONS); /* encrypt and store the keys along with the IV and MAC */ VERIFY0(zio_crypt_key_wrap(&dck->dck_wkey->wk_key, key, iv, mac, keydata, hmac_keydata)); /* update the ZAP with the obtained values */ dsl_crypto_key_sync_impl(tx->tx_pool->dp_meta_objset, dck->dck_obj, key->zk_crypt, wkey->wk_ddobj, key->zk_guid, iv, mac, keydata, hmac_keydata, wkey->wk_keyformat, wkey->wk_salt, wkey->wk_iters, tx); } typedef struct spa_keystore_change_key_args { const char *skcka_dsname; dsl_crypto_params_t *skcka_cp; } spa_keystore_change_key_args_t; static int spa_keystore_change_key_check(void *arg, dmu_tx_t *tx) { int ret; dsl_dir_t *dd = NULL; dsl_pool_t *dp = dmu_tx_pool(tx); spa_keystore_change_key_args_t *skcka = arg; dsl_crypto_params_t *dcp = skcka->skcka_cp; uint64_t rddobj; /* check for the encryption feature */ if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) { ret = SET_ERROR(ENOTSUP); goto error; } /* check for valid key change command */ if (dcp->cp_cmd != DCP_CMD_NEW_KEY && dcp->cp_cmd != DCP_CMD_INHERIT && dcp->cp_cmd != DCP_CMD_FORCE_NEW_KEY && dcp->cp_cmd != DCP_CMD_FORCE_INHERIT) { ret = SET_ERROR(EINVAL); goto error; } /* hold the dd */ ret = dsl_dir_hold(dp, skcka->skcka_dsname, FTAG, &dd, NULL); if (ret != 0) { dd = NULL; goto error; } /* verify that the dataset is encrypted */ if (dd->dd_crypto_obj == 0) { ret = SET_ERROR(EINVAL); goto error; } /* clones must always use their origin's key */ if (dsl_dir_is_clone(dd)) { ret = SET_ERROR(EINVAL); goto error; } /* lookup the ddobj we are inheriting the keylocation from */ ret = dsl_dir_get_encryption_root_ddobj(dd, &rddobj); if (ret != 0) goto error; /* Handle inheritance */ if (dcp->cp_cmd == DCP_CMD_INHERIT || dcp->cp_cmd == DCP_CMD_FORCE_INHERIT) { /* no other encryption params should be given */ if (dcp->cp_crypt != ZIO_CRYPT_INHERIT || dcp->cp_keylocation != NULL || dcp->cp_wkey != NULL) { ret = SET_ERROR(EINVAL); goto error; } /* check that this is an encryption root */ if (dd->dd_object != rddobj) { ret = SET_ERROR(EINVAL); goto error; } /* check that the parent is encrypted */ if (dd->dd_parent->dd_crypto_obj == 0) { ret = SET_ERROR(EINVAL); goto error; } /* if we are rewrapping check that both keys are loaded */ if (dcp->cp_cmd == DCP_CMD_INHERIT) { ret = dmu_objset_check_wkey_loaded(dd); if (ret != 0) goto error; ret = dmu_objset_check_wkey_loaded(dd->dd_parent); if (ret != 0) goto error; } dsl_dir_rele(dd, FTAG); return (0); } /* handle forcing an encryption root without rewrapping */ if (dcp->cp_cmd == DCP_CMD_FORCE_NEW_KEY) { /* no other encryption params should be given */ if (dcp->cp_crypt != ZIO_CRYPT_INHERIT || dcp->cp_keylocation != NULL || dcp->cp_wkey != NULL) { ret = SET_ERROR(EINVAL); goto error; } /* check that this is not an encryption root */ if (dd->dd_object == rddobj) { ret = SET_ERROR(EINVAL); goto error; } dsl_dir_rele(dd, FTAG); return (0); } /* crypt cannot be changed after creation */ if (dcp->cp_crypt != ZIO_CRYPT_INHERIT) { ret = SET_ERROR(EINVAL); goto error; } /* we are not inheritting our parent's wkey so we need one ourselves */ if (dcp->cp_wkey == NULL) { ret = SET_ERROR(EINVAL); goto error; } /* check for a valid keyformat for the new wrapping key */ if (dcp->cp_wkey->wk_keyformat >= ZFS_KEYFORMAT_FORMATS || dcp->cp_wkey->wk_keyformat == ZFS_KEYFORMAT_NONE) { ret = SET_ERROR(EINVAL); goto error; } /* * If this dataset is not currently an encryption root we need a new * keylocation for this dataset's new wrapping key. Otherwise we can * just keep the one we already had. */ if (dd->dd_object != rddobj && dcp->cp_keylocation == NULL) { ret = SET_ERROR(EINVAL); goto error; } /* check that the keylocation is valid if it is not NULL */ if (dcp->cp_keylocation != NULL && !zfs_prop_valid_keylocation(dcp->cp_keylocation, B_TRUE)) { ret = SET_ERROR(EINVAL); goto error; } /* passphrases require pbkdf2 salt and iters */ if (dcp->cp_wkey->wk_keyformat == ZFS_KEYFORMAT_PASSPHRASE) { if (dcp->cp_wkey->wk_salt == 0 || dcp->cp_wkey->wk_iters < MIN_PBKDF2_ITERATIONS) { ret = SET_ERROR(EINVAL); goto error; } } else { if (dcp->cp_wkey->wk_salt != 0 || dcp->cp_wkey->wk_iters != 0) { ret = SET_ERROR(EINVAL); goto error; } } /* make sure the dd's wkey is loaded */ ret = dmu_objset_check_wkey_loaded(dd); if (ret != 0) goto error; dsl_dir_rele(dd, FTAG); return (0); error: if (dd != NULL) dsl_dir_rele(dd, FTAG); return (ret); } static void spa_keystore_change_key_sync_impl(uint64_t rddobj, uint64_t ddobj, uint64_t new_rddobj, dsl_wrapping_key_t *wkey, dmu_tx_t *tx) { zap_cursor_t *zc; zap_attribute_t *za; dsl_pool_t *dp = dmu_tx_pool(tx); dsl_dir_t *dd = NULL; dsl_crypto_key_t *dck = NULL; uint64_t curr_rddobj; ASSERT(RW_WRITE_HELD(&dp->dp_spa->spa_keystore.sk_wkeys_lock)); /* hold the dd */ VERIFY0(dsl_dir_hold_obj(dp, ddobj, NULL, FTAG, &dd)); /* ignore hidden dsl dirs */ if (dd->dd_myname[0] == '$' || dd->dd_myname[0] == '%') { dsl_dir_rele(dd, FTAG); return; } /* * Stop recursing if this dsl dir didn't inherit from the root * or if this dd is a clone. */ VERIFY0(dsl_dir_get_encryption_root_ddobj(dd, &curr_rddobj)); if (curr_rddobj != rddobj || dsl_dir_is_clone(dd)) { dsl_dir_rele(dd, FTAG); return; } /* * If we don't have a wrapping key just update the dck to reflect the * new encryption root. Otherwise rewrap the entire dck and re-sync it * to disk. */ if (wkey == NULL) { VERIFY0(zap_update(dp->dp_meta_objset, dd->dd_crypto_obj, DSL_CRYPTO_KEY_ROOT_DDOBJ, 8, 1, &new_rddobj, tx)); } else { VERIFY0(spa_keystore_dsl_key_hold_dd(dp->dp_spa, dd, FTAG, &dck)); dsl_wrapping_key_hold(wkey, dck); dsl_wrapping_key_rele(dck->dck_wkey, dck); dck->dck_wkey = wkey; dsl_crypto_key_sync(dck, tx); spa_keystore_dsl_key_rele(dp->dp_spa, dck, FTAG); } zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); /* Recurse into all child dsl dirs. */ for (zap_cursor_init(zc, dp->dp_meta_objset, dsl_dir_phys(dd)->dd_child_dir_zapobj); zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) { spa_keystore_change_key_sync_impl(rddobj, za->za_first_integer, new_rddobj, wkey, tx); } zap_cursor_fini(zc); kmem_free(za, sizeof (zap_attribute_t)); kmem_free(zc, sizeof (zap_cursor_t)); dsl_dir_rele(dd, FTAG); } static void spa_keystore_change_key_sync(void *arg, dmu_tx_t *tx) { dsl_dataset_t *ds; avl_index_t where; dsl_pool_t *dp = dmu_tx_pool(tx); spa_t *spa = dp->dp_spa; spa_keystore_change_key_args_t *skcka = arg; dsl_crypto_params_t *dcp = skcka->skcka_cp; dsl_wrapping_key_t *wkey = NULL, *found_wkey; dsl_wrapping_key_t wkey_search; char *keylocation = dcp->cp_keylocation; uint64_t rddobj, new_rddobj; /* create and initialize the wrapping key */ VERIFY0(dsl_dataset_hold(dp, skcka->skcka_dsname, FTAG, &ds)); ASSERT(!ds->ds_is_snapshot); if (dcp->cp_cmd == DCP_CMD_NEW_KEY || dcp->cp_cmd == DCP_CMD_FORCE_NEW_KEY) { /* * We are changing to a new wkey. Set additional properties * which can be sent along with this ioctl. Note that this * command can set keylocation even if it can't normally be * set via 'zfs set' due to a non-local keylocation. */ if (dcp->cp_cmd == DCP_CMD_NEW_KEY) { wkey = dcp->cp_wkey; wkey->wk_ddobj = ds->ds_dir->dd_object; } else { keylocation = "prompt"; } if (keylocation != NULL) { dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_KEYLOCATION), ZPROP_SRC_LOCAL, 1, strlen(keylocation) + 1, keylocation, tx); } VERIFY0(dsl_dir_get_encryption_root_ddobj(ds->ds_dir, &rddobj)); new_rddobj = ds->ds_dir->dd_object; } else { /* * We are inheritting the parent's wkey. Unset any local * keylocation and grab a reference to the wkey. */ if (dcp->cp_cmd == DCP_CMD_INHERIT) { VERIFY0(spa_keystore_wkey_hold_dd(spa, ds->ds_dir->dd_parent, FTAG, &wkey)); } dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_KEYLOCATION), ZPROP_SRC_NONE, 0, 0, NULL, tx); rddobj = ds->ds_dir->dd_object; VERIFY0(dsl_dir_get_encryption_root_ddobj(ds->ds_dir->dd_parent, &new_rddobj)); } if (wkey == NULL) { ASSERT(dcp->cp_cmd == DCP_CMD_FORCE_INHERIT || dcp->cp_cmd == DCP_CMD_FORCE_NEW_KEY); } rw_enter(&spa->spa_keystore.sk_wkeys_lock, RW_WRITER); /* recurse through all children and rewrap their keys */ spa_keystore_change_key_sync_impl(rddobj, ds->ds_dir->dd_object, new_rddobj, wkey, tx); /* * All references to the old wkey should be released now (if it * existed). Replace the wrapping key. */ wkey_search.wk_ddobj = ds->ds_dir->dd_object; found_wkey = avl_find(&spa->spa_keystore.sk_wkeys, &wkey_search, NULL); if (found_wkey != NULL) { ASSERT0(zfs_refcount_count(&found_wkey->wk_refcnt)); avl_remove(&spa->spa_keystore.sk_wkeys, found_wkey); dsl_wrapping_key_free(found_wkey); } if (dcp->cp_cmd == DCP_CMD_NEW_KEY) { avl_find(&spa->spa_keystore.sk_wkeys, wkey, &where); avl_insert(&spa->spa_keystore.sk_wkeys, wkey, where); } else if (wkey != NULL) { dsl_wrapping_key_rele(wkey, FTAG); } rw_exit(&spa->spa_keystore.sk_wkeys_lock); dsl_dataset_rele(ds, FTAG); } int spa_keystore_change_key(const char *dsname, dsl_crypto_params_t *dcp) { spa_keystore_change_key_args_t skcka; /* initialize the args struct */ skcka.skcka_dsname = dsname; skcka.skcka_cp = dcp; /* * Perform the actual work in syncing context. The blocks modified * here could be calculated but it would require holding the pool * lock and tarversing all of the datasets that will have their keys * changed. */ return (dsl_sync_task(dsname, spa_keystore_change_key_check, spa_keystore_change_key_sync, &skcka, 15, ZFS_SPACE_CHECK_RESERVED)); } int dsl_dir_rename_crypt_check(dsl_dir_t *dd, dsl_dir_t *newparent) { int ret; uint64_t curr_rddobj, parent_rddobj; if (dd->dd_crypto_obj == 0) { /* children of encrypted parents must be encrypted */ if (newparent->dd_crypto_obj != 0) { ret = SET_ERROR(EACCES); goto error; } return (0); } ret = dsl_dir_get_encryption_root_ddobj(dd, &curr_rddobj); if (ret != 0) goto error; /* * if this is not an encryption root, we must make sure we are not * moving dd to a new encryption root */ if (dd->dd_object != curr_rddobj) { ret = dsl_dir_get_encryption_root_ddobj(newparent, &parent_rddobj); if (ret != 0) goto error; if (parent_rddobj != curr_rddobj) { ret = SET_ERROR(EACCES); goto error; } } return (0); error: return (ret); } /* * Check to make sure that a promote from targetdd to origindd will not require * any key rewraps. */ int dsl_dataset_promote_crypt_check(dsl_dir_t *target, dsl_dir_t *origin) { int ret; uint64_t rddobj, op_rddobj, tp_rddobj; /* If the dataset is not encrypted we don't need to check anything */ if (origin->dd_crypto_obj == 0) return (0); /* * If we are not changing the first origin snapshot in a chain * the encryption root won't change either. */ if (dsl_dir_is_clone(origin)) return (0); /* * If the origin is the encryption root we will update * the DSL Crypto Key to point to the target instead. */ ret = dsl_dir_get_encryption_root_ddobj(origin, &rddobj); if (ret != 0) return (ret); if (rddobj == origin->dd_object) return (0); /* * The origin is inheriting its encryption root from its parent. * Check that the parent of the target has the same encryption root. */ ret = dsl_dir_get_encryption_root_ddobj(origin->dd_parent, &op_rddobj); if (ret != 0) return (ret); ret = dsl_dir_get_encryption_root_ddobj(target->dd_parent, &tp_rddobj); if (ret != 0) return (ret); if (op_rddobj != tp_rddobj) return (SET_ERROR(EACCES)); return (0); } void dsl_dataset_promote_crypt_sync(dsl_dir_t *target, dsl_dir_t *origin, dmu_tx_t *tx) { uint64_t rddobj; dsl_pool_t *dp = target->dd_pool; dsl_dataset_t *targetds; dsl_dataset_t *originds; char *keylocation; if (origin->dd_crypto_obj == 0) return; if (dsl_dir_is_clone(origin)) return; VERIFY0(dsl_dir_get_encryption_root_ddobj(origin, &rddobj)); if (rddobj != origin->dd_object) return; /* * If the target is being promoted to the encyrption root update the * DSL Crypto Key and keylocation to reflect that. We also need to * update the DSL Crypto Keys of all children inheritting their * encryption root to point to the new target. Otherwise, the check * function ensured that the encryption root will not change. */ keylocation = kmem_alloc(ZAP_MAXVALUELEN, KM_SLEEP); VERIFY0(dsl_dataset_hold_obj(dp, dsl_dir_phys(target)->dd_head_dataset_obj, FTAG, &targetds)); VERIFY0(dsl_dataset_hold_obj(dp, dsl_dir_phys(origin)->dd_head_dataset_obj, FTAG, &originds)); VERIFY0(dsl_prop_get_dd(origin, zfs_prop_to_name(ZFS_PROP_KEYLOCATION), 1, ZAP_MAXVALUELEN, keylocation, NULL, B_FALSE)); dsl_prop_set_sync_impl(targetds, zfs_prop_to_name(ZFS_PROP_KEYLOCATION), ZPROP_SRC_LOCAL, 1, strlen(keylocation) + 1, keylocation, tx); dsl_prop_set_sync_impl(originds, zfs_prop_to_name(ZFS_PROP_KEYLOCATION), ZPROP_SRC_NONE, 0, 0, NULL, tx); rw_enter(&dp->dp_spa->spa_keystore.sk_wkeys_lock, RW_WRITER); spa_keystore_change_key_sync_impl(rddobj, origin->dd_object, target->dd_object, NULL, tx); rw_exit(&dp->dp_spa->spa_keystore.sk_wkeys_lock); dsl_dataset_rele(targetds, FTAG); dsl_dataset_rele(originds, FTAG); kmem_free(keylocation, ZAP_MAXVALUELEN); } int dmu_objset_clone_crypt_check(dsl_dir_t *parentdd, dsl_dir_t *origindd) { int ret; uint64_t pcrypt, crypt; /* * Check that we are not making an unencrypted child of an * encrypted parent. */ ret = dsl_dir_get_crypt(parentdd, &pcrypt); if (ret != 0) return (ret); ret = dsl_dir_get_crypt(origindd, &crypt); if (ret != 0) return (ret); ASSERT3U(pcrypt, !=, ZIO_CRYPT_INHERIT); ASSERT3U(crypt, !=, ZIO_CRYPT_INHERIT); if (crypt == ZIO_CRYPT_OFF && pcrypt != ZIO_CRYPT_OFF) return (SET_ERROR(EINVAL)); return (0); } int dmu_objset_create_crypt_check(dsl_dir_t *parentdd, dsl_crypto_params_t *dcp, boolean_t *will_encrypt) { int ret; uint64_t pcrypt, crypt; dsl_crypto_params_t dummy_dcp = { 0 }; if (will_encrypt != NULL) *will_encrypt = B_FALSE; if (dcp == NULL) dcp = &dummy_dcp; if (dcp->cp_cmd != DCP_CMD_NONE) return (SET_ERROR(EINVAL)); if (parentdd != NULL) { ret = dsl_dir_get_crypt(parentdd, &pcrypt); if (ret != 0) return (ret); } else { pcrypt = ZIO_CRYPT_OFF; } crypt = (dcp->cp_crypt == ZIO_CRYPT_INHERIT) ? pcrypt : dcp->cp_crypt; ASSERT3U(pcrypt, !=, ZIO_CRYPT_INHERIT); ASSERT3U(crypt, !=, ZIO_CRYPT_INHERIT); /* * We can't create an unencrypted child of an encrypted parent * under any circumstances. */ if (crypt == ZIO_CRYPT_OFF && pcrypt != ZIO_CRYPT_OFF) return (SET_ERROR(EINVAL)); /* check for valid dcp with no encryption (inherited or local) */ if (crypt == ZIO_CRYPT_OFF) { /* Must not specify encryption params */ if (dcp->cp_wkey != NULL || (dcp->cp_keylocation != NULL && strcmp(dcp->cp_keylocation, "none") != 0)) return (SET_ERROR(EINVAL)); return (0); } if (will_encrypt != NULL) *will_encrypt = B_TRUE; /* * We will now definitely be encrypting. Check the feature flag. When * creating the pool the caller will check this for us since we won't * technically have the feature activated yet. */ if (parentdd != NULL && !spa_feature_is_enabled(parentdd->dd_pool->dp_spa, SPA_FEATURE_ENCRYPTION)) { return (SET_ERROR(EOPNOTSUPP)); } /* handle inheritance */ if (dcp->cp_wkey == NULL) { ASSERT3P(parentdd, !=, NULL); /* key must be fully unspecified */ if (dcp->cp_keylocation != NULL) return (SET_ERROR(EINVAL)); /* parent must have a key to inherit */ if (pcrypt == ZIO_CRYPT_OFF) return (SET_ERROR(EINVAL)); /* check for parent key */ ret = dmu_objset_check_wkey_loaded(parentdd); if (ret != 0) return (ret); return (0); } /* At this point we should have a fully specified key. Check location */ if (dcp->cp_keylocation == NULL || !zfs_prop_valid_keylocation(dcp->cp_keylocation, B_TRUE)) return (SET_ERROR(EINVAL)); /* Must have fully specified keyformat */ switch (dcp->cp_wkey->wk_keyformat) { case ZFS_KEYFORMAT_HEX: case ZFS_KEYFORMAT_RAW: /* requires no pbkdf2 iters and salt */ if (dcp->cp_wkey->wk_salt != 0 || dcp->cp_wkey->wk_iters != 0) return (SET_ERROR(EINVAL)); break; case ZFS_KEYFORMAT_PASSPHRASE: /* requires pbkdf2 iters and salt */ if (dcp->cp_wkey->wk_salt == 0 || dcp->cp_wkey->wk_iters < MIN_PBKDF2_ITERATIONS) return (SET_ERROR(EINVAL)); break; case ZFS_KEYFORMAT_NONE: default: /* keyformat must be specified and valid */ return (SET_ERROR(EINVAL)); } return (0); } void dsl_dataset_create_crypt_sync(uint64_t dsobj, dsl_dir_t *dd, dsl_dataset_t *origin, dsl_crypto_params_t *dcp, dmu_tx_t *tx) { dsl_pool_t *dp = dd->dd_pool; uint64_t crypt; dsl_wrapping_key_t *wkey; /* clones always use their origin's wrapping key */ if (dsl_dir_is_clone(dd)) { ASSERT3P(dcp, ==, NULL); /* * If this is an encrypted clone we just need to clone the * dck into dd. Zapify the dd so we can do that. */ if (origin->ds_dir->dd_crypto_obj != 0) { dmu_buf_will_dirty(dd->dd_dbuf, tx); dsl_dir_zapify(dd, tx); dd->dd_crypto_obj = dsl_crypto_key_clone_sync(origin->ds_dir, tx); VERIFY0(zap_add(dp->dp_meta_objset, dd->dd_object, DD_FIELD_CRYPTO_KEY_OBJ, sizeof (uint64_t), 1, &dd->dd_crypto_obj, tx)); } return; } /* * A NULL dcp at this point indicates this is the origin dataset * which does not have an objset to encrypt. Raw receives will handle * encryption separately later. In both cases we can simply return. */ if (dcp == NULL || dcp->cp_cmd == DCP_CMD_RAW_RECV) return; crypt = dcp->cp_crypt; wkey = dcp->cp_wkey; /* figure out the effective crypt */ if (crypt == ZIO_CRYPT_INHERIT && dd->dd_parent != NULL) VERIFY0(dsl_dir_get_crypt(dd->dd_parent, &crypt)); /* if we aren't doing encryption just return */ if (crypt == ZIO_CRYPT_OFF || crypt == ZIO_CRYPT_INHERIT) return; /* zapify the dd so that we can add the crypto key obj to it */ dmu_buf_will_dirty(dd->dd_dbuf, tx); dsl_dir_zapify(dd, tx); /* use the new key if given or inherit from the parent */ if (wkey == NULL) { VERIFY0(spa_keystore_wkey_hold_dd(dp->dp_spa, dd->dd_parent, FTAG, &wkey)); } else { wkey->wk_ddobj = dd->dd_object; } ASSERT3P(wkey, !=, NULL); /* Create or clone the DSL crypto key and activate the feature */ dd->dd_crypto_obj = dsl_crypto_key_create_sync(crypt, wkey, tx); VERIFY0(zap_add(dp->dp_meta_objset, dd->dd_object, DD_FIELD_CRYPTO_KEY_OBJ, sizeof (uint64_t), 1, &dd->dd_crypto_obj, tx)); dsl_dataset_activate_feature(dsobj, SPA_FEATURE_ENCRYPTION, tx); /* * If we inherited the wrapping key we release our reference now. * Otherwise, this is a new key and we need to load it into the * keystore. */ if (dcp->cp_wkey == NULL) { dsl_wrapping_key_rele(wkey, FTAG); } else { VERIFY0(spa_keystore_load_wkey_impl(dp->dp_spa, wkey)); } } typedef struct dsl_crypto_recv_key_arg { uint64_t dcrka_dsobj; dmu_objset_type_t dcrka_ostype; nvlist_t *dcrka_nvl; boolean_t dcrka_do_key; } dsl_crypto_recv_key_arg_t; static int dsl_crypto_recv_raw_objset_check(dsl_dataset_t *ds, dmu_objset_type_t ostype, nvlist_t *nvl, dmu_tx_t *tx) { int ret; objset_t *os; dnode_t *mdn; uint8_t *buf = NULL; uint_t len; uint64_t intval, nlevels, blksz, ibs, nblkptr, maxblkid; if (ostype != DMU_OST_ZFS && ostype != DMU_OST_ZVOL) return (SET_ERROR(EINVAL)); /* raw receives also need info about the structure of the metadnode */ ret = nvlist_lookup_uint64(nvl, "mdn_compress", &intval); if (ret != 0 || intval >= ZIO_COMPRESS_LEGACY_FUNCTIONS) return (SET_ERROR(EINVAL)); ret = nvlist_lookup_uint64(nvl, "mdn_checksum", &intval); if (ret != 0 || intval >= ZIO_CHECKSUM_LEGACY_FUNCTIONS) return (SET_ERROR(EINVAL)); ret = nvlist_lookup_uint64(nvl, "mdn_nlevels", &nlevels); if (ret != 0 || nlevels > DN_MAX_LEVELS) return (SET_ERROR(EINVAL)); ret = nvlist_lookup_uint64(nvl, "mdn_blksz", &blksz); if (ret != 0 || blksz < SPA_MINBLOCKSIZE) return (SET_ERROR(EINVAL)); else if (blksz > spa_maxblocksize(tx->tx_pool->dp_spa)) return (SET_ERROR(ENOTSUP)); ret = nvlist_lookup_uint64(nvl, "mdn_indblkshift", &ibs); if (ret != 0 || ibs < DN_MIN_INDBLKSHIFT || ibs > DN_MAX_INDBLKSHIFT) return (SET_ERROR(ENOTSUP)); ret = nvlist_lookup_uint64(nvl, "mdn_nblkptr", &nblkptr); if (ret != 0 || nblkptr != DN_MAX_NBLKPTR) return (SET_ERROR(ENOTSUP)); ret = nvlist_lookup_uint64(nvl, "mdn_maxblkid", &maxblkid); if (ret != 0) return (SET_ERROR(EINVAL)); ret = nvlist_lookup_uint8_array(nvl, "portable_mac", &buf, &len); if (ret != 0 || len != ZIO_OBJSET_MAC_LEN) return (SET_ERROR(EINVAL)); ret = dmu_objset_from_ds(ds, &os); if (ret != 0) return (ret); /* * Useraccounting is not portable and must be done with the keys loaded. * Therefore, whenever we do any kind of receive the useraccounting * must not be present. */ ASSERT0(os->os_flags & OBJSET_FLAG_USERACCOUNTING_COMPLETE); ASSERT0(os->os_flags & OBJSET_FLAG_USEROBJACCOUNTING_COMPLETE); mdn = DMU_META_DNODE(os); /* * If we already created the objset, make sure its unchangeable * properties match the ones received in the nvlist. */ rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); if (!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) && (mdn->dn_nlevels != nlevels || mdn->dn_datablksz != blksz || mdn->dn_indblkshift != ibs || mdn->dn_nblkptr != nblkptr)) { rrw_exit(&ds->ds_bp_rwlock, FTAG); return (SET_ERROR(EINVAL)); } rrw_exit(&ds->ds_bp_rwlock, FTAG); return (0); } static void dsl_crypto_recv_raw_objset_sync(dsl_dataset_t *ds, dmu_objset_type_t ostype, nvlist_t *nvl, dmu_tx_t *tx) { dsl_pool_t *dp = tx->tx_pool; objset_t *os; dnode_t *mdn; zio_t *zio; uint8_t *portable_mac; uint_t len; uint64_t compress, checksum, nlevels, blksz, ibs, maxblkid; boolean_t newds = B_FALSE; VERIFY0(dmu_objset_from_ds(ds, &os)); mdn = DMU_META_DNODE(os); /* fetch the values we need from the nvlist */ compress = fnvlist_lookup_uint64(nvl, "mdn_compress"); checksum = fnvlist_lookup_uint64(nvl, "mdn_checksum"); nlevels = fnvlist_lookup_uint64(nvl, "mdn_nlevels"); blksz = fnvlist_lookup_uint64(nvl, "mdn_blksz"); ibs = fnvlist_lookup_uint64(nvl, "mdn_indblkshift"); maxblkid = fnvlist_lookup_uint64(nvl, "mdn_maxblkid"); VERIFY0(nvlist_lookup_uint8_array(nvl, "portable_mac", &portable_mac, &len)); /* if we haven't created an objset for the ds yet, do that now */ rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); if (BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) { (void) dmu_objset_create_impl_dnstats(dp->dp_spa, ds, dsl_dataset_get_blkptr(ds), ostype, nlevels, blksz, ibs, tx); newds = B_TRUE; } rrw_exit(&ds->ds_bp_rwlock, FTAG); /* * Set the portable MAC. The local MAC will always be zero since the * incoming data will all be portable and user accounting will be * deferred until the next mount. Afterwards, flag the os to be * written out raw next time. */ arc_release(os->os_phys_buf, &os->os_phys_buf); bcopy(portable_mac, os->os_phys->os_portable_mac, ZIO_OBJSET_MAC_LEN); bzero(os->os_phys->os_local_mac, ZIO_OBJSET_MAC_LEN); os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; /* set metadnode compression and checksum */ mdn->dn_compress = compress; mdn->dn_checksum = checksum; rw_enter(&mdn->dn_struct_rwlock, RW_WRITER); dnode_new_blkid(mdn, maxblkid, tx, B_FALSE); rw_exit(&mdn->dn_struct_rwlock); /* * We can't normally dirty the dataset in syncing context unless * we are creating a new dataset. In this case, we perform a * pseudo txg sync here instead. */ if (newds) { dsl_dataset_dirty(ds, tx); } else { zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); dsl_dataset_sync(ds, zio, tx); VERIFY0(zio_wait(zio)); /* dsl_dataset_sync_done will drop this reference. */ dmu_buf_add_ref(ds->ds_dbuf, ds); dsl_dataset_sync_done(ds, tx); } } int dsl_crypto_recv_raw_key_check(dsl_dataset_t *ds, nvlist_t *nvl, dmu_tx_t *tx) { int ret; objset_t *mos = tx->tx_pool->dp_meta_objset; uint8_t *buf = NULL; uint_t len; uint64_t intval, guid, version; boolean_t is_passphrase = B_FALSE; ASSERT(dsl_dataset_phys(ds)->ds_flags & DS_FLAG_INCONSISTENT); /* * Read and check all the encryption values from the nvlist. We need * all of the fields of a DSL Crypto Key, as well as a fully specified * wrapping key. */ ret = nvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_CRYPTO_SUITE, &intval); if (ret != 0 || intval >= ZIO_CRYPT_FUNCTIONS || intval <= ZIO_CRYPT_OFF) return (SET_ERROR(EINVAL)); ret = nvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_GUID, &intval); if (ret != 0) return (SET_ERROR(EINVAL)); /* * If this is an incremental receive make sure the given key guid * matches the one we already have. */ if (ds->ds_dir->dd_crypto_obj != 0) { ret = zap_lookup(mos, ds->ds_dir->dd_crypto_obj, DSL_CRYPTO_KEY_GUID, 8, 1, &guid); if (ret != 0) return (ret); if (intval != guid) return (SET_ERROR(EACCES)); } ret = nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_MASTER_KEY, &buf, &len); if (ret != 0 || len != MASTER_KEY_MAX_LEN) return (SET_ERROR(EINVAL)); ret = nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_HMAC_KEY, &buf, &len); if (ret != 0 || len != SHA512_HMAC_KEYLEN) return (SET_ERROR(EINVAL)); ret = nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_IV, &buf, &len); if (ret != 0 || len != WRAPPING_IV_LEN) return (SET_ERROR(EINVAL)); ret = nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_MAC, &buf, &len); if (ret != 0 || len != WRAPPING_MAC_LEN) return (SET_ERROR(EINVAL)); /* * We don't support receiving old on-disk formats. The version 0 * implementation protected several fields in an objset that were * not always portable during a raw receive. As a result, we call * the old version an on-disk errata #3. */ ret = nvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_VERSION, &version); if (ret != 0 || version != ZIO_CRYPT_KEY_CURRENT_VERSION) return (SET_ERROR(ENOTSUP)); ret = nvlist_lookup_uint64(nvl, zfs_prop_to_name(ZFS_PROP_KEYFORMAT), &intval); if (ret != 0 || intval >= ZFS_KEYFORMAT_FORMATS || intval == ZFS_KEYFORMAT_NONE) return (SET_ERROR(EINVAL)); is_passphrase = (intval == ZFS_KEYFORMAT_PASSPHRASE); /* * for raw receives we allow any number of pbkdf2iters since there * won't be a chance for the user to change it. */ ret = nvlist_lookup_uint64(nvl, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), &intval); if (ret != 0 || (is_passphrase == (intval == 0))) return (SET_ERROR(EINVAL)); ret = nvlist_lookup_uint64(nvl, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), &intval); if (ret != 0 || (is_passphrase == (intval == 0))) return (SET_ERROR(EINVAL)); return (0); } void dsl_crypto_recv_raw_key_sync(dsl_dataset_t *ds, nvlist_t *nvl, dmu_tx_t *tx) { dsl_pool_t *dp = tx->tx_pool; objset_t *mos = dp->dp_meta_objset; dsl_dir_t *dd = ds->ds_dir; uint_t len; uint64_t rddobj, one = 1; uint8_t *keydata, *hmac_keydata, *iv, *mac; uint64_t crypt, guid, keyformat, iters, salt; uint64_t version = ZIO_CRYPT_KEY_CURRENT_VERSION; char *keylocation = "prompt"; /* lookup the values we need to create the DSL Crypto Key */ crypt = fnvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_CRYPTO_SUITE); guid = fnvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_GUID); keyformat = fnvlist_lookup_uint64(nvl, zfs_prop_to_name(ZFS_PROP_KEYFORMAT)); iters = fnvlist_lookup_uint64(nvl, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS)); salt = fnvlist_lookup_uint64(nvl, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT)); VERIFY0(nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_MASTER_KEY, &keydata, &len)); VERIFY0(nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_HMAC_KEY, &hmac_keydata, &len)); VERIFY0(nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_IV, &iv, &len)); VERIFY0(nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_MAC, &mac, &len)); /* if this is a new dataset setup the DSL Crypto Key. */ if (dd->dd_crypto_obj == 0) { /* zapify the dsl dir so we can add the key object to it */ dmu_buf_will_dirty(dd->dd_dbuf, tx); dsl_dir_zapify(dd, tx); /* create the DSL Crypto Key on disk and activate the feature */ dd->dd_crypto_obj = zap_create(mos, DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); VERIFY0(zap_update(tx->tx_pool->dp_meta_objset, dd->dd_crypto_obj, DSL_CRYPTO_KEY_REFCOUNT, sizeof (uint64_t), 1, &one, tx)); VERIFY0(zap_update(tx->tx_pool->dp_meta_objset, dd->dd_crypto_obj, DSL_CRYPTO_KEY_VERSION, sizeof (uint64_t), 1, &version, tx)); dsl_dataset_activate_feature(ds->ds_object, SPA_FEATURE_ENCRYPTION, tx); ds->ds_feature_inuse[SPA_FEATURE_ENCRYPTION] = B_TRUE; /* save the dd_crypto_obj on disk */ VERIFY0(zap_add(mos, dd->dd_object, DD_FIELD_CRYPTO_KEY_OBJ, sizeof (uint64_t), 1, &dd->dd_crypto_obj, tx)); /* * Set the keylocation to prompt by default. If keylocation * has been provided via the properties, this will be overridden * later. */ dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_KEYLOCATION), ZPROP_SRC_LOCAL, 1, strlen(keylocation) + 1, keylocation, tx); rddobj = dd->dd_object; } else { VERIFY0(dsl_dir_get_encryption_root_ddobj(dd, &rddobj)); } /* sync the key data to the ZAP object on disk */ dsl_crypto_key_sync_impl(mos, dd->dd_crypto_obj, crypt, rddobj, guid, iv, mac, keydata, hmac_keydata, keyformat, salt, iters, tx); } int dsl_crypto_recv_key_check(void *arg, dmu_tx_t *tx) { int ret; dsl_crypto_recv_key_arg_t *dcrka = arg; dsl_dataset_t *ds = NULL; ret = dsl_dataset_hold_obj(tx->tx_pool, dcrka->dcrka_dsobj, FTAG, &ds); if (ret != 0) goto error; ret = dsl_crypto_recv_raw_objset_check(ds, dcrka->dcrka_ostype, dcrka->dcrka_nvl, tx); if (ret != 0) goto error; /* * We run this check even if we won't be doing this part of * the receive now so that we don't make the user wait until * the receive finishes to fail. */ ret = dsl_crypto_recv_raw_key_check(ds, dcrka->dcrka_nvl, tx); if (ret != 0) goto error; dsl_dataset_rele(ds, FTAG); return (0); error: if (ds != NULL) dsl_dataset_rele(ds, FTAG); return (ret); } void dsl_crypto_recv_key_sync(void *arg, dmu_tx_t *tx) { dsl_crypto_recv_key_arg_t *dcrka = arg; dsl_dataset_t *ds; VERIFY0(dsl_dataset_hold_obj(tx->tx_pool, dcrka->dcrka_dsobj, FTAG, &ds)); dsl_crypto_recv_raw_objset_sync(ds, dcrka->dcrka_ostype, dcrka->dcrka_nvl, tx); if (dcrka->dcrka_do_key) dsl_crypto_recv_raw_key_sync(ds, dcrka->dcrka_nvl, tx); dsl_dataset_rele(ds, FTAG); } /* * This function is used to sync an nvlist representing a DSL Crypto Key and * the associated encryption parameters. The key will be written exactly as is * without wrapping it. */ int dsl_crypto_recv_raw(const char *poolname, uint64_t dsobj, dmu_objset_type_t ostype, nvlist_t *nvl, boolean_t do_key) { dsl_crypto_recv_key_arg_t dcrka; dcrka.dcrka_dsobj = dsobj; dcrka.dcrka_ostype = ostype; dcrka.dcrka_nvl = nvl; dcrka.dcrka_do_key = do_key; return (dsl_sync_task(poolname, dsl_crypto_recv_key_check, dsl_crypto_recv_key_sync, &dcrka, 1, ZFS_SPACE_CHECK_NORMAL)); } int dsl_crypto_populate_key_nvlist(dsl_dataset_t *ds, nvlist_t **nvl_out) { int ret; objset_t *os; dnode_t *mdn; uint64_t rddobj; nvlist_t *nvl = NULL; uint64_t dckobj = ds->ds_dir->dd_crypto_obj; dsl_dir_t *rdd = NULL; dsl_pool_t *dp = ds->ds_dir->dd_pool; objset_t *mos = dp->dp_meta_objset; uint64_t crypt = 0, guid = 0, format = 0; uint64_t iters = 0, salt = 0, version = 0; uint8_t raw_keydata[MASTER_KEY_MAX_LEN]; uint8_t raw_hmac_keydata[SHA512_HMAC_KEYLEN]; uint8_t iv[WRAPPING_IV_LEN]; uint8_t mac[WRAPPING_MAC_LEN]; ASSERT(dckobj != 0); VERIFY0(dmu_objset_from_ds(ds, &os)); mdn = DMU_META_DNODE(os); ret = nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP); if (ret != 0) goto error; /* lookup values from the DSL Crypto Key */ ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_CRYPTO_SUITE, 8, 1, &crypt); if (ret != 0) goto error; ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_GUID, 8, 1, &guid); if (ret != 0) goto error; ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_MASTER_KEY, 1, MASTER_KEY_MAX_LEN, raw_keydata); if (ret != 0) goto error; ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_HMAC_KEY, 1, SHA512_HMAC_KEYLEN, raw_hmac_keydata); if (ret != 0) goto error; ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_IV, 1, WRAPPING_IV_LEN, iv); if (ret != 0) goto error; ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_MAC, 1, WRAPPING_MAC_LEN, mac); if (ret != 0) goto error; /* * We don't support raw sends of legacy on-disk formats. See the * comment in dsl_crypto_recv_key_check() for details. */ ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_VERSION, 8, 1, &version); if (ret != 0 || version != ZIO_CRYPT_KEY_CURRENT_VERSION) { dp->dp_spa->spa_errata = ZPOOL_ERRATA_ZOL_6845_ENCRYPTION; ret = SET_ERROR(ENOTSUP); goto error; } /* * Lookup wrapping key properties. An early version of the code did * not correctly add these values to the wrapping key or the DSL * Crypto Key on disk for non encryption roots, so to be safe we * always take the slightly circuitous route of looking it up from * the encryption root's key. */ ret = dsl_dir_get_encryption_root_ddobj(ds->ds_dir, &rddobj); if (ret != 0) goto error; dsl_pool_config_enter(dp, FTAG); ret = dsl_dir_hold_obj(dp, rddobj, NULL, FTAG, &rdd); if (ret != 0) goto error_unlock; ret = zap_lookup(dp->dp_meta_objset, rdd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_KEYFORMAT), 8, 1, &format); if (ret != 0) goto error_unlock; if (format == ZFS_KEYFORMAT_PASSPHRASE) { ret = zap_lookup(dp->dp_meta_objset, rdd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 8, 1, &iters); if (ret != 0) goto error_unlock; ret = zap_lookup(dp->dp_meta_objset, rdd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 8, 1, &salt); if (ret != 0) goto error_unlock; } dsl_dir_rele(rdd, FTAG); dsl_pool_config_exit(dp, FTAG); fnvlist_add_uint64(nvl, DSL_CRYPTO_KEY_CRYPTO_SUITE, crypt); fnvlist_add_uint64(nvl, DSL_CRYPTO_KEY_GUID, guid); fnvlist_add_uint64(nvl, DSL_CRYPTO_KEY_VERSION, version); VERIFY0(nvlist_add_uint8_array(nvl, DSL_CRYPTO_KEY_MASTER_KEY, raw_keydata, MASTER_KEY_MAX_LEN)); VERIFY0(nvlist_add_uint8_array(nvl, DSL_CRYPTO_KEY_HMAC_KEY, raw_hmac_keydata, SHA512_HMAC_KEYLEN)); VERIFY0(nvlist_add_uint8_array(nvl, DSL_CRYPTO_KEY_IV, iv, WRAPPING_IV_LEN)); VERIFY0(nvlist_add_uint8_array(nvl, DSL_CRYPTO_KEY_MAC, mac, WRAPPING_MAC_LEN)); VERIFY0(nvlist_add_uint8_array(nvl, "portable_mac", os->os_phys->os_portable_mac, ZIO_OBJSET_MAC_LEN)); fnvlist_add_uint64(nvl, zfs_prop_to_name(ZFS_PROP_KEYFORMAT), format); fnvlist_add_uint64(nvl, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), iters); fnvlist_add_uint64(nvl, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), salt); fnvlist_add_uint64(nvl, "mdn_checksum", mdn->dn_checksum); fnvlist_add_uint64(nvl, "mdn_compress", mdn->dn_compress); fnvlist_add_uint64(nvl, "mdn_nlevels", mdn->dn_nlevels); fnvlist_add_uint64(nvl, "mdn_blksz", mdn->dn_datablksz); fnvlist_add_uint64(nvl, "mdn_indblkshift", mdn->dn_indblkshift); fnvlist_add_uint64(nvl, "mdn_nblkptr", mdn->dn_nblkptr); fnvlist_add_uint64(nvl, "mdn_maxblkid", mdn->dn_maxblkid); *nvl_out = nvl; return (0); error_unlock: dsl_pool_config_exit(dp, FTAG); error: if (rdd != NULL) dsl_dir_rele(rdd, FTAG); nvlist_free(nvl); *nvl_out = NULL; return (ret); } uint64_t dsl_crypto_key_create_sync(uint64_t crypt, dsl_wrapping_key_t *wkey, dmu_tx_t *tx) { dsl_crypto_key_t dck; uint64_t version = ZIO_CRYPT_KEY_CURRENT_VERSION; uint64_t one = 1ULL; ASSERT(dmu_tx_is_syncing(tx)); ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS); ASSERT3U(crypt, >, ZIO_CRYPT_OFF); /* create the DSL Crypto Key ZAP object */ dck.dck_obj = zap_create(tx->tx_pool->dp_meta_objset, DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); /* fill in the key (on the stack) and sync it to disk */ dck.dck_wkey = wkey; VERIFY0(zio_crypt_key_init(crypt, &dck.dck_key)); dsl_crypto_key_sync(&dck, tx); VERIFY0(zap_update(tx->tx_pool->dp_meta_objset, dck.dck_obj, DSL_CRYPTO_KEY_REFCOUNT, sizeof (uint64_t), 1, &one, tx)); VERIFY0(zap_update(tx->tx_pool->dp_meta_objset, dck.dck_obj, DSL_CRYPTO_KEY_VERSION, sizeof (uint64_t), 1, &version, tx)); zio_crypt_key_destroy(&dck.dck_key); bzero(&dck.dck_key, sizeof (zio_crypt_key_t)); return (dck.dck_obj); } uint64_t dsl_crypto_key_clone_sync(dsl_dir_t *origindd, dmu_tx_t *tx) { objset_t *mos = tx->tx_pool->dp_meta_objset; ASSERT(dmu_tx_is_syncing(tx)); VERIFY0(zap_increment(mos, origindd->dd_crypto_obj, DSL_CRYPTO_KEY_REFCOUNT, 1, tx)); return (origindd->dd_crypto_obj); } void dsl_crypto_key_destroy_sync(uint64_t dckobj, dmu_tx_t *tx) { objset_t *mos = tx->tx_pool->dp_meta_objset; uint64_t refcnt; /* Decrement the refcount, destroy if this is the last reference */ VERIFY0(zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_REFCOUNT, sizeof (uint64_t), 1, &refcnt)); if (refcnt != 1) { VERIFY0(zap_increment(mos, dckobj, DSL_CRYPTO_KEY_REFCOUNT, -1, tx)); } else { VERIFY0(zap_destroy(mos, dckobj, tx)); } } void dsl_dataset_crypt_stats(dsl_dataset_t *ds, nvlist_t *nv) { uint64_t intval; dsl_dir_t *dd = ds->ds_dir; dsl_dir_t *enc_root; char buf[ZFS_MAX_DATASET_NAME_LEN]; if (dd->dd_crypto_obj == 0) return; intval = dsl_dataset_get_keystatus(dd); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_KEYSTATUS, intval); if (dsl_dir_get_crypt(dd, &intval) == 0) dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_ENCRYPTION, intval); if (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, DSL_CRYPTO_KEY_GUID, 8, 1, &intval) == 0) { dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_KEY_GUID, intval); } if (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_KEYFORMAT), 8, 1, &intval) == 0) { dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_KEYFORMAT, intval); } if (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 8, 1, &intval) == 0) { dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_PBKDF2_SALT, intval); } if (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 8, 1, &intval) == 0) { dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_PBKDF2_ITERS, intval); } if (dsl_dir_get_encryption_root_ddobj(dd, &intval) == 0) { VERIFY0(dsl_dir_hold_obj(dd->dd_pool, intval, NULL, FTAG, &enc_root)); dsl_dir_name(enc_root, buf); dsl_dir_rele(enc_root, FTAG); dsl_prop_nvlist_add_string(nv, ZFS_PROP_ENCRYPTION_ROOT, buf); } } int spa_crypt_get_salt(spa_t *spa, uint64_t dsobj, uint8_t *salt) { int ret; dsl_crypto_key_t *dck = NULL; /* look up the key from the spa's keystore */ ret = spa_keystore_lookup_key(spa, dsobj, FTAG, &dck); if (ret != 0) goto error; ret = zio_crypt_key_get_salt(&dck->dck_key, salt); if (ret != 0) goto error; spa_keystore_dsl_key_rele(spa, dck, FTAG); return (0); error: if (dck != NULL) spa_keystore_dsl_key_rele(spa, dck, FTAG); return (ret); } /* * Objset blocks are a special case for MAC generation. These blocks have 2 * 256-bit MACs which are embedded within the block itself, rather than a * single 128 bit MAC. As a result, this function handles encoding and decoding * the MACs on its own, unlike other functions in this file. */ int spa_do_crypt_objset_mac_abd(boolean_t generate, spa_t *spa, uint64_t dsobj, abd_t *abd, uint_t datalen, boolean_t byteswap) { int ret; dsl_crypto_key_t *dck = NULL; void *buf = abd_borrow_buf_copy(abd, datalen); objset_phys_t *osp = buf; uint8_t portable_mac[ZIO_OBJSET_MAC_LEN]; uint8_t local_mac[ZIO_OBJSET_MAC_LEN]; /* look up the key from the spa's keystore */ ret = spa_keystore_lookup_key(spa, dsobj, FTAG, &dck); if (ret != 0) goto error; /* calculate both HMACs */ ret = zio_crypt_do_objset_hmacs(&dck->dck_key, buf, datalen, byteswap, portable_mac, local_mac); if (ret != 0) goto error; spa_keystore_dsl_key_rele(spa, dck, FTAG); /* if we are generating encode the HMACs in the objset_phys_t */ if (generate) { bcopy(portable_mac, osp->os_portable_mac, ZIO_OBJSET_MAC_LEN); bcopy(local_mac, osp->os_local_mac, ZIO_OBJSET_MAC_LEN); abd_return_buf_copy(abd, buf, datalen); return (0); } if (bcmp(portable_mac, osp->os_portable_mac, ZIO_OBJSET_MAC_LEN) != 0 || bcmp(local_mac, osp->os_local_mac, ZIO_OBJSET_MAC_LEN) != 0) { abd_return_buf(abd, buf, datalen); return (SET_ERROR(ECKSUM)); } abd_return_buf(abd, buf, datalen); return (0); error: if (dck != NULL) spa_keystore_dsl_key_rele(spa, dck, FTAG); abd_return_buf(abd, buf, datalen); return (ret); } int spa_do_crypt_mac_abd(boolean_t generate, spa_t *spa, uint64_t dsobj, abd_t *abd, uint_t datalen, uint8_t *mac) { int ret; dsl_crypto_key_t *dck = NULL; uint8_t *buf = abd_borrow_buf_copy(abd, datalen); uint8_t digestbuf[ZIO_DATA_MAC_LEN]; /* look up the key from the spa's keystore */ ret = spa_keystore_lookup_key(spa, dsobj, FTAG, &dck); if (ret != 0) goto error; /* perform the hmac */ ret = zio_crypt_do_hmac(&dck->dck_key, buf, datalen, digestbuf, ZIO_DATA_MAC_LEN); if (ret != 0) goto error; abd_return_buf(abd, buf, datalen); spa_keystore_dsl_key_rele(spa, dck, FTAG); /* * Truncate and fill in mac buffer if we were asked to generate a MAC. * Otherwise verify that the MAC matched what we expected. */ if (generate) { bcopy(digestbuf, mac, ZIO_DATA_MAC_LEN); return (0); } if (bcmp(digestbuf, mac, ZIO_DATA_MAC_LEN) != 0) return (SET_ERROR(ECKSUM)); return (0); error: if (dck != NULL) spa_keystore_dsl_key_rele(spa, dck, FTAG); abd_return_buf(abd, buf, datalen); return (ret); } /* * This function serves as a multiplexer for encryption and decryption of * all blocks (except the L2ARC). For encryption, it will populate the IV, * salt, MAC, and cabd (the ciphertext). On decryption it will simply use * these fields to populate pabd (the plaintext). */ int spa_do_crypt_abd(boolean_t encrypt, spa_t *spa, const zbookmark_phys_t *zb, dmu_object_type_t ot, boolean_t dedup, boolean_t bswap, uint8_t *salt, uint8_t *iv, uint8_t *mac, uint_t datalen, abd_t *pabd, abd_t *cabd, boolean_t *no_crypt) { int ret; dsl_crypto_key_t *dck = NULL; uint8_t *plainbuf = NULL, *cipherbuf = NULL; ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); /* look up the key from the spa's keystore */ ret = spa_keystore_lookup_key(spa, zb->zb_objset, FTAG, &dck); if (ret != 0) { ret = SET_ERROR(EACCES); return (ret); } if (encrypt) { plainbuf = abd_borrow_buf_copy(pabd, datalen); cipherbuf = abd_borrow_buf(cabd, datalen); } else { plainbuf = abd_borrow_buf(pabd, datalen); cipherbuf = abd_borrow_buf_copy(cabd, datalen); } /* * Both encryption and decryption functions need a salt for key * generation and an IV. When encrypting a non-dedup block, we * generate the salt and IV randomly to be stored by the caller. Dedup * blocks perform a (more expensive) HMAC of the plaintext to obtain * the salt and the IV. ZIL blocks have their salt and IV generated * at allocation time in zio_alloc_zil(). On decryption, we simply use * the provided values. */ if (encrypt && ot != DMU_OT_INTENT_LOG && !dedup) { ret = zio_crypt_key_get_salt(&dck->dck_key, salt); if (ret != 0) goto error; ret = zio_crypt_generate_iv(iv); if (ret != 0) goto error; } else if (encrypt && dedup) { ret = zio_crypt_generate_iv_salt_dedup(&dck->dck_key, plainbuf, datalen, iv, salt); if (ret != 0) goto error; } /* call lower level function to perform encryption / decryption */ ret = zio_do_crypt_data(encrypt, &dck->dck_key, ot, bswap, salt, iv, mac, datalen, plainbuf, cipherbuf, no_crypt); /* * Handle injected decryption faults. Unfortunately, we cannot inject * faults for dnode blocks because we might trigger the panic in * dbuf_prepare_encrypted_dnode_leaf(), which exists because syncing * context is not prepared to handle malicious decryption failures. */ if (zio_injection_enabled && !encrypt && ot != DMU_OT_DNODE && ret == 0) ret = zio_handle_decrypt_injection(spa, zb, ot, ECKSUM); if (ret != 0) goto error; if (encrypt) { abd_return_buf(pabd, plainbuf, datalen); abd_return_buf_copy(cabd, cipherbuf, datalen); } else { abd_return_buf_copy(pabd, plainbuf, datalen); abd_return_buf(cabd, cipherbuf, datalen); } spa_keystore_dsl_key_rele(spa, dck, FTAG); return (0); error: if (encrypt) { /* zero out any state we might have changed while encrypting */ bzero(salt, ZIO_DATA_SALT_LEN); bzero(iv, ZIO_DATA_IV_LEN); bzero(mac, ZIO_DATA_MAC_LEN); abd_return_buf(pabd, plainbuf, datalen); abd_return_buf_copy(cabd, cipherbuf, datalen); } else { abd_return_buf_copy(pabd, plainbuf, datalen); abd_return_buf(cabd, cipherbuf, datalen); } spa_keystore_dsl_key_rele(spa, dck, FTAG); return (ret); }